pcDNA3.1-

pcDNA3.1-

pcDNA3.1(-)

Vendor:Invitrogen

Alternate Vector Names: pcDNA3.1-, pcDNA3.1

Vector Type: Mammalian

Viral/Non-viral: Nonviral

Stable/Transient: Transient

Constitutive/Inducible: Constitutive

Promoter: CMV

Expression Level: High

Backbone size: 5428

Sequencing Primer: T7 Fwd

Sequencing Primer Sequence: 5'd[TAATACGACTCACTATAGGG]3'

Bacteria Resistance: Ampicillin

Mammalian Selection: G418, neo

Catalog Number: V79020, V79520

Comments:Differs from other pcDNA3.1 in drug resistance; +/- refers to orientation of f1 ori.

伪随机码生成器

M序列发生器 M序列是最常用的一种伪随机序列,是一种线性反馈移位寄存器序列的简称。带线性反馈逻辑的移位寄存器设定各级寄存器的初试状态后,在时钟的触发下,每次移位后各级寄存器状态都会发生变化。其中一级寄存器(通常为末级)的输出,随着移位寄存器时钟节拍的推移会产生下一个序列,称为移位寄存器序列。他是一种周期序列,周期与移位寄存器的级数和反馈逻辑有关。 以4级移位寄存器为例,线性反馈结构如下图: 4级以为寄存器反馈图 其中a4=a1+a0

信号a4:a0禁止出现全0,否则将会出现全0,序列不变化。实验仿真 Code: library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity random_4 is Port ( clk : in STD_LOGIC; reset : in STD_LOGIC;

din : in STD_LOGIC_VECTOR (3 downto 0); dout : out STD_LOGIC_VECTOR (3 downto 0); load : in STD_LOGIC); end random_4; architecture Behavioral of random_4 is signal rfsr :std_logic_vector(3 downto 0); --signal temp:std_logic; begin process(clk,reset,load,din) begin if (reset ='1') then rfsr <=(others =>'0'); elsif (clk' event and clk='1') then if(load ='1') then ----load =1 rfsr<= din; else rfsr(3) <= rfsr(0) xor rfsr(1); rfsr(2 downto 0) <= rfsr(3 downto 1); end if; end if; end process; ------signal rename----

分子生物学 常用引物序列

日常备库引物序列(5'-3') 1492R GGTTACCTTGTTACGACTT 27F\8F AGAGTTTGATCCTGGCTCA 35S GACGCACAATCCCACTATCC 3'AD AGATGGTGCACGATGCACAG 3'AOX\AOX1rev GGCAAATGGCATTCTGACAT 3'BD TAAGAGTCACTTTAAAATTTGTATAC 5'AD\GAL4AD\P17110 TACCACTACAATGGATGATG 5'AOX\AOX1for GACTGGTTCCAATTGACAAGC 5'BD\GAL4-BD-Cfor TCATCGGAAGAGAGTAG 96gIII\M13-96 CCCTCATAGTTAGCGTAACG a-FACTOR\Alphafor TACTATTGCCAGCATTGCTGC BAC1 AACCATCTCGCAAATAAATA BAC2 ACGCACAGAATCTAGCGCTT BGH\pCDNA3.1R TAGAAGGCACAGTCGAGG CMV-24 TTAGGACAAGGCTGGTGG CMV-30 ATAACCCCGCCCCGTTG CMV-F\CMV-Profor CGCAAATGGGCGGTAGGCGTG\ATGGGCGGTAGGCGT G CMV-R TCGTTGGGCGGTCAGC DuetDOWN1 GATTATGCGGCCGTGTACAA DuetUP1 GATCTCGACGCTCTCCCT DuetUP2 TTGTACACGGCCGCATAATC EBVrev GTGGTTTGTCCAAACTCATC EGFP-Cfor AGCACCCAGTCCGCCCTGAGC EGFP-Nrev CGTCGCCGTCCAGCTC GAL1-Profor AACATTTTCGGTTTGTATTACTTC GLP1 TGTATCTTATGGTACTGTAACTG GLP2 CTTTATGTTTTTGGCGTCTTCCA

(完整版)伪随机序列的毕业设计

摘要 本毕业设计主要介绍了两种常用的反馈移位寄存器序列(m序列和Gold序列)的特性,并对其进行仿真研究。 伪随机序列良好的随机性和接近于白噪声的相关函数,使其易于从信号或干扰中分离出来。伪随机序列的可确定性和可重复性,使其易于实现相关接收或匹配接收,因此有良好的抗干扰性能。伪随机序列的这些特性使得它在伪码测距、导航、遥控遥测、扩频通信、多址通信、分离多径、数据加扰、信号同步、误码测试、线性系统、各种噪声源等方面得到了广泛的应用,特别是作为扩频码在CDMA系统中的应用已成为其中的关键问题。 在本论文中首先简要阐述了伪随机序列的研究现状及其相关意义,接着介绍了伪随机序列的发展历史,研究方法和研究工具。然后分别对m序列和Gold序列这两种常用的伪随机序列的生成过程、随机特性以及相关特性进行了详细的研究,并分析它们的优点以及存在的问题。最后在理论证明的基础上应用MATLAB仿真验证它们的随机特性,并用仿真做出m 序列和Gold序列相关特性图形并加以比较。 关键词:伪随机序列;m序列;Gold序列;相关;

ABSTRACT Matlab software used extensively in many engineering fields due to its strong operation fanction. To expanding or compressing the signal spectrum in spread spectrum system,the signal is generally multipled by a spread Spectrum sequence. The character of spread spectrum sequence significantly affects the communication quality. In all PN sequences, m-sequence and Gold-sequence are often used asspread spectrum sequence. In this paper, the brief introduction of the theory, property and constructing means of the two sequences are given first, and the generation and analysis of them by programming with M language in MATLAB are given later. The simulation results show the correctness and feasibility of this method.The simple and intuitive method is convenient for the engineering personnel. KEYWORDS:PN sequence; Sequence; Spread spectrum sequence 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除

伪随机码发生器设计

伪随机码发生器设计 1 引言 随着科学技术的进步,现代战争样式向信息战形式发展。现代战争胜负对于信息获取的依赖程度前所未有的提高。在现代战争中,若己方的通讯交流方式早敌军破获,则地方将获取己方部队动向或实施信息干扰。将会使部队陷入极其危险地境地中。因此,信息战对通讯加密手段的要求极高。 伪随机序列(Pseudonoise Sequence)又称伪噪声或伪随机码,具有类似随机信号的一些统计特性,但又是有规律的,容易产生和复制的。最大长度线性移位寄存器序列(m序列)是保密通信中非常重要的一种伪随机序列,它具有随机性、规律性及较好的自相关和互相关性,而且密钥量很大。利用m序列加密数字信号,使加密后的信号在携带原始信息的同时具有伪噪声的特点,以达到在信号传输的过程中隐藏信息的目的;在信号接收端,再次利用m序列加以解密,恢复出原始信号。这样,通过对m序列的应用,将大大的提高通讯的保密程度和防窃取能力。这样的通讯手段被称为扩展频谱通信 扩展频谱通信(Spread Spectrum Communication)是将待传送的信息数据被伪随机编码也就是扩频序列调制,实现频谱扩展以后再在信道中传输,接收端则采用与发送端完全相同的编码进行解调和相关处理,从而恢复出原始的信息数据。在这其中,伪随机码发生器是十分重要的一环,是对信息加密的核心器件。m序列伪随机码发生器即使通过m序列的方式对信息数据编码。 本系统所设计的伪随机码发生器,产生m序列伪随机码。系统采用AT89S51单片机作为控制芯片,控制使用LCD12864显示处理器产生的m序列伪随机码,并且可通过按键对参数修改,设置初始码及m 序列长度。单片机根据设定的初始码及m序列长度,按照约定的逻辑运算关系,循环往复的产生0或者1。 2 发生器系统设计 2.1总体设计 系统分为信息处理、实时显示和按键修改共五大模块。 系统总体结构框图如图1所示:

扩频系统使用的伪随机码PN码

第六章 扩频系统使用的伪随机码(PN 码) 在扩展频谱系统中,常使用伪随机码来扩展频谱。伪随机码的特性,如编码类型,长度,速度等在很大程度上决定了扩频系统的性能,如抗干扰能力,多址能力,码捕获时间。 6.1 移位寄存器序列 移位寄存器序列是指由移位寄存器输出的由“1”和“0”构成的序列。相应的时间波形是指由“1”和“-1”构成的时间函数,如图6-1所示。 图6-1 (a )移位寄存器序列 (b )移位寄存器波形 移位寄存器序列的产生如图6-2 。主要由移位寄存器和反馈函数构成。移位寄存 器内容为),,,(21n x x x f 或1,反馈函数的输入端通过系数与移位寄存器的各级状态相联()(1)(0通或断=i c )输出通过反馈线作为1x 的输入。移位寄存器在时钟的作用下把反馈函数的输出存入1x ,在下一个时钟周期又把新的反馈函数的输出存入1x 而把原1x 的内容移入2x ,依次循环下去,n x 不断输出。 根据反馈函数对移位寄存器序列产生器分类: (1) 线性反馈移位寄存器序列产生器(LFSRSG ):如果),,(1n x x f 为n x x ,,1 的模2加。 (2) 非线性反馈移位寄存器序列产生器(NLFSRSG ):如果),,(1n x x f 不是n x x ,,1 的 模2加。 例1: LFSRSG :n=4,4314321),,,(x x x x x x x f ⊕⊕= (a) 图6-2 移位寄存器序列生成器

共16个不同状态,1111,0000为死态,每个状态只来自一个前置态。 例2: LFSRSG :n=4,4143214321),,,(,1,0,0,1x x x x x x f c c c c ⊕===== 设初态为:1,1,1,14321====x x x x ,则移位寄存器状态转移图如下:

常用的β-actin 引物序列

human actin f ctc cat cct ggc ctc gct gt human actin r gct gtc acc ttc acc gtt cc product size:268 rabbit actin r agt gcg acg tgg aca tcc g rabbit actin f tgg ctc taa cag tcc gcc tag product size:295 mouse actin r cgt tga cat ccg taa aga cc mouse actin f aac agt ccg cct aga agc ac product size:281 rat actin f TCAGGTCATCACTATCGGCAAT rat actin r AAAGAAAGGGTGTAAAACGCA product size:432 human actin r gag cta cga gct gcc tga cg human actin f cct aga agc att tgc ggt gg product size:416 mouse actin f tca tca cta ttg gca acg agc mouse actin r aac agt ccg cct aga agc ac product size:399 rat actin f CCCATCTATGAGGGTTACGC rat actin r TTTAATGTCACGCACGATTTC product size:150 rabbit actin f tct tcc agc cct cct tcc tg rabbit actin r cgt ttc tgc gcc gtt agg t product size:409 内参基因名称引物引物最佳退火扩增 基因库序列号引物名称序列位置Tm 温度C 长度 Human actin beta F305 ctgggacgacatggagaaaa 305-324 52.3 BC002409 R868 aaggaaggctggaagagtgc 868-849 52.6 59.4 564 F1379 agcgagcatcccccaaagtt 1379-1398 57.3 R1663 gggcacgaaggctcatcatt 1663-1644 56.3 54 285 Rat actin beta F18 cacccgcgagtacaaccttc 18-37 54.5 NM_031144 R224 cccatacccaccatcacacc 224-205 54.4 60.4 207 F694 gagagggaaatcgtgcgtgac 694-714 54 R1146 catctgctggaaggtggaca 1146-1127 53.2 57.1 452 Mouse actin beta F91 atatcgctgcgctggtcgtc 91-110 57.5 NM_007393 R607 aggatggcgtgagggagagc 607-588 57.8 60.4 517 F1566 gtccctcaccctcccaaaag 1566-1585 54.5 F1831 gctgcctcaacacctcaaccc 1831-1811 54.4 55.7 266 human GAPDH F369 agaaggctggggctcatttg 369-388 55.6 BC004109 R626 aggggccatccacagtcttc 626-607 55.1 57.5 258

伪随机序列

太原理工大学现代科技学院 移动通信技术课程实验报告 专业班级 学号 姓名 指导教师

实验名称 伪随机序列 同组人 专业班级 学号 姓名 成绩 一、 实验目的 掌握数字锁相环的组成、工作原理及在位同步恢复中的应用。 通过本实验掌握m 序列的特性、产生方法及应用。 通过本实验掌握Gold 序列的特性、产生方法及应用,掌握Gold 序列与m 序列的区别. 二、 实验内容 1、观察位同步电路信号波形及特性。 2、观察数字锁相环提取位同步的相位抖动 。 3、观察m 序列,识别其特征。 4、观察m 序列的自相关特性。 5、观察Gold 序列,识别其特征。 6、观察Gold 序列的自相关特性及互相关特性。 三、 实验原理 1数字基带信号本身是否含有位同步信息与其码型有密切关系。二进制基带信号中的位同步离散谱分量是否存在,取决于二进制基带矩形脉冲信号的占空比。若单极性二进制矩形脉冲信号的码元周期为T s ,脉冲宽度为τ,则NRZ 码的τ=T s ,则NRZ 码除直流分量外不存在离散谱分量,即没有位同步离散谱分量1/T s ;RZ 码的τ满足0<τ

实验室常用缓冲液 常用引物序列汇总

实验常用试剂、缓冲液的配制方法 Na2HPO4,2 mM KH2PO4 1 M Tris-HCl 、11M Tris-HCl □组份浓度 □配制量□配制量1L 1L (pH7.4,7.6,8.0) □配置方法1. 称量下列试剂,置于1L烧杯中。烧杯中。□配置方法1. 称量121.1gTris置于1L NaCl 加入约800mL的去离子水,充分搅拌溶解。 8 g 2. KCl 0.2g 3. 按下表量加入浓盐酸调节所需要的pH值。 Na2HPO4 1.42 g 浓值 HCl pH KH2PO4 0.27g 7.4 约70mL 2. 向烧杯中加入约800 mL的去离子水,充分搅拌溶解。 7.6 约60mL 3. 滴加HCl将pH42mL 8.0 约值调节至7.4,然后加入去离子水将溶液定容至1L。 4. 将溶解定容至1L。 4. 高温高压灭菌后,室温保存。 5. 高温高压灭菌后,室温保存。注意:上述PBS Buffer中无二价阳离子,如需要,可在配方中pH注意:应使溶液冷却至室温后再调定pH值,因为Tris溶液的补充1mM CaCl2和0.5 mM MgCl2。pH值随温度的变化差很大,温度每升高1℃,溶液的值大约降低 6、10 M醋酸铵0.03个单位。□组份浓度10 M醋酸铵 □配制量100mL 1.5 M Tris-HCl 2、1.5 M Tris-HCl □组份浓度□配置方法1. 称量77.1g醋酸铵置于100~配制量pH8.8 ()□1L 200 mL烧杯中,加入约30 mL的去离子水搅拌溶解。1L1. □配置方法称取181.7gTris置于烧杯中。 2. 加入约800mL2.加去离子水将溶液定容至100mL。的去离子水,充分搅拌溶解。 3.使用8.8pH3. 用浓盐酸调值至。0.22μm滤膜过滤除菌。 4.密封瓶口于室温保存。。1L 4. 将溶液定容至 5. 高温高压灭菌后,室温保存。注意:醋酸铵受热易分解,所以不能高温高压灭菌。 7、Tris- HCl平衡苯酚□溶液的注意:应使溶液冷却至室温后再调定pH值,因为Tris配置方法 1. 使用原料:大多数市售液化苯酚是清亮无色的,pH值大约无需重蒸馏℃,溶液的值随温度的变化差异很大,温度每升高pH1便可用于分子生物学实验。0.03降低个单位。但有些液化苯酚呈粉红色或黄色,应避免使用。同时也应避免使用结晶苯酚,结晶苯酚必须在160℃对其,□TE Buffer、310×组份浓度100 mM Tris-HCl10 mM EDTA

伪随机序列

伪随机序列 扩频通信技术在发送端以扩频码进行扩频调制,在接收端以相关解扩技术进行收信,这一过程使其具有诸多优良特性,即抗干扰性能好、隐蔽性强、干扰小、易于实现码分多址等。 扩频调制即是将扩频码与待传输的基带数字信号进行模二叠加(时域相乘)。扩频调制后的信号还需经过载波调制后才可发送至信道。而接收端则采用相干解扩和解调,恢复出原始数据信息,以达到抑制干扰的目的。 扩频调制是通过伪随机码或伪随机序列来实现的。从理论上讲,用纯随机序列来扩展信号的频谱是最重要的,但是接收端必须复制同一个伪随机序列,由于伪随机序列的不可复制性,因此,在工程中,无法使用纯随机序列,而改为采用伪随机序列。 各类扩频通信系统都有伪随机编码序列,而且具有良好随机特性和相关特性的扩频编码对于扩频通信是至关重要的,对扩频通信的性能具有决定性的重要作用。在扩频通信系统中,抗干扰、抗截获、信息数据隐蔽和保密、多径保护和抗衰落、多址通信、实现同步捕获等都与扩频编码密切相关。能满足上述要求的扩频编码应具有如下的理想特性: (1)有尖锐的自相关特性; (2)有处处为零的互相关; (3)不同码元数平衡相等; (4)有足够的编码数量; (5)有尽可能大的复杂度。 m序列 m序列是最长线性移位寄存器序列的简称。顾名思义,m序列是由多级移位寄存器或其延迟元件通过线性反馈产生的最长的码序列。在二进制移位寄存器中,若n为移位寄存器的级数,n级移位寄存器共有2n个状态,除去全零状态外,还剩下2n-1种状态,因此它能产生最大长度的码序列为2n-1位。故m序列的线性反馈移位寄存器称做最长线性移位寄存器。 产生m序列的移位寄存器的电路结构,即反馈线连接不是随意的,m序列的

ISSR通用引物序列

ISSR通用引物序列

UBC Primer Set #9 (Microsatellite) 引物名称序列 801 ATA TAT ATA TAT ATA TT 802 ATA TAT ATA TAT ATA TG 803 ATA TAT ATA TAT ATA TC 804 TAT ATA TAT ATA TAT AA 805 TAT ATA TAT ATA TAT AC 806 TAT ATA TAT ATA TAT AG 807 AGA GAG AGA GAG AGA GT 808 AGA GAG AGA GAG AGA GC 809 AGA GAG AGA GAG AGA GG 810 GAG AGA GAG AGA GAG AT 811 GAG AGA GAG AGA GAG AC 812 GAG AGA GAG AGA GAG AA 813 CTC TCT CTC TCT CTC TT 814 CTC TCT CTC TCT CTC TA 815 CTC TCT CTC TCT CTC TG 816 CAC ACA CAC ACA CAC AT 817 CAC ACA CAC ACA CAC AA 818 CAC ACA CAC ACA CAC AG 819 GTG TGT GTG TGT GTG TA 820 GTG TGT GTG TGT GTG TC

821 GTG TGT GTG TGT GTG TT 822 TCT CTC TCT CTC TCT CA 823 TCT CTC TCT CTC TCT CC 824 TCT CTC TCT CTC TCT CG 825 ACA CAC ACA CAC ACA CT 826 ACA CAC ACA CAC ACA CC 827 ACA CAC ACA CAC ACA CG 828 TGT GTG TGT GTG TGT GA 829 TGT GTG TGT GTG TGT GC 830 TGT GTG TGT GTG TGT GG 831 ATA TAT ATA TAT ATA TYA 832 ATA TAT ATA TAT ATA TYC 833 ATA TAT ATA TAT ATA TYG 834 AGA GAG AGA GAG AGA GYT 835 AGA GAG AGA GAG AGA GYC 836 AGA GAG AGA GAG AGA GYA 837 TAT ATA TAT ATA TAT ART 838 TAT ATA TAT ATA TAT ARC 839 TAT ATA TAT ATA TAT ARG 840 GAG AGA GAG AGA GAG AYT 841 GAG AGA GAG AGA GAG AYC 842 GAG AGA GAG AGA GAG AYG

伪随机序列

目录 伪随机序列 (2) 1 基本原理 (2) 1.1 背景 (2) 1.2 实现原理 (2) 2 实现方式 (3) 3 FPGA的实现 (5) 3.1 设计思路 (5) 3.2 代码实现分析 (5) 3.2.1斐波那契方式 (5) 3.2.2伽罗瓦方式 (9) 4 总结 (12)

伪随机序列 1 基本原理 1.1 背景 随着通信技术的发展,在某些情况下,为了实现最有效的通信应采用具有白噪声统计特性的信号;为了实现高可靠的保密通信,也希望利用随机噪声;另外在测试领域,大量的需要使用随机噪声来作为检测系统性能的测试信号。然而,利用随机噪声的最大困难是它难以重复再生和处理。伪随机序列的出现为人们解决了这一难题。伪随机序列具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理,有预先的可确定性和可重复性。由于它的这些优点,在通信、雷达、导航以及密码学等重要的技术领域中伪随机序列获得了广泛的应用。而在近年来的发展中,它的应用范围远远超出了上述的领域,如计算机系统模拟、数字系统中的误码测试、声学和光学测量、数值式跟踪和测距系统等也都有着广阔的使用。 伪随机序列通常由反馈移位寄存器产生,又可分为线性反馈移位寄存器和非线性反馈移位寄存器两类。由线性反馈移位寄存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移位寄存器,即为通常说的m序列,因其理论成熟,实现简单,应用较为广泛。 m序列的特点: (1)每个周期中,“1”码出现2n-1次,“0”码出现2n-1次,即0、1出现概率几乎相等。 (2)序列中连1的数目是n,连0的数目是n-1。 (3)分布无规律,具有与白噪声相似的伪随机特性。 1.2 实现原理 在二进制多级移位寄存器中,若线性反馈移位寄存器(LFSR)有n 阶(即有n级寄存器),则所能产生的最大长度的码序列为2n-1位。如果数字信号直接

常用的通用引物序列

常用之Universal Primer 序列 Primer Primer sequence Applicable vectors T7 TAATACGACTCACTATAGGG pGEM-T, pGEM-T-Easy, pCRII, pET, pBlueScript, pcDNA3.1, pT7Blue SP6 TATTTAGGTGACACTATAG pGEM-T, pGEM-T-Easy, pCRII T3 ATTAACCCTCACTAAAGGGA pBlueScript pUC/M13 Forward (-40) GTTTTCCCAGTCACGAC pUC, pGEM-T, pCRII, pBlueScript pUC/M13 Forward (-21) TGTAAAACGACGGCCAGT pUC, pCRII, pBlueScript pUC/M13 Reverse TCACACAGGAAACAGCTATGAC pUC, pGEM-T, pCRII, pBlueScript T7 Terminator GCTAGTTATTGCTCAGCGG pET pGEX 5’GGGCTGGCAAGCCACGTTTGGTG pGEX pGEX 3’CCGGGAGCTGCATGTGTCAGAGG pGEX pQEF GGCGTATCACGAGGCCCTTTCG pQE pQER CATTACTGGATCTATCAACAGG pQE polyhedrin F AAATGATAACCATCTCGCAA Stag GAACGCCAGCACATGGACAGC pET-4x BGH reverse TAGAAGGCACAGTCGAGG pcDNA3.1, pTracer-CMV 5’ AOX GACTGGTTCCAATTGACAAGC pPlCZα α-factor TATTGCCAGCATTGCTGC pPlCZα 3’ AOX GCAAATGGCATTCTGACATCC pPlCZα

RT-PCR常用引物序列

RT-PCR常用引物序列 RT-PCR引物序列基因来源引物序列产物大小(kb) β-actin 人有意义链CCTCG CCTTT GCCGA TCC 反义链GGA TC TTCAT GAGGT AGTCA GTC 0.62 kb β-actin* 大鼠有意义链TACAA CCTCC TTGCA GCTCC 反义链GGA TC TTCA T GAGGT AGTCA GTC 0.62kb β-actin 小鼠有意义链GTCGT ACCAC AGGCA TTGTG A TGG反义链GCAAT GCCTG GGTAC ATGGT GG 0.49 kb GAPDH 人有意义链GGTGA AGGTC GGAGT CAACG反义链CAAAG TTGTC ATGGA TGHACC 0.50kb GAPDH 大鼠有意义链GATGC TGGTG CTGAG TATGR CG反义链GTGGT GCAGG ATGCA TTGCT CTGA 0.20 kb Dynein 小鼠有意义链GCGGG CGCTG GAGGA GAA反义链GGA TC TTCA T GAGGT AGTCA GTC 12.3 kb Polymerase ε 人有意义链CGCCA AATTT CTCCC CTGAAA反义链CCGTA GTGCT GGGCA ATGTT C 6.8 kb Polymerase ε 人有意义链AAGGC TGGCG GATTA CTGCC反义链GA TGC TGCTG GTGAT GTACT C 3.5 kb Tuberous Sclerosis 人有意义链GGAGT TTATC ATCAC CGCGG AAATA CTGAG AG反义链TATTT CACTG ACAGG CAATA CCGTC CAAGG 5.3 kb 18S rRNA 大豆有意义链CTTTC GATGG TAGGA TAGTG GCCT反义链CAATG A TCCT TCCGC AGGTT CACCT AC 1.5 kb *引物不会扩增假基因 PCR引物序列基因来源引物序列产物大小(kb) HIV gag region 病毒SK 38ATTAAT CACTA TCCAG TAGGA GAAAT SK 39TTTGG TCCTG TCTTA TGTCC AGAAT GC 0.11kb β-globin 人(29923)GGTGT TCCCT TGATG TAGCA CA (34016)CCAGG ATTTT TGATG GGACA CG 4.1kb β-globin 人(31194)GCTGC TCTGT GCATC CGAGT GG (34016)CCAGG ATTTT TGATG GGACA CG 2.8kb

引物设计常用序列

RT-PCR引物序列基因来源引物序列产物大小(kb) β-actin 人有意义链CCTCG CCTTT GCCGA TCC 反义链GGATC TTCAT GAGGT AGTCA GTC 0.62 kb β-actin* 大鼠有意义链TACAA CCTCC TTGCA GCTCC 反义链GGATC TTCAT GAGGT AGTCA GTC 0.62kb β-actin 小鼠有意义链GTCGT ACCAC AGGCA TTGTG ATGG反义链GCAAT GCCTG GGTAC ATGGT GG 0.49 kb GAPDH 人有意义链GGTGA AGGTC GGAGT CAACG反义链CAAAG TTGTC ATGGA TGHACC 0.50kb GAPDH 大鼠有意义链GATGC TGGTG CTGAG TATGR CG反义链GTGGT GCAGG ATGCA TTGCT CTGA 0.20 kb Dynein 小鼠有意义链GCGGG CGCTG GAGGA GAA反义链GGATC TTCAT GAGGT AGTCA GTC 12.3 kb Polymerase ε人有意义链CGCCA AATTT CTCCC CTGAAA反义链CCGTA GTGCT GGGCA ATGTT C 6.8 kb Polymerase ε 人有意义链AAGGC TGGCG GATTA CTGCC反义链GATGC TGCTG GTGAT GTACT C 3.5 kb Tuberous Sclerosis 人有意义链GGAGT TTATC ATCAC CGCGG AAATA CTGAG AG反义链TATTT CACTG ACAGG CAATA CCGTC CAAGG 5.3 kb 18S rRNA 大豆有意义链CTTTC GATGG TAGGA TAGTG GCCT反义链CAATG ATCCT TCCGC AGGTT CACCT AC 1.5 kb *引物不会扩增假基因 PCR引物序列基因来源引物序列产物大小(kb) HIV gag region 病毒SK 38ATTAAT CACTA TCCAG TAGGA GAAAT SK 39TTTGG TCCTG TCTTA TGTCC AGAAT GC 0.11kb β-globin 人(29923)GGTGT TCCCT TGATG TAGCA CA (34016)CCAGG ATTTT TGATG GGACA CG 4.1kb β-globin 人(31194)GCTGC TCTGT GCATC CGAGT GG (34016)CCAGG ATTTT TGATG GGACA CG 2.8kb 序列来源nvitrogen 公司

Invitrogen中国测序通用引物序列

Invitrogen中国测序通用引物序列 引物名称序列(5'-3') M13R CAG GAA ACA GCT A TG ACC M13F TGT AAA ACG ACG GCC AGT M13F(-47) CGC CAG GGT TTT CCC AGT CAC GAC M13R(-48) AGC GGA TAA CAA TTT CAC ACA GGA M13(-96) CCC TCA TAG TTA GCG TAA CG SP6 A TT TAG GTG ACA CTA TAG T7 TAA TAC GAC TCA CTA TAG GG T7 terminator TGC TAG TTA TTG CTC AGC GG T3 A TT AAC CCT CAC TAA AGG GA pGEX-4T-5' GGG CTG GCA AGC CAC GTT TGG TG pGEX-4T-3' CCG GGA GCT GCA TGT GTC AGA GG GLp1 TGT A TC TTA TGG TAC TGT AAC TG GLp2 CTT TA T GTT TTT GGC GTC TTC CA RVp3 CTA GCA AAA TAG GCT GTC CC RVp4 GAC GA T AGT CA T GCC CCG CG pcDNA3.1R TAG AAG GCA CAG TCG AGG PinPoint primer CGT GAC GCG GTG CAG GGC G pCMV-F TCT AAA AGC TGC GGA A TT GT pCMV-R TCCAAACTCA TCAA TGTA TC pTRC99C-F: TTG CGC CGA CA T CA T AAC pTRC99C-R: CTGCGTTCTGA TTTAA TCTG pCEP-F: AGA GCT CGT TTA GTG AAC CG EBV-R : GTG GTT TGT CCA AAC TCA TC pIRES2-EGFP.P5’:GTA GGC GTG TAC GGT GGG AG pIRES2-EGFP.P3’: AAC GCA CAC CGG CCT TA T TC 3'AD: AGA TGG TGC ACG A TG CAC AG CMV -F CGC AAA TGG GCG GTA GGC GTG S1 CAA CGT GAA AAA A TT A TT A TT CGC S6 GTA AA T GAA TTT TCT GTA GTA GG 5`AOX1 GAC TGG TTC CAA TTG ACA AGC 3`AOX1 GCA AA T GGC A TT CTG ACA TCC α-Factor TAC TA T TGC CAG CA T TGC TGC GAL4 AD TAC CAC TAC AA T GGA TG pACT2-R GTGCACGA TGCACAGTTGAA pB42ADF: CCA GCC TCT TGC TGA GTG GAG A TG

伪随机序列

《通信信号处理》专题 姓名:杨晶超 学号:s2*******

目录 1 伪随机序列的概念 2 伪随机序列的相关函数 3 m序列 ? 3.1 m序列的定义 ? 3.2 m序列的构造 ? 3.3 m序列的性质 ? 3.4 m序列的相关性 4 M序列 5 Gold序列 ? 5.1 m序列优选对 ? 5.2 Gold序列的产生方法 ? 5.3 Gold序列的相关特性 6 伪随机序列的应用 ? 6.1 扩展频谱通信 ? 6.2 码分多址(CDMA)通信 ? 6.3 通信加密 ? 6.4 误码率的测量 ? 6.5 数字信息序列的扰码与解扰? 6.6 噪声产生器 ? 6.7 时延测量

1 伪随机序列的概念 扩频系统的扩频运算是通过伪随机序列来实现的。从理论上来讲,用纯随机序列来扩展信号的频谱是最理想的,但是接收端必须复制同一个随机序列,由于随机序列的不可复制性,因此在工程中,无法使用纯随机序列,而改为采用伪随机序列。 随机序列通信的基本理论源于香农的编码定理。香农编码定理指出:只要信息速率R d 小于信道容量C ,则总可以找到某种编码方法,使得在码字相当长的条件下,能够几乎无差错地从高斯白噪声干扰的信号中恢复出原发送的信号。 伪随机序列应当具有类似理想随机序列的性质。在工程上常用二元{0,1}序列来产生伪随机序列,它具有以下三个特点: (1)随机序列中的“0”的个数和“1”的个数接近相等; (2)随机序列中长度为1的游程约占游程总数的1/2,长度为2的游程约占游程总数的(1/2)2,长度为3的游程约占游程总数的(1/2)3…… 在同长度的游程中,“0”的游程数和“1”的游程数大致相等; (3)随机序列的自相关函数具有类似白噪声自相关函数的性质。 2 伪随机序列的相关函数 (1) 凡自相关函数满足 ()1 201011,011,0N i i a N i i j i a j N R j a a j N N -=-+=?==??=??=-≠??∑∑ 则为狭义伪随机序列。

伪随机码

课程设计任务书 学生姓名:周成浩专业班级:电信1404 指导教师:苏杨工作单位:信息工程学院 题目:伪随机序列的产生及应用设计 初始条件: 具备通信课程的理论知识;具备模拟与数字电路基本电路的设计能力;掌握通信电路的设计知识,掌握通信电路的基本调试方法;自选相关电子器件;可以使用实验室仪器调试。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、设计伪随机码电路:产生八位伪随机序列(如M序列、Gold序 列等); 2、了解D/A的工作原理及使用方法,将伪随机序列输入D/A中(如 DAC0808),观察其模拟信号的特性; 3、分析信号源的特点,使用EWB软件进行仿真; 4、安装和调试整个电路,并测试出结果; 5、进行系统仿真,调试并完成符合要求的课程设计书。 时间安排: 一周,其中3天硬件设计,2天硬件调试 指导教师签名:年月 系主任(或责任教师)签名:年月日

摘要 伪随机序列具有良好的随机性和接近于白噪声的相关函数,使其易于从信号或干扰中分离出来。伪随机序列的可确定性和可重复性,使其易于实现相关接收或匹配接收,因此有良好的抗干扰性能。伪随机序列的这些特性使得它在伪码测距、导航、遥控遥测、扩频通信、多址通信、分离多径、数据加扰、信号同步、误码测试、线性系统、各种噪声源等方面得到了广泛的应用。此次课设根据m序列、M序列的产生原理,利用1片74LS164或2片74LSl94级联加少量分立元件,采用手动置数和自启动2种方法设计了3种长度为255位的m序列发生器和256位M序列发生器。 关键词:伪随机码;m序列;M序列;移位寄存器;D/A转换

16SrRNA扩增常用引物

16S rDNA常用引物序列 Normally, we used following primers to amplify bacterial 16S rRNA genes (27F and 1492R pair) and sequencing them (using other primers). The primer sequencs are all listed in the reference: Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115-175 27F 5' AGA GTT TGA TCM TGG CTC AG 3' PCR and sequencing, most eubacteria 357F 5' CTC CTA CGG GAG GCA GCA G 3' Most eubacteria 530F 5' GTG CCA GCM GCC GCG G 3' Most eubacteria and archaebacteria 926F 5' AAA CTY AAA KGA ATT GAC GG 3' Most eubacteria and archaebacteria 1114F 5' GCA ACG AGC GCA ACC C 3' Most eubacteria 342R 5' CTG CTG CSY CCC GTA G 3' Most eubacteria 519R 5' GWA TTA CCG CGG CKG CTG 3' Most eubacteria and archaebacteria 907R 5' CCG TCA ATT CMT TTR AGT TT 3' Most eubacteria and archaebacteria 1100R 5' GGG TTG CGC TCG TTG 3' Most eubacteria 1492R 5' TAC GGY TAC CTT GTT ACG ACT T 3' PCR and sequencing, most eubacteria 1525R 5' AAG GAG GTG WTC CAR CC 3' PCR and sequencing, most eubacteria M=C:A, Y=C:T. K=G:T, R=A:G, S=G:C. W=A:T; all 1:1 Any primer's reverse complement sequence is its revers prime. For example: 519R 5' GWA TTA CCG CGG CKG CTG 3' then 519F 3' CWT AAT GGC GCC GKC GAC 5'

相关文档
最新文档