2.9 函数与方程—讲义

2.9 函数与方程—讲义
2.9 函数与方程—讲义

2.9 函数与方程

一.【目标要求】

①结合二次函数的图象,了解函数的零点与方程根的联系, ②判断一元二次方程根的存在性及根的个数.

③会理解函数零点存在性定理,会判断函数零点的存在性.

二.【基础知识】

1.函数零点的概念:

对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。

2.函数零点与方程根的关系:

方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有点?函数)(x f y =有零点

3.函数零点的存在性定理:

如果函数)(x f y =在区间[],a b 上的图像是一条连续不断的曲线,并且有

0)()(

这个0x 也就是方程0)(=x f 的根。

注:若()0()0f x f x ><或恒成立,则没有零点。

三.【技巧平台】

1.对函数零点的理解及补充

(1)若)(x f y =在x a =处其函数值为0,即()0f a =,则称a 为函数()f x 的零点。 (2)变号零点与不变号零点

①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(

(),a b 内有零点的充分不必要条件。

(3)一般结论:函数)(x f y =的零点就是方程0)(=x f 的实数根。从图像上看,函数)

(x f y =的零点,就是它图像与x 轴交点的横坐标。

(4)更一般的结论:函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函

数()y f x =与()y g x =的图像交点的横坐标。

2.函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法

1) 代数法:函数)(x f y =的零点()0f x ?=的根

2) 几何法:有些不容易直接求出的函数)(x f y =的零点或方程0)(=x f 的根,可利用)(x f y = 的图像和性质找出零点。画 3) 注意二次函数的零点个数问题

0?>?)(x f y =有2个零点()0f x ?=有两个不等实根 0?=?)(x f y =有1个零点()0f x ?=有两个相等实根 0?

对于二次函数在区间[],a b 上的零点个数,要结合图像进行确定

4) 对于函数()()()F x f x g x =-的零点个数问题,可画出两个函数图像,看其交点个数有几个,则这些交点横坐标有几个不同的值就有几个零点。

5) 方程的根或函数零点的存在性问题,要以根据区间端点处的函数值乘积的正负来确定,但要确定零点的个数还需进一步研究函数在区间上的单调性,在给定的区间上,如果函数是单调的,它至多有一个零点,如果不是单调的,可继续细分出小的单调区间,再结合这些小的区间的端点处的函数值的正负,作出正确的判断。 6) 要特别注意数形结合解出方程解的个数的问题。

3.一元二次函数的零点、一元二次方程的根、一元二次不等式的解集之间的关系。

为学习的方便,在解一元二次不等式和一元二次方程时,把二次项系数a 化为正数,

(1)20(0)ax bx c a ++>≠恒成立00a >???

?

0a

(2)2

0ax bx c ++>的解集为R 00

00

a a

b

c >==????

?

?<>??或 2

0a x b x

c ++<的解集为R 00

00a a b c >==?????

?<

或 (3)对于二次函数在区间[],a b 上的最值问题,参照第1.5(1)和1.5(2)节

3.构造函数解不等式恒成立的问题

(1)含有参数的不等式恒成立问题,若易于作出图像,则用图像解决,若不易作图,可分离参数。 (2)()m f x >恒成立[]max ()m f x ?≥,()m f x <恒成立[]min ()m f x ?≤(注意等号是否成立) (3)()m f x >有解[]min ()m f x ?>,()m f x <有解[]max ()m f x ?≤ (4)()0f x ≥在区间[],a b 上恒成立[]min ()f x ?在[],a b 上大于0

四.【例题精讲】

考点一、函数的零点

例1.判断函数23

2()143

f x x x x =++-

在区间[]1,1-上零点的个数,

例2.若函数()f x ax b =+有一个零点为2,那么2()g x bx ax =-的零点是 。

例3.设3()f x x bx c =++在[]1,1-上的增函数,且11022f f ????

-

?< ? ?????

,则方程()0f x =在区间[]1,1-内有 个实数根。

【举一反三】

1.判断下列函数在给定区间上是否存在零点.

(1)[]2()318,1,8f x x x x =--∈ (2)3()1,[1,2]f x x x x =--∈- (3)()[]2()log 2,1,3f x x x x =+-∈ (4)()1

(),0,1f x x x x

=-∈

考点二:二次函数的零点

例4.是否存在这样的实数a ,使函数2

()(32)1f x x a x a =+-+-在区间[]

1,3-上与x 轴恒有一

个零点,且只有一个零点,若存在,求出范围,若不存在,说明理由。

考点三、方程的根与函数的零点

例5.已知二次函数2

()f x ax bx c =++

(1)若(1)0a b c f >>=且,试证明()f x 必有两个零点;

(2)若对1212,x x R x x ∈<且,12()()f x f x ≠,方程121

()[()()]2

f x f x f x =+有两个不等实根,证明必有一个实根属于()12,x x

【举一反三】

2. 12x x 与分别是实系数方程20ax bx c ++=和2

0ax bx c -++=的一个根,且

1212,0,0x x x x ≠≠≠,求证:方程202

a

x bx c ++=的一个根介于12x x 与之间。

【练习】 1. 函数(1)ln ()3

x x

f x x -=

-的零点有 个。

2. ()f x 是定义在R 上的以3为周期的偶函数,且(2)0f =,则方程()0f x =在区间()0,6内解的个数是 。

3. 已知函数()45f x x x =--,则当方程()f x a =有三个根时,实数a 的取值范围是 。

4. 函数3

2

1()252

f x x x x λ=-

-+-在区间[]1,2-上有三个零点,求λ的取值范围。 5. 设01a a >≠且,函数2

()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 。

6. 函数2()(0)f x ax bx c a =++≠的图像关于直线2b

x a

=-

对称,据此可推测,对任意的非零实数,,,,,a b c m n p 关于x 的方程2[()]()0m f x nf x p ++=的解集不可能是下列表达式中的哪一个 。

①{}1,2 ②{}1,4 ③{}1,2,3,4 ④{}1,4,16,64

7. 若函数()(01)x f x a x a a a =-->≠且有两个零点,则实数a 的取值范围是 。 8. 已知定义在R 上的奇函数()f x ,满足(4)()f x f x -=-,且在区间[]0,2上是增函数,若方程

()(0)f x m m =>在区间

[]

8,8-上有四个不同的根

1234

,,,x x x x ,则

1234x x x x +++=

。 9. 已知函数21()log ,,()()()03x

f x x a b c f a f b f c ??

=-<

,实数d 是函数()f x 的一个

零点,给出下列四个命题:①d a < ②a b > ③d c < ④d c > 其中可能成立的是 。

10. 设函数()||f x x x bx c =++,则下列命题中说法正确的是

①当0b >时,函数()f x 在R 上是单调增函数 ②当0b <时,函数()f x 在R 上有最小值 ③函数()f x 的图像关于点()0,c 对称 ④方程()0f x =可能有三个实数根

11.

在平面直角坐标系中,设直线2m y +和圆2

2

2

x y n +=相切,其中,m n N *

∈,

0||1m n <-≤,若函数1()x f x m n +=-的零点0(,1),x k k k Z ∈+∈,则k = 。

12.

方程2

10x -=

的解可视为函数y x =1y x

=

的图像交点的横坐

标,若方程4

40x ax +-=的各个实根12,,,,(4)k x x x k ???≤所对应的点4,(1,2,)i i

x i k x ??

=??? ??

?

均在直线y x =同侧,则实数a 的取值范围是 。 13. 方程2

240x

x +-=的实数解的个数是 。

14. 设定义域为R 的函数lg 1,1()0

1x x f x x ?-≠?=?

=??,则关于x 的方程2()()0f x bf x c ++=有7 个 不同实数解的充要条件是 。

15. 若关于x

的方程10kx +有两个不同的实数解,则实数k 的取值范围是 。 16. 若函数2

()lg 22f x x a x =-+在区间()1,2内有且公有一个零点,则实数a 取值范围是 。

高一数学必修一函数与方程知识梳理

高一数学必修一函数与方程知识梳理 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,以下是函数与方程知识梳理,请大家学习。 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx 有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(bfaf是()fx在区间,ab内有零点的充分不必要条件。 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab 内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。(2)函数)(xfy零点个数(或方程0)(xf实数根的个

数)确定方法 ①代数法:函数)(xfy的零点0)(xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。(3)零点个数确定 0)(xfy有2个零点0)(xf有两个不等实根; 0)(xfy有1个零点0)(xf有两个相等实根; 0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度 ②求区间(,)ab的中点c; ③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ) 若()()0fafc,则令bc(此时零点0(,)xac (ⅲ) 若()()0fcfb,则令ac(此时零点0(,)xcb 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的

人教版高中数学高一培优讲义第7讲函数与方程

第7讲函数与方程 理清双基 1.函数的零点(非点) (1)函数零点的定义;对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数 ))((D x x f y ∈=的零点. (2)几个等价关系:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数 )(x f y =有零点。 (3)函数零点的判定(零点存在性定理):如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(++=a c bx ax y 的图象与零点的关系 >?0=?0 ++=a c bx ax y 的图象与x 轴的交点) 0,)(0,(21x x ) 0,(1x 无交点零点个数 2 1 无 3.二分法 定义:对于在区间],[b a 上连续不断,且满足0)()(

高一数学函数与方程知识点整理

高一数学函数与方程知识点整理在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。精品小编准备了高一语文函数与方程知识点,希望你喜欢。 1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内() A.可能有3个实数根 B.可能有2个实数根 C.有唯一的实数根 D.没有实数根 解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数, f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根. 答案:C 2.(2019长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表: x123456 f(x)136.1315.552-3.9210.88-52.488-232.064 则函数f(x)存在零点的区间有 A.区间[1,2]和[2,3] B.区间[2,3]和[3,4] C.区间[2,3]、[3,4]和[4,5] D.区间[3,4]、[4,5]和[5,6]

解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号, f(x)在区间[2,3],[3,4],[4,5]上都存在零点. 答案:C 3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是 A.(3.5,+) B.(1,+) C.(4,+) D.(4.5,+) 解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为 (n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则 1n+1m1. 答案:B 4.(2019昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x) 的零点所在的区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B. 答案:B

(完整)201709年高考数学函数与方程讲义.doc.docx

《新课标》必修Ⅰ复习第八讲函数与方程 2008 年 7 月 一.课标要求: 1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零 点与方程根的联系; 2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法 是求方程近似解的常用方法。 二.命题走向 函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法” 求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、 一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问题有关。 预计 2009 年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方 程的关系为目标来考察学生的能力。 (1)题型可为选择、填空和解答; (2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。 三.要点精讲 1.方程的根与函数的零点 (1)函数零点 概念:对于函数 y f (x)( x D ) ,把使 f ( x)0 成立的实数 x 叫做函数 y f ( x)( x D )的零点。 函数零点的意义:函数 y f ( x) 的零点就是方程 f (x) 0 实数根,亦即函数 y f (x) 的图象与 x 轴交点的横坐标。即:方程 f ( x) 0 有实数根函数 y f ( x) 的图象与 x 轴有交点 函数 y f (x) 有零点。 二次函数 y ax 2bx c(a0) 的零点: 1)△>0,方程ax 2bx c0 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点; 2)△=0,方程ax 2bx c0 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程ax 2bx c0 无实根,二次函数的图象与x 轴无交点,二次函数无零点。 零点存在性定理:如果函数 y f ( x) 在区间 [ a,b] 上的图象是连续不断的一条曲线,并且有f (a) f (b) 0 ,那么函数 y f (x) 在区间 (a, b) 内有零点。既存在c(a, b) ,使得 f (c) 0 ,这个 c 也就是方程的根。 2.二分法 二分法及步骤: 对于在区间 [ a , b] 上连续不断,且满足 f (a) · f (b)0 的函数y f ( x) ,通过不断地把 函数 f (x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值 的方法叫做二分法.

高中数学函数与方程知识点总结例题及解析高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

函数与方程复习讲义

.函数与方程复习讲义 一.【目标要求】 ①结合二次函数的图象,了解函数的零点与方程根的联系, ②判断一元二次方程根的存在性及根的个数. ③会理解函数零点存在性定理,会判断函数零点的存在性. 二.【基础知识】 1.函数零点的概念: 对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 2.函数零点与方程根的关系: 方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有点?函数)(x f y =有零点 3.函数零点的存在性定理: 如果函数)(x f y =在区间[],a b 上的图像是一条连续不断的曲线,并且有 0)()(<或恒成立,则没有零点。 三.【技巧平台】 1.对函数零点的理解及补充 (1)若)(x f y =在x a =处其函数值为0,即()0f a =,则称a 为函数()f x 的零点。 (2)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(

7[1].3.4一次函数与方程、不等式综合.讲义学生版

板块 考试要求 A 级要求 B 级要求 C 级要求 一次 函数 理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质 会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解 能用一次函数解决实际问题 一、一次函数与一元一次方程的关系 直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b k - 就是直线y b kx =+与x 轴交点的横坐标。 二、一次函数与一元一次不等式的关系 任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。 三、一次函数与二元一次方程(组)的关系 一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。 一、一次函数与一元一次方程综合 【例1】 若直线(2)6y m x =--与x 轴交于点()60, ,则m 的值为( ) A.3 B.2 C.1 D.0 例题精讲 中考要求 知识点睛 一次函数与方程、不等式综合

新人教版高一数学函数与方程知识要点

新人教版高一数学函数与方程知识要点 新人教版高一数学函数与方程知识要点 一、方程的根与函数的零点 教材内容分析新课程标准的要求是,结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 二、用二分法求方程的近似解

用二分法求方程的近似解的方法,二分法,又称分半法,是一种方程式根的近似值求法。 1.二分法的概念 对于在区间[a,b]上连续不断且____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点______________,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求 ___________________________________________________________ _____________. 2.用二分法求函数f(x)零点近似值的步骤: (1)确定区间[a,b],验证____________,给定精确度ε; (2)求区间(a,b)的中点____; (3)计算f(c); ①若f(c)=0,则________________; ②若f(a)·f(c)<0,则令b=c(此时零点x0∈________); ③若f(c)·f(b)<0,则令a=c(此时零点x0∈________). (4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).

高三复习 高中数学复习讲义 第一课时函数概念及其性质

高中数学复习讲义 第一课时函数概念及其性质 第1课 函数的概念 【基础练习】 1. 设有函数组:①y x = ,y = y x = ,y = ;③y ,y = ;④1(0),1 (0), x y x >?=?-

(3) ()1f x x =+,(1,2]x ∈. 值域是(2,3]. 【范例解析】 例 1.设有函数组:①21 ()1 x f x x -=-,()1g x x =+; ②()f x = , ()g x = ③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有 . 例2.求下列函数的定义域:① 12y x =+- ② ()f x = 例3.求下列函数的值域: (1)242y x x =-+-,[0,3)x ∈; (2)2 2 1 x y x =+()x R ∈; (3 )y x =- 【反馈演练】 1.函数f (x )=x 21-的定义域是___________. 2.函数) 34(log 1 )(2 2-+-= x x x f 的定义域为_________________. 3. 函数2 1 ()1y x R x = ∈+的值域为________________. 4. 函数23y x =-+_____________. 5.函数)34(log 25.0x x y -= 的定义域为_____________________. 6.记函数f (x )=1 3 2++- x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ; (2) 若B ?A ,求实数a 的取值范围.

最新高三数学专题复习资料函数与方程

第八节 函数与方程 1.函数f(x)=ln(x +1)-2 x 的一个零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 2.若x 0是方程? ????12x =x 13的解,则x 0属于区间( ) A.? ????23,1 B.? ???? 12,23 C.? ????13,12 D.? ? ???0,13 3.(A.金华模拟)若函数f(x)=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( ) A.? ????-12,14 B.? ???? -14,12 C.? ????14,12 D.???? ??14,12 4.(A.舟山模拟)设函数f 1(x)=log 2x -? ????12x ,f 2(x)=log 12x -? ???? 12x 的零点分 别为x 1,x 2,则( ) A .0

A .7 B .8 C .9 D .10 7.函数f(x)=?? ? x 2 +2x -3,x ≤0 -2+ln x ,x>0 的零点个数为________. 8.(A.杭州模拟)已知函数f(x)=??? x ,x ≤0, x 2 -x ,x>0, 若函数g(x)=f(x)-m 有三个不同的零点,则实数m 的取值范围为__________. 9.(A.义乌模拟)已知函数f(x)=ln x +3x -8的零点x 0∈[a ,b],且b -a =1,a ,b ∈N *,则a +b =________. 10.设函数f(x)=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f(x)的零点; (2)若对任意b ∈R ,函数f(x)恒有两个不同零点,求实数a 的取值范围. 11.已知函数f(x)=-x 2 +2ex +m -1,g(x)=x +e 2 x (x>0). (1)若g(x)=m 有实数根,求m 的取值范围; (2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根. 12.是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围,若不存在,说明理由. [冲击名校] 1.已知函数f(x)满足f(x)+1= 1 f x +1 ,当x ∈[0,1]时,f(x)=x ,若 在区间(-1,1]内,函数g(x)=f(x)-mx -m 有两个零点,则实数m 的取值范围是( ) A.??????0,12 B.??????12,+∞ C.??????0,13 D.? ? ???0,12 2.已知函数f(x)=?? ? kx +1,x ≤0,ln x ,x>0,则下列关于函数y =f(f(x))+1的 零点个数的判断正确的是( )

一次函数与方程和不等式讲义(经典)

一次函数与方程和不等式讲义 函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。 1、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 2、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 3、正比例函数及性质 一般地,形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式 y =k x (k 不为零) ① k 不为零 ② x指数为1 ③ b 取零 当k >0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y也增大;当k<0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx(k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x增大而减小 (5) 倾斜度:|k |越大,越接近y轴;|k |越小,越接近x轴 4、一次函数及性质 一般地,形如y=kx +b (k ,b 是常数,k≠0),那么y 叫做x 的一次函数.当b =0时,y=kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x指数为1 ③ b取任意实数 一次函数y =kx +b的图象是经过(0,b)和(- k b ,0)两点的一条直线,我们称它为直线y =kx +b,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移) (1)解析式:y=kx +b(k 、b 是常数,k ≠0 (2)必过点:(0,b )和(- k b ,0) (3)走向: k >0,图象经过第一、三象限;k<0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限 ????>>00b k 直线经过第一、二、三象限 ??? ?<>00 b k 直线经过第一、三、四象限 ????><00b k 直线经过第一、二、四象限 ??? ?<<0 b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小. (5)倾斜度:|k | 越大,图象越接近于y轴;|k | 越小,图象越接近于x轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b个单位; (上加下减,左加右减) 当b <0时,将直线y=kx 的图象向下平移b 个单位. 当b <0时,向下平移). 5、直线y =k 1x +b 1与y=k 2x +b 2的位置关系 (1)两直线平行:k 1=k2且b 1 ≠b 2 (2)两直线相交:k1≠k 2

函数的概念与表示复习讲义与习题.doc

第四讲函数的概念与表示 一.知识归纳: 1.映射 ( 1)映射:设 A 、 B 是两个集合,如果按照某种映射法则f,对于集合 A 中的任一个 元素,在集合 B 中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及 A到 B 的对应法则 f )叫做集合 A 到集合 B 的映射,记作 f : A→B。 ( 2)象与原象:如果给定一个从集合 A 到集合 B 的映射,那么集合 A 中的元素 a 对应的 B 中的元素 b 叫做 a 的象, a 叫做 b 的原象。 注意:( 1)对映射定义的理解。( 2)判断一个对应是映射的方法。 2.函数 ( 1)函数的定义 ①原始定义:设在某变化过程中有两个变量x、y,如果对于 x 在某一范围内的每一个确定的值, y 都有唯一确定的值与它对应,那么就称y 是 x 的函数, x 叫作自变量。 ②近代定义:设 A 、 B 都是非空的数的集合,f: x→y是从 A 到 B 的一个对应法则,那么从 A 到 B 的映射 f : A→B就叫做函数,记作y=f(x) ,其中 x∈ A,y ∈ B,原象集合 A 叫做函数的定义域,象集合 C 叫做函数的值域。 注意:①C B; ② A,B,C 均非空 ( 2)构成函数概念的三要素:①定义域②对应法则③值域 3.函数的表示方法:①解析法②列表法③图象法 注意:强调分段函数与复合函数的表示形式。 二.例题讲解: 【例 1】下列各组函数中,表示相同函数的是() (A) f(x)=lnx 2,g(x)=2lnx (B)f(x)= a log a x (a>0 且 a≠1),g(x)=x (C) f(x)= 1 x 2 , g(x)=1 - |x| (x ∈[ - 1,1]) (D) f(x)= log a a x (a>0 且 a≠1),g(x)= 3 x3 解答:选D 点评:判断两个函数是否相同主要是从定义域、对应法则两个方面加以分析。 变式:下列各对函数中,相同的是( D ) (A) f(x)= x 2, g(x)=x (B)f(x)=lgx 2 ,g(x)=2lgx (C)f(x)= lg x 1 , g(x)=lg(x - 1)- lg(x+1) (D) f(x)= 1 u 1 v 1 , g(x)= v x 1 u 1 【例 2】( 1)集合 A={3,4},B={5,6,7} ,那么可以建立从 A 到 B 的映射的个数是;从B 到 A 的映射的个数是。 ( 2)设集合 A 和 B 都是自然数集合N,映射 f:A→B把集合 A 中的元素 n 映射到集 合 B 中的元素2n+n,则在映射 f 下,像20 的原象是。 解答:( 1)从 A 到 B 可分两步进行,第一步 A 中的元素 3 可有 3 种对应方法( 5 或 6 精选

高一数学必修①第一章_集合与函数概念讲义

心智家三优教育高一特训营数学教学进度表

¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、 集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. ¤知识要点: 1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性. 2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ???,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集. 3. 通常用大写拉丁字母,,,A B C ???表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或 N +,整数集Z ,有理数集Q ,实数集R . 4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、?表示,例如3N ∈, 2N -?. ¤例题精讲: 【例1】试分别用列举法和描述法表示下列集合: (1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数. 【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B . 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2 y x =的自变量的值组成的集合. *【例4】已知集合2{| 1}2 x a A a x +==-有唯一实数解,试用列举法表示集合A .

函数与方程复习讲义(完整资料).doc

【最新整理,下载后即可编辑】 .函数与方程复习讲义 一.【目标要求】 ①结合二次函数的图象,了解函数的零点与方程根的联系, ②判断一元二次方程根的存在性及根的个数. ③会理解函数零点存在性定理,会判断函数零点的存在性. 二.【基础知识】 1.函数零点的概念: 对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数 )(x f y =的零点。 2.函数零点与方程根的关系: 方程0)(=x f 有实数根?函数)(x f y = 的图象与x 轴有点?函数 )(x f y =有零点 3.函数零点的存在性定理: 如果函数)(x f y =在区间[],a b 上的图像是一条连续不断的曲线,并且有 0)()(<或恒成立,则没有零点。 三.【技巧平台】 1.对函数零点的理解及补充 (1)若)(x f y =在x a =处其函数值为0,即()0f a =,则称a 为函数()f x 的零点。 (2)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(

二次函数与方程、不等式综合.讲义

板块 考试要求 A 级要求 B 级要求 C 级要求 二次函数 1.能根据实际情境了解二次函数的意义; 2.会利用描点法画出二次函数的图像; 1.能通过对实际问题中的情境分析确定二次函数的表达式; 2.能从函数图像上认识函数的性质; 3.会确定图像的顶点、对称轴和开口方向; 4.会利用二次函数的图像求出二次方程的近似解; 1.能用二次函数解决简单的实际问题; 2.能解决二次函数与其他知识结合的有关问题; 一、二次函数与一元二次方程的联系 1. 直线与抛物线的交点 (1) y 轴与抛物线2y ax bx c =++得交点为()0c , . (2) 与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点() 2h ah bh c ++,. (3) 抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程 的根的判别式判定: ①有两个交点?0?>?抛物线与x 轴相交; ②有一个交点(顶点在x 轴上)?0?=?抛物线与x 轴相切; ③没有交点?0?时为例,二次函数、二次三项式和一元二次方程之间的内在联系如下: 知识点睛 二次函数与方程、不等式综合

函数与方程知识点总结经典例题及解析高考真题及答案

函数与方程 【考纲说明】 1、 了解函数的零点与方程根的联系,能判断一元二次方程根的存在性及根的个数。 2、 能够根据具体函数的图像,用二分法求出相应方程的近似解。 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

数学必修1讲义

第一章集合与函数概念 一、集合有关概念 1、集合得含义: 一般地,我们把研究对象统称为元素,把一些元素组成得总体叫做集合(简称为集)。 2、集合得中元素得三个特性: (1)元素得确定性:对于一个给定得集合,集合中得元素就是确定得,任何一个对象或者就是或者不就是这个给定得集合得元素。 (2)元素得互异性:任何一个给定得集合中,任何两个元素都就是不同得对象,相同得对象归入一个集合时,仅算一个元素。 (3)元素得无序性:集合中得元素就是平等得,没有先后顺序,因此判定两个集合就是否一样,仅需比较它们得元素就是否一样,不需考查排列顺序就是否一样。 3、元素与集合得关系:2hf7sHC。51kBEbP。 (1)如果 a 就是集合 A 得元素,就说 a 属于A,记作: (2)如果 a 不就是集合 A 得元素,就说 a 不属于A,记作: 4、集合得表示: *用拉丁字母表示集合:A={我校得篮球队员},B={1,2,3,4,5} *常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R (1)列举法:把集合中得元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2} aypYuMZ。0DeBxzM。 (2) 图示法:Venn图 (3) 描述法(数学式子描述与语言描述):把集合中得元素得公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素得一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有得共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形}90qy1aJ。2fZxY1j。 5、集合得分类: (1)有限集含有有限个元素得集合 (2)无限集含有无限个元素得集合 (3)空集不含任何元素得集合例:{x|x2=-5} 二、集合间得基本关系 1、包含关系 (1)子集:真子集或相等 (2)真子集 2、相等关系:元素相同 两个结论:任何一个集合就是它本身得子集,即A A 对于集合A,B,C,如果 A B, B C ,那么 A C 3、空集 结论:空集就是任何集合得子集,就是任何非空集合得真子集 *集合子集公式:含n个元素得集合子集有2?个,真子集有2?-1个 三、集合得基本运算 1、并集 2、交集 *性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∩B=A, A∩B=B AUA=A, AUΦ=A,AUB=BUA ,AUB包含A, AUB包含B 3、全集与补集 *性质:CU(CUA)=A,(CUA)∩A=Φ,(CUA)∪A=U,(CuA)∩(CuB)= Cu(AUB),(CuA) U (CuB)= Cu(A∩B)al5t6aw。eN17HuK。 选择补充:集合中元素得个数: 四、函数有关概念

相关文档
最新文档