以聚硫堇为电化学探针的非标记型核酸适配体传感器

以聚硫堇为电化学探针的非标记型核酸适配体传感器
以聚硫堇为电化学探针的非标记型核酸适配体传感器

Vol.34高等学校化学学报No.32013年3月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 551~555 doi:10.7503/cjcu20120687

以聚硫堇为电化学探针的非标记型

核酸适配体传感器

杨绍明,查文玲,李 红,孙 清,刘 斌,郑龙珍

(华东交通大学基础学院化学化工系,南昌330013)

摘要 采用电聚合法制备了聚硫堇氧化还原电化学探针,以金纳米粒子为固定核酸适配体的载体构建了非标记型核酸适配体传感器.用电化学阻抗谱对传感器的组装过程进行了监测,用循环伏安法和差分脉冲伏安法考察了传感器的电化学行为.结果表明,该传感器对凝血酶的检测在1.0pg /mL ~500ng /mL 范围内呈良好的线性关系,相关系数为0.998,检出限为0.38pg /mL.该传感器制备简单二灵敏度高且抗干扰能力强.关键词 聚硫堇;金纳米粒子;核酸适配体;凝血酶;传感器

中图分类号 O657.1 文献标志码 A

收稿日期:2012?07?20.

基金项目:国家自然科学基金(批准号:21065004)二江西省自然科学基金(批准号:2009GQH0022)和江西省教育厅科技项目(批准号:GJJ12304)资助.

联系人简介:杨绍明,男,博士,副教授,主要从事电分析化学研究.E?mail:yangsm@https://www.360docs.net/doc/1d9959556.html,

核酸适配体是在体外通过指数富集配体系统进化技术筛选出来的一类DNA 或RNA 寡聚核苷酸.与同样作为识别靶分子蛋白质的抗体相比,核酸适配体具有不依赖于动物或细胞二容易获得二易于改性二靶分子广泛及稳定性和耐受变性好等优点[1~3].因此,以核酸适配体作为识别元件构建的用于检测蛋白质的核酸适配体生物传感器,特别是电化学核酸适配体传感器,因具有简单二快速二灵敏二成本低廉和易于实现微型化等优点,受到研究者的关注[4,5].根据是否采用标记物(酶二纳米粒子和氧化还原分子)对适配体进行修饰以产生检测信号,电化学核酸适配体传感器可分为标记型和非标记型.标记型核酸适配体传感器的标记过程复杂二费用高,而且会在一定程度上影响适配体与目标分子的结合亲和力[6].因此,构建简单二价廉和灵敏的非标记型电化学核酸适配体传感器具有重要意义.聚硫堇具有良好的氧化还原可逆性和稳定性,近年来被用于免疫传感器[7]二酶传感器[8]二DNA 传感器[9]和化学传感器[10,11]中作为优异的电子介体.Ahammad 等[10]利用聚硫堇对邻苯二酚和对苯二酚的催化氧化作用构建了简单二高灵敏度同时测定二者的化学传感器.金纳米粒子(GNPs)具有比表面积大二吸附能力强和生物相容性好等优点,可将生物分子有效地固定在其表面,用于构建生物传感器可提高灵敏度和稳定性,已在电化学生物传感器中得到广泛的应用[12~14].凝血酶是一种普遍存在于哺乳动物体内的凝结蛋白,在血液凝固二炎症和创伤愈合等生理及病理过程中起重要作用,因此检测凝血酶在疾病诊断[15]和药物研究[16]方面具有重要意义.本文将聚硫堇引入到核酸适配体传感器中作为氧化还原电化学探针,通过静电和共价作用在聚硫堇表面组装金纳米粒子,形成金?硫键以结合凝血酶适配体,构建了核酸适配体生物传感器.为构建简单二稳定和灵敏的非标记型电化学核酸适配体传感器发展了一种新的途径.

1 实验部分

1.1 试剂与仪器

氯金酸(HAuCl 4,上海试剂一厂);硫堇(TH,上海化学试剂公司);凝血酶适配体[APT,5′?HS?(CH 2)6?CCAACGGTTGGTGTGGTTGG?3′[5,17],生工生物工程(上海)有限公司];牛血清白蛋白(BSA,上海晶纯实业有限公司);人凝血酶(THR,M w =36700,北京鼎国昌盛生物技术有限责任公司);辣根

过氧化物酶(HRP,≥250U/mg,上海三杰生物技术有限公司).CHI660C电化学工作站(上海辰华仪器公司);三电极体系:铂电极为对电极,Ag/AgCl为参比电极,玻碳电极为工作电极;Lamdba35型紫外?可见光谱仪(美国Perkin Elmer公司);LB?550型激光粒度仪(日本Horiba公司).

1.2 金纳米粒子的制备

金纳米粒子参照Turkevich?Frens法[18,19]制备.在装有回流冷凝管的250mL圆底烧瓶中,加入60 mL H2O和150mL0.1mol/L的HAuCl4溶液,搅拌下加热至沸腾,迅速加入0.6mL25mmol/L的柠檬酸钠溶液.溶液在几分钟内迅速由淡黄色变成紫红色,继续加热15min后冷却至室温,并装入棕色瓶中保存于4℃冰箱中备用.

1.3 修饰电极的制备

将玻碳电极(GCE)用0.05μm的Al2O3粉抛光,依次用无水乙醇和蒸馏水超声洗净,置于0.5 mol/L的H2SO4溶液中于-0.3~1.5V下扫描活化.将活化的GCE置于含0.10mmol/L TH的PBS溶液(pH=6.8)中,在1.5V下预阳极化5min,再采用循环伏安扫描100圈[20]得到聚硫堇(PTH)修饰电极.将其依次浸泡于纳米金胶中1h,1μmol/L的APT[pH=7.4,20mmol/L Tris?HCl+1mmol/L乙二胺四乙酸(EDTA)]中12h以及含1mg/mL BSA的PBS溶液(pH=6.8)中40min,制得GCE/PTH/ GNPs/APT/BSA修饰电极.

1.4 电化学测试

将GCE/PTH/GNPs/APT/BSA电极置于pH=6.8的PBS缓冲溶液中,使用三电极系统,采用循环伏安法(CV)和差分脉冲伏安法(DPV)扫描得到空白电流(I0).将GCE/PTH/GNPs/APT/BSA电极在pH=6.8的PBS缓冲溶液配制的凝血酶溶液中孵育40min后,进行CV和DPV扫描得到电流I,凝血酶的检测基于传感器的电流响应ΔI(ΔI=I0-I).交流阻抗谱(EIS)在含0.10mol/L KCl的5.0mmol/L K3[Fe(CN)6]/K4[Fe(CN)6](体积比1∶1)氧化还原探针溶液中进行测定(振幅0.005V,频率范围1~100000Hz),并通过ZSimpwin软件模拟而成.

2 结果与讨论

2.1 金纳米粒子的表征

图1为氯金酸和纳米金溶胶的紫外?可见光谱图,可见氯金酸在380~780nm范围内无吸收峰.柠檬酸钠还原氯金酸制备的纳米金的紫外?可见吸收峰通常在510nm附近,本文所得纳米金粒子的吸收峰位于520nm处,经粒度分析仪测得其平均粒径为35.4nm.

Fig.1 UV?Vis spectra of HAuCl4(a)and colloidal GNPs(b)(A)and particle size diameter distri?

bution of colloidal GNPs(B

)Fig.2 CV curves recorded during the electropoly?merization of thionine

Inset:CV curve of GCE/PTH in PBS(pH=6.8).

2.2 硫堇的电聚合

由图2可见,在硫堇的聚合过程中,出现了一对聚硫堇的氧化还原峰.随着扫描圈数的增加,氧化峰电流和还原峰电流逐渐增大并趋于稳定,表明聚硫堇在电极表面成膜.图2插图为扫描100圈后255高等学校化学学报 Vol.34 

聚硫堇的循环伏安图,其还原峰电位为-0.260V,氧化峰电位为-0.240V.

2.3 修饰电极的电化学阻抗采用电化学阻抗谱对修饰电极的构建过程及结合底物过程进行了表征.图3为不同电极的Nyquist 阻抗谱图,可见裸玻碳电极呈现1个很小的半圆(谱线a );当表面聚合硫堇后,半圆的直径略有减小,表明聚硫堇有利于电子传递(谱线b );当金纳米粒子通过静电和共价作用结合到电极表面后,半圆直径略有增加,这是表面带负电荷的金纳米粒子与带负电荷的氧化还原探针[Fe(CN)6]4-/3-之间的静电排斥作用阻碍了电子传递所致(谱线c )[21];适配体通过金硫键组装到电极表面后,阻抗明显增大,表明适配体已组装到电极表面(谱线d );当用于消除非特异性吸附的BSA 封闭剂结合到电极表面后,半圆直径增大明显(谱线e );通过适配体和凝血酶的特异性相互作用结合凝血酶后,半圆直径进一步增大,凝血酶阻碍了电化学探针的电子传递(谱线f

).

Fig.3 EIS responses of different electrodes

a .GCE;

b .GCE /PTH;

c .GCE /PTH /GNPs;

d .GCE /PTH /

GNPs /APT;e .GCE /PTH /GNPs /APT /BSA;f .GCE /PTH /GNPs /APT /BSA /THR(100ng /

mL).Fig.4 CV responses of GCE /PTH /GNPs /APT /BSA elec?trode with different scan rates in PBS (pH =6.8)Scan rates /(V四s -1)from a to s :0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0.Inset:linear relationship between peak current and scan rate.2.4 扫描速度对修饰电极的影响

采用循环伏安法考察了GCE /PTH /GNPs /APT /BSA 电极在0.01~1V /s 扫描速度范围内对聚硫堇峰电流的影响,结果见图4.以峰电流值对扫描速度作图,线性拟合结果表明,氧化还原峰电流分别与扫描速度成正比,线性方程为I pa =11.57+159.4ν;I pc =6.43+133.4ν(I :μA ;ν:V /s).由此可见,聚

硫堇的氧化还原反应是1个受吸附控制的过程.

2.5 测试底液pH 值对传感器响应的影响采用DPV 法考察了测试底液pH 值对测定凝血酶的传感器响应ΔI (ΔI =I 0-I )的影响.由图5可Fig.5 Effect of the working buffer pH on the

response of aptamer biosensor

见,当pH =6.8时,传感器性能最好,电流响应最

大;当pH>8.8时,聚硫堇不稳定.因此,实验选择

pH =6.8的PBS 溶液作为测试底液.2.6 传感器的性能

采用循环伏安法和差分脉冲法研究了核酸适配

体传感器在不同浓度的凝血酶中孵育前后的电流变

化,结果如图6所示.由图6插图可见,凝血酶在1.0pg /mL ~500ng /mL 浓度范围内,ΔI 与lg c 具有良好的线性关系.循环伏安法的线性方程为ΔI =-0.8432-0.4481lg c (I :μA ;c :pg /mL),线性相关系数R =0.998,检出限为0.50pg /mL(S /N =3).差分脉冲法的线性方程为ΔI =-1.386-1.044lg c (I :μA ;c :pg /mL),线性相关系数R =0.998,检出限为0.38pg /mL(S /N =3).表1对本文构建的及文献3

55 No.3 杨绍明等:以聚硫堇为电化学探针的非标记型核酸适配体传感器

455高等学校化学学报 Vol.34 报道的用于检测凝血酶的核酸适配体传感器的线性范围二检出限二电化学探针和分析方法等进行了比较,可见本文构建的传感器线性范围较宽二检出限较低,这是由于具有高比表面积二强吸附能力和良好生物相容性的金纳米粒子与优异的电化学探针的聚硫堇的有效结合提高了传感器的性能.

Fig.6 CV response(A)and differential pulse voltammetry response(B)of aptamer

biosensor to thrombin in PBS(pH=6.8)

Insets of(A)and(B)are linear fitting curves ofΔI and lg c.ρ(Thrombin)/(pg四mL-1)from a to i:0,1,10,1×102,

1×103,1×104,5×104,1×105,5×105.

Table1 Analytical performance of different aptamer biosensors

Redox probe Analytical method Linear range Detection limit Ref.

[Fe(CN)6]3-/4-EIS0.05 35nmol/L100fmol/L[22] CdSe QDs a SWV b1pmol/L 1nmol/L1pmol/L[23] Thionine CV0.12 48nmol/L0.04nmol/L[24] Hydroquinone DPV0.1 60pmol/L30fmol/L[25] Poly(thionine)DPV27.2fmol/L 13.6nmol/L10.3fmol/L(0.38pg/mL)This work

a.QDs:quantum dots;

b.SWV:square wave voltammetry.

2.7 抗干扰性和稳定性

用pH=6.8的PBS溶液分别配制100ng/mL的HRP二腺苷(AD)及THR进行干扰实验.由图7可见,与传感器对THR的响应相比,HRP和AD的响应很小,说明该传感器的抗干扰能力强.为了考察传感器的稳定性,采用循环伏安法对在100ng/mL的THR溶液中孵育后的传感器在pH=6.8的PBS 溶液中以0.05V/s的速度扫描50圈,峰电流仅下降4.67%,说明该传感器的稳定性较好.

Fig.7 Response comparison of different substrates with the concentration of100ng/mL(A)and50cycles CV measurements in PBS(pH=6.8)after being incubated in100ng/mL thrombin(B)

2.8 回收率

回收率实验结果(表2)表明,该传感器测定凝血酶的回收率较高,可用于凝血酶样品的测定.

Table2 Recovery results of thrombin added in serum

Sample c(Added)/(ng四mL-1)c(Found)/(ng四mL-1)RSD(%,n=3)Recovery(%)

10.50.512.12102.0

220.018.51.5692.5

380.075.40.8594.3

42001980.7799.0

3 结 论

利用电聚合方法在玻碳电极表面合成了聚硫堇,再通过静电作用和共价作用组装金纳米粒子,最后利用金?硫键把凝血酶适配体组装到电极表面构建了检测凝血酶的适配体生物传感器.电化学阻抗

谱研究结果表明,适配体已组装到金纳米粒子修饰的电极表面,凝血酶可有效与适配体结合.循环伏安和差分脉冲伏安法研究结果表明,以聚硫堇为氧化还原电化学探针,以金纳米粒子为载体的适配体传感器用于检测凝血酶具有线性范围宽二灵敏度高和检出限低等优点.

参 考 文 献

[1] Sassolas A.,Blum L.J.,Leca?Bouvier B.D.,Electroanalysis ,2009,21(11),1237 1250[2] Hianik T.,Wang J.,Electroanalysis ,2009,21(11),1223 1235[3] Guo Q.P.,Yang X.H.,Wang K.M.,Meng X.X.,Li J.,Tan W.H.,Chem.J.Chinese Universities ,2008,29(1),37 40(郭秋平,羊小海,王柯敏,孟祥贤,李军,谭蔚泓.高等学校化学学报,2008,29(1),37 40)

[4] Lai R.Y.,Plaxco K.W.,Heeger A.J.,Anal.Chem.,2007,79(1),229 233[5] Mir M.,Vreeke M.,Katakis I.,https://www.360docs.net/doc/1d9959556.html,mun.,2006,8(3),505 511[6] Wang L.,Zhu C.,Han L.,Jin L.,Zhou M.,Dong S.,https://www.360docs.net/doc/1d9959556.html,mun.,2011,47(27),7794 7796

[7] An H.Z.,Yuan R.,Chai Y.Q.,Tang D.P.,Li N.,Acta Chim.Sin.,2008,66(6),633 638(安海珍,袁若,柴雅琴,唐点平,

李娜.化学学报,2008,66(6),633 638)[8] Feng H.,Wang H.,Zhang Y.,Yan B.,Shen G.,Yu R.,Anal.Sci.,2007,23(2),235 239[9] Zhang Y.,Huang L.,Microchim.Acta ,2012,176(3/4),463 470[10] Ahammad A.J.S.,Rahman M.M.,Xu G.R.,Kim S.,Lee J.J.,Electrochim.Acta ,2011,56(14),5266 5271[11] Baskar S.,Chang J.L.,Zen J.M.,Biosens.Bioelectron.,2012,33(1),95 99[12] Zheng L.,Jiang F.H.,Ma G.R.,Zhuang Q.F.,Li F.,Chem.Res.Chinese Universities ,2011,27(5),875 879[13] Kong F.Y.,Xu M.T.,Xu J.J.,Chen H.Y.,Talanta ,2011,85(5),2620 2625[14] Sun C.Y.,Li H.K.,Ping H.,Wang E.L.,Zhang M.W.,Liu J.B.,Chem.J.Chinese Universities ,2011,32(11),2533 2538

(孙春燕,李宏坤,平红,王二雷,张民伟,刘静波.高等学校化学学报,2011,32(11),2533 2538)

[15] Centi S.,Tombelli S.,Minunni M.,Mascini M.,Anal.Chem.,2007,79(4),1466 1473[16] Wang C.,Hossain M.,Ma L.,Ma Z.,Hickman J.J.,Su M.,Biosens.Bioelectron.,2010,26(2),437 443[17] Mir M.,Jenkins A.T.A.,Katakis I.,https://www.360docs.net/doc/1d9959556.html,mun.,2008,10(10),1533 1536[18] Frens G.,Nature Phys.,1973,241,20 22[19] Turkevich J.,Stevenson P.C.,Hillier J.,Disc.Farad.Soc.,1951,11,55 75[20] Gao Q.,Sun M.,Peng P.,Qi H.,Zhang C.,Microchim.Acta ,2010,168(3/4),299 307[21] Sun Y.,Bai Y.,Yang W.,Sun C.,Electrochim.Acta ,2007,52(25),7352 7361[22] Deng C.,Chen J.,Nie Z.,Wang M.,Chu X.,Chen X.,Xiao X.,Lei C.,Yao S.,Anal.Chem.,2009,81(2),739 745[23] Yang H.,Ji J.,Liu Y.,Kong J.,Liu B.,https://www.360docs.net/doc/1d9959556.html,mun.,2009,11(1),38 40[24] Yuan Y.,Yuan R.,Chai Y.,Zhuo Y.,Liu Z.,Mao L.,Guan S.,Qian X.,Anal.Chim.Acta ,2010,668(2),171 176[25] Zhao J.,Zhang Y.,Li H.,Wen Y.,Fan X.,Lin F.,Tan L.,Yao S.,Biosens.Bioelectron.,2011,26(5),2297 2303

Label?free Aptamer Biosensor with Poly (thionine )as an Electrochemical Probe

YANG Shao?Ming *,ZHA Wen?Ling,LI Hong,SUN Qing,LIU Bin,ZHENG Long?Zhen (Department of Chemistry and Chemical Engineering ,School of Basic Sciences ,East China Jiaotong University ,Nanchang 330013,China )

Abstract A lable?free aptamer biosensor was fabricated with the electropolymerized poly (thionine)as a redox electrochemical probe and gold nanoparticles as the immobilization matrix for aptamer.Electrochemical impedance spectroscopy was used to monitor the self?assembly process of the aptamer biosensor.The electro?chemical behavior of the aptamer biosensor was studied by the cyclic voltammetry(CV)and differential pulse voltammetry(DPV).The biosensor shows a good linear range of 1.0pg /mL 500ng /mL for thrombin,R =0.998,with a detection limit of 0.38pg /mL.The biosensor has simple preparation procedure,high sensitivity and strong anti?interference ability.Keywords Poly(thionine);Gold nanoparticles;Aptamer;Thrombin;Biosensor (Ed.:N ,I ,K )555 No.3 杨绍明等:以聚硫堇为电化学探针的非标记型核酸适配体传感器

分子信标:新型核酸分子探针要点

分子信标:新型核酸分子探针 摘要: 分子信标是基于荧光共振能量传递原理设计的一种发夹型寡聚核酸分子荧光探针,能够与待测核酸序列分子相互作用发生结构变化产生不同强度的荧光信号及电化学信号等,具有高灵敏度、高选择性、适于活体检测等优点。本文介绍了分子信标的作用原理,不同的分子信标类型以及应用,最后对前景作出了预测。 关键词:分子信标荧光探针灵敏度选择性活体检测 引言: 从20世纪60年代初至今,分子信标(Molecular beacon,MB)已被广泛地应用于生物、药物、化学等多个领域【1,2,3,4】。近年来,MB特别是基于DNA结构的MB,已成为一种重要工具,用于核酸的复制、重组、翻译和表达的研究【5,7,12】。为了满足后基因组时代的发展需求,人们通过各种分子工程策略,发展了许多敏锐性更高、选择性更优的MB。 自从1996年Tyagi和Krame【6】首次建立了分子信标探针,由于其独特的性质和多功能性,如操作简单、灵敏度高、特异性强等。在它出色地完成了液相靶标测定(实时PCR测定)任务之后,人们又将其应用于核酸实时定量测定、活体分析、化学与生物传感、疾病基因检测与诊断等研究中【8,9,10,11】。又由于易于对其进行修饰和改性,在这十来年的发展中,人们在经典分子信标模型的基础上,设计出了许多新型的分子信标,如无茎分子信标,用PNA【13】链代替ssDNA形成的PNA分子信标,以及LNA分子信标等。这些新型的分子信标是为了满足不同的需要而设计的,特异性更强,稳定性更好,为许多新的研究领域提供了一个平台。为了满足基因组学和蛋白质组学的发展,对分子信标的固定化也成了必然的发展趋势,自从谭蔚泓【14】首次将分子信标固定在硅胶上以来,固定化分子信标也迅速发展起来。尤其是后来设计的将分子信标固定在金表面【15,16】,利用金的强摩尔消光系数进行淬灭,简化了分子信标的设计,更加方便对其进行操作,大大促进了基因微阵列技术的发展。

DNA核酸适配体合作协议书【模板】

DNA核酸适配体合作协议书 甲方:我方 乙方:合作方 本协议甲方和乙方就靶标名称???? DNA核酸适配体的相关合作达成共识,双方本着平等自愿、互惠互利原则,就结成长期合作关系,经友好协商达成以下合作意向。 一、合作总则 为特异性结合靶标名称?的单链DNA核酸适配体更好的进行应用,双方同意建立合作关系,甲方负责提供特异性结合靶标名称?的核酸适配体序列,乙方在此基础上开展应用方面的实验研究。 二、责任和义务 1.甲方责任和义务 1.1甲方承诺提供给乙方的数据以及实验条件真实可靠。提供的数据包含OX40?? 特异 性核酸适配体筛选方法和亲和力测试方法,亲和力数据,核酸适配体序列信息等(附 件一)。 1.2根据乙方的实际情况和要求,乙方在研究过程中,如果遇到了需要甲方提供该适配 体相关信息的地方,甲方应积极配合乙方,共同制定具体实施方案和安排,以促进 项目的顺利进行。 1.3在项目进行过程,未经乙方同意,甲方不得自行公开本合同中乙方基于甲方的核酸 适配体序列取得的研究进展,但不包括双方合作前甲方已得到该核酸适配体的信息。 1.4甲方应当保证其交付给乙方的研究开发成果和样品不侵犯任何第三人的合法权益, 如因甲方提供的研发成果及样品等导致乙方遭受任何索赔、指控时,甲方应承担相 应法律责任并承担乙方由此受到的损失。 1.5甲方不得限制乙方就甲方提供的核酸适配体所获得的研究成果发表研究论文或申 请专利。 2.乙方责任和义务 2.1乙方应尽力推进课题的实施,实验过程中应与甲方及时沟通研究进展。 2.2未经甲方同意,乙方不得公开本合同中甲方使用的实验方法和数据,不得公开甲方 提供的核酸适配体序列。乙方在以甲方提供的核酸适配体为基础,获得的研究成果 发表第一篇论文或申请第一项专利前,应征得甲方许可。

核酸检测基本 知识

核酸检测基本知识 1.什么是核酸检测 核酸的定义:核酸是由核苷酸或脱氧核苷酸通过3′,5′-磷酸二酯键连接而成的一类生物大分子。 核酸具有非常重要的生物功能,主要是贮存遗传信息 和传递遗传信息。 2.核酸的分类 核酸大分子可分为两类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。 3.核酸的组成

DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的,由C、H、O、N、P,5种元素组成。DNA是绝大多数生物的遗传物质,RNA是少数不含DNA的病毒(如HIV病毒,流感病毒,SARS病毒等)的遗传物质。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X10^9个核苷酸。 4.核酸的功能 在蛋白质的复制和合成中起着储存和传递遗传信息的 作用。核酸不仅是基本的遗传物质,而且在蛋白质的生物 合成上也占重要位置,因而在生长、遗传、变异等一系列 重大生命现象中起决定性的作用。 DNA与RNA都是核酸,它们在化学组成上有什么区别如 下: DNA与RNA的比较DNA RNA 主要存在部位细胞核细胞质 基本组成单位脱氧核苷酸核糖核苷酸碱基种类A、G、C、T A、G、C、U 五碳糖种类脱氧核糖核糖 核苷酸链两条脱氧核苷酸链一条核糖核苷酸链 5.检测方法 核酸检测方法,主要通过同时进行靶核酸扩增和可检 测信号的生成来检测样品中的靶核酸。可应用于临床微生

物学、血液筛选、遗传病诊断和预防、法医学等领域的核 酸检测。 目前主要使用的方法有以下几种: a.核酸序列依赖性扩增法 NASBA是由一对引物介导的、连续均一的、体外特异性 核苷酸序列等温扩增RNA的新技术。反应在42℃进行,可在2h内将RNA模板扩增约109倍。NASBA原理是提取病毒RNA,加入AMV逆转录酶、RNA酶H、T7RNA聚合酶和引物进行扩增。 整个反应分非循环相和循环相:在非循环相中,引物I与模板RNA退火后在AMV逆转录酶的作用下合成cDNA,形成RNA:DNA 杂合体,随即RNaseH降解RNA,引物Ⅱ与cDNA退火,在反转录酶作用下合成第2条DNA互补链。双链DNA可在T7RNA聚合酶的作用下,经其启动子序列起动而转录RNA,RNA又可在反转录酶的作用下反转录成DNA,进入循环相,对模板进行大量 扩增。 b.转录介导的扩增技术 TMA技术原理与NASBA基本一致,略有不同之处是TMA利用的是MMLV逆转录酶及T7RNA聚合酶两种酶,MMLV逆转录酶既有逆转录酶的活性又具有RNA酶H活性。反应在41.5℃进行,可在1h内将RNA模板扩增约109倍。 c.连接酶酶促链式反应(LCR) LCR是基于靶分子依赖的寡核苷酸探针相互连接的一种

电化学传感器工作指南设计及电路图

电化学传感器工作指南及电路图 引言 本公司有毒气体检测传感器的开发始于1981年,以一氧化碳传感器的研制为开端。之后对各式各样新传感器都进行了开发。直至最进开发的臭氧和氧化乙烯传感器,形成了系列的传感器产品,并以其可靠、 稳定和耐用等特点斐声海外。 此类传感器系一微型燃料电池,设计成为免维护型并且能长时间稳定工作的产品。所采用的技术立足于己于人本公司早期氧传感器的工作基础,系直接响应气体的体积浓度变化,而不是响应其压力的变化。 该类传感器设计的最大特点是采用了气体的扩散势垒,该势垒能限制气体流向敏感电极的流星。敏感电极能与到达电极的电化学活性仍有余裕。这一高的电化学活性保证了传感器的长寿命和很好的温度稳定性。两电极系统 基于电化学原理工作的传感器其最简单的一种型式就是两电极系统。其工作电极和对电极由一薄层电解液隔开并经由一个很小的电阻联通外电路。当气体扩散进入传感器后,在敏感电极表面进行氧化或还原反应,产生电流并通过外电路流经两个电极。该电流的大小比例于气体的浓度,可通过外电路的负荷电阻予以测量。 为了让反应能够发生,敏感电极的电位必须保持在一个特定的围。但气体的浓度增加时,反应电流也增加,于是导致对电极电位改变(极化)。由于两电极是通过一个简单的负荷电阻连接起来的,虽然敏感电极的电位也会随着对电极的电位一起变化。如果气体的浓度不断地升高,敏感电极的电位最终有可能移出其允许围。至此传感器将不成线性,因此两电极气体传感器检测的上限浓度受到一定限制。 三电极系统 对电极的极化所受的限制可以用引进第三电极,参考电极,和利用一外部的恒电位工作电路来予以避免。在这样一种装置中,敏感电极曲线相对于参考电极保持一固定值。在参考电极中无电流流过,因此这两个电极均维持在一恒定的电位。对电极则仍然可以进行极化,但对传感器而言已不产生任何限制作用。因此 三电极传感器所能检测浓度围要比两电极大得多。 大部分有毒气体传感器(3/4/7系列)均属三电极系统。由于控制了敏感电极的电位,恒电位电路还能提高传感器的选择性和改进其响应性能。这一电路同时也用来测量流过敏感电极和对电极之间的电流。电路可以作成体积很小的低功耗装置。本章后部将提供一些与此有关的电路。 四电极系统 图1 三电极系统进一步发展导致了四电极系统传感器的产生(A3/A7系列)。这一类型的传感器增加了另一个工作电极,称之为辅助电极。辅助电极的讯号可以用来抵消温度变化的影响或者用来提高传感器的选择性。用了第四电极可以使传感器的讯号更稳定,对被测量气体有着特性的响应。 温度影响 即使不存在反应气体,传感器的敏感电极也会显示一个很小的讯号电流称之为“基线电流”。虽然在

常见实验方法的写作套路核酸检测篇9-Digital PCR

编号:2-9 主题:digital PCR 概述: Digital PCR(dPCR)即数字PCR,它是一种核酸分子绝对定量技术。相较于qPCR,数字PCR可以直接数出DNA分子的个数,是对起始样品的绝对定量。数字PCR是最新的定量技术,基于单分子PCR方法来进行计数的核酸定量,是一种绝对定量的方法。由于数字PCR能够直接数出DNA分子的个数,是对起始样品的绝对定量,因此特别适用于依靠Real-time PCR的Ct值不能很好分辨的应用领域,例如:拷贝数变异、突变检测、基因相对表达研究(如等位基因不平衡表达)、二代测序结果验证、miRNA表达分析、单细胞基因表达分析等。目的: 对DNA分子的个数进行绝对定量。 原理: 其主要采用当前分析化学热门研究领域的微流控或微滴化方法,将大量稀释后的核酸溶液分散至芯片的微反应器或微滴中,每个反应器的核酸模板数少于或者等于1个。这样经过PCR循环之后,有一个核酸分子模板的反应器就会给出荧光信号,没有模板的反应器就没有荧光信号。根据相对比例和反应器的体积,就可以推算出原始溶液的核酸浓度。 步骤: 1.分离并纯化基因组DNA; 2.计划数字PCR实验,确定样品的最佳稀释度,以获得数字PCR答案;

3.上样,将DNA样品与TaqMan Assay以及OpenArray数字PCR预混液上样到OpenArray 384孔板; 4.循环和成像,利用OpenArray AccuFill 系统将反应上样到OpenArray平板。将OpenArray平板插入OpenArray箱中,装满浸液,并用封箱胶水密封。利用OpenArray? 实时定量PCR系统开展读取。 5.快速轻松地获取和分析数据。 流程图:

电化学气体传感器

电化学气体传感器的研究 电化学气体传感器是由膜电极和电解液灌封而成的。气体浓度信号将电解液分解 成阴阳带电离子,通过电极将信号传出。它的优点是:反映速度快、准确(可用于ppm级),稳定性好、能够定量检测,但寿命较短(大于等于两年)。它主要适用于 毒性气体的检测,目前国际上绝大部分毒气检测采用该类型传感器。 电化学气体传感器的分类 电化学气体相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧 化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学分很多子类:(1)、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流 表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器 可以有效地检测氧气、二氧化硫、氯气等。 (2)、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正 的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害的主流传感器。 (3)、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用 氧气传感器、固体电解质型二氧化碳传感器。 (4)、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧 浓度检测。 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的电池式以 及需要供电的可控电位电解式。 基于电化学原理工作的传感器其最简单的一种型式就是两电极系统。其工作电极 和对电极由一薄层电解液隔开并经由一个很小的电阻联通外电路。当气体扩散进入传 感器后,在敏感电极表面进行氧化或还原反应,产生电流并通过外电路流经两个电极。该电流的大小比例于气体的浓度,可通过外电路的负荷电阻予以测量。 为了让反应能够发生,敏感电极的电位必须保持在一个特定的范围内。但气体的浓度 增加时,反应电流也增加,于是导致对电极电位改变(极化)。由于两电极是通过一 个简单的负荷电阻连接起来的,虽然敏感电极的电位也会随着对电极的电位一起变化。如果气体的浓度不断地升高,敏感电极的电位最终有可能移出其允许范围。至此传感 器将不成线性,因此两电极气体传感器检测的上限浓度受到一定限制。

核酸检验基本技术

第六章核酸检验基本技术 第一节分子生物学基本知识 一、DNA和RNA DNA是脱氧核糖核酸的英文缩写。DNA以核苷酸排列顺序形式储存遗传信息。 DNA分子由4种核苷酸组成,由碱基互补维持DNA双螺旋结构。 在动植物、细菌和真菌中都含有DNA,但在病毒中不一定含DNA。 DNA为长丝状分子相互纠缠,其溶液十分黏稠。 它对紫外线有最强的吸收,通常用260nm波长测DNA溶液浓度,它在近中性环境中带负电荷,DNA变性后OD值会升高。 因DNA不溶于乙醇,常用二倍量乙醇沉淀DNA。 在变性温度时,它的黏性突然降低。淬火是为了保持DNA单恋状态。 DNA变性后溶液慢慢冷却,DNA会自动回复双螺旋结构。 RNA是核糖核酸的英文缩写,在大多数生物类型中,RNA起遗传信息传递作用并指导合成蛋白质,但在一部分病毒中,RNA也是遗传信息的保存者。 RNA分子中除了含有核糖而不是脱氧核糖外,凡DNA中出现胸腺嘧啶的地方都代之以尿嘧啶。 二、DNA的复制和修复 细胞分裂一次,染色体DNA就合成一次。 DNA分子拆开成两条链,每一条单链按照碱基配对的原则合成另一条新的单链,成为半保留复制。 在合成DNA时限制性核酸内切酶不是合成DNA的必要条件。 DNA多聚酶只能结合在一长段DNA单链的一小段局部双链结构上,才能顺利开始DNA合成。 在DNA合成中单核苷酸分子必须顺序以共价链连接在已形成核酸链3?末端的羟基上。 在合成大声错误时,DNA多聚酶会切除错误核苷酸,在那个位置上重新加一个正确核苷酸。 在人工合成DNA时,至加一种或两种三磷酸单核苷酸,那么和成就会停止在缺失的核苷酸位置上。 在大肠菌DNA损伤修复时填补缺口最重要的酶是DNA聚合酶Ⅰ,而复制最主要的DNA聚合酶是DNA聚合酶Ⅱ。 该酶的核心聚合酶中,具有3?-5?外切酶活性。DNA修复过程中尿嘧啶糖基酶系统不包括SⅠ核酸酶。 逆转录酶的RNAaseH活性是一般DNA聚合酶所不具备的。 三、转录 在生物体内,DNA知道的RNA合成过程称为转录。 它是按照储存在DNA尚的遗传信息合成。 合成RNA时DNA双链也要解旋,解旋部位称启动子。 大肠菌的RNA聚合酶有5个亚基,其σ亚基有启动子作用。 四、翻译 再合成各种不同RNA中,tRNA具有搬运氨基酸功能。 构成核糖体骨架的是rRNA,而mRNA直接决定蛋白质的结构。 4种核苷酸排列组成遗传信息,很撑蛋白质时转换成20种氨基酸的排列顺序,遗传信息的这种转换称为翻译。 3个核苷酸排列顺序代表一种氨基酸密码,表示蛋白质合成开始的密码有一种,DNA3个终止密码子分别是UAA、UAG、UGA。 在细菌里,依靠rRNA和mRNA之间一段互补序列能发现蛋白质合成开始的位置。 元和生物核糖体是由16SrRNA、23SrRNA和5SrRNA组成,在振和生物核糖体的五种主要的组蛋白中,H1在进化中最不保守。 在核糖体上,有2个位置上暴露出mRNA分子相邻的2个密码子,当蛋白质合成进行到没有携带任何

核酸检测技术的应用

核酸检测技术的应用 规ELISA检测。部分标本因为ELISA检测项目不合格直接被淘汰而未 进入到核酸检测环节,有303616份标本分别实行混样核酸检测(191222人份)和单人份核酸检测(112394人份)。⑴混样核酸检测:按照试剂盒说明书要求,筛选ELISA检测合格标本实行8个标本混样 核酸检测,无反应性pooling的8个标本视为该项目核酸检测合格, 有反应性pooling实行标本的拆分单检,拆分无反应性的标本判为合格,拆分亦有反应性的标本判为该项目核酸检测不合格。⑵单人份核 酸检测:采用单个标本核酸检测模式,按照试剂盒和全自动核酸检测 设备要求实行检测,检测无反应性的标本视为HBVDNA、HCVRNA、HIV- 1RNA项目联检合格,检测有反应性的标本则视为HBVDNA、HCVRNA、 HIV-1RNA项目联检不合格。 1.2统计学处理采用x²检验,比较各项目不合格率的差异, p<0.05为差异有统计学意义。 2结果 其中112394人份采用单人份核酸检测系统实行检测,检出单独NAT不 合格数148例,不合格率为1.32‰;191222人份标本采用另外的混样 核酸检测系统实行检测,检出单独NAT不合格数63例,不合格率为 0.33‰.两者不合格率比较,有显著性差异(P<0.05)。 单采血小板标本中,采用ELISA方法检测全血标本278214人份,HBsAg、抗-HCV、抗-HIV-1/2三项不合格数2536例,不合格率为 9.1‰;采用ELISA方法检测单采血小板标本27698人份,HBsAg、抗-HCV、抗-HIV-1/2三项不合格数78例,不合格率为2.8‰.两者不合格 率比较,有显著性差异(P<0.05)。 类,一类为NAT反应性而ELISA无反应性,即为单独NAT不合格结果, 此类不合格的检出即为NAT在血液筛查中所发挥的检测效能。另一类 为NAT反应性ELISA亦为反应性。303616份标本中全血标本和单采血

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

核酸检测技术的应用

核酸检测技术的应用 1资料与方法 1.1检测方法及判定规则305912份全血标本和单采血小板标本进行常规ELISA检测。部分标本因为ELISA检测项目不合格直接被淘汰而未 进入到核酸检测环节,有303616份标本分别进行混样核酸检测(191222人份)和单人份核酸检测(112394人份)。⑴混样核酸检测:按照试剂盒说明书要求,筛选ELISA检测合格标本进行8个标本混样 核酸检测,无反应性pooling的8个标本视为该项目核酸检测合格, 有反应性pooling进行标本的拆分单检,拆分无反应性的标本判为合格,拆分亦有反应性的标本判为该项目核酸检测不合格。⑵单人份核 酸检测:采用单个标本核酸检测模式,按照试剂盒和全自动核酸检测 设备要求进行检测,检测无反应性的标本视为HBVDNA、HCVRNA、HIV- 1RNA项目联检合格,检测有反应性的标本则视为HBVDNA、HCVRNA、 HIV-1RNA项目联检不合格。 1.2统计学处理采用x²检验,比较各项目不合格率的差异, p<0.05为差异有统计学意义。 2结果 2.1单检模式及混检模式下的NAT结果303616人份标本进行核酸检测,其中112394人份采用单人份核酸检测系统进行检测,检出单独NAT不 合格数148例,不合格率为1.32‰;191222人份标本采用另外的混样 核酸检测系统进行检测,检出单独NAT不合格数63例,不合格率为 0.33‰.两者不合格率比较,有显著性差异(P<0.05)。 2.2全血标本和单采血小板标本ELISA检测结果305912份全血标本和单采血小板标本中,采用ELISA方法检测全血标本278214人份,HBsAg、抗-HCV、抗-HIV-1/2三项不合格数2536例,不合格率为 9.1‰;采用ELISA方法检测单采血小板标本27698人份,HBsAg、抗-

基于核酸适配体化学发光检测新技术(精)

基于核酸适配体化学发光检测新技术 核酸适配体是近年来发展起来的一类经体外人工合成筛选出的单链寡核苷酸,能高效、特异性地结合各种生物目标分子,故它的出现为化学生物学界和生物医学界提供了一种新的高效快速识别的研究平台。目前生物分子检测通常采用抗原抗体特异相互作用识别模式,但由于受到抗体易失活、制备时间较长等因素的影响,在一定程度上限制了抗体检测技术的广泛应用。相比之下,核酸适配体自身稳定性好、制备合成相对简单、快速、易获得、易功能化修饰与标记,且在生物传感器设计中应用灵活等优点,近几年在生物分析检测方面备受关注。目前已经成为临床诊断、环境监测、药学研究等许多领域中的研究热点。化学发光(CL)分析法具有不需光源,避免了杂散光的干扰,仪器设备简单、操作简便,具有极高的灵敏度,较宽的检测范围,可实现全自动化等特点,正逐渐成为分析检测中极为有用的工具,随着与众多学科交叉研究和应用领域的扩展,目前已成功地应用在药学、生物学、分子生物学、临床医学和环境学等诸多领域。在本论文中,我们采用化学发光分析法,利用核酸适配体对目标分子的高分辨识别,发展了多种具有创新意义的化学发光适配体生物传感器,也实现了同一份样品中双组分的同时检测。整个论文由以下五部分构成:第一章:绪论本绪论由两节构成,第一节介绍了核酸适配体技术检测生物分子的研究进展,包括了三部分。第一部分中简单介绍了核酸适配体的制备、特点、优势以及在分析领域中的应用;第二部分中介绍了基于核酸适配体识别模式的单组分检测技术的研究进展及其意义,主要内容包括:光检测、电化学检测以及其他检测方法,并列举了近年来分析领域中的部分典型示例;第三部分中介绍了基于核酸适配体识别模式的多组分检测技术的研究进展及其意义,也列举了近年来它们在该分析领域中的部分典型示例。第二节阐述了化学发光多组分酶检测研究进展以及本课题研究的目的、意义、主要研究内容以及创新之处,即核酸适配体在化学发光领域中应用与展望。第二章:基于核酸适配体的化学发光无标记检测腺苷的新技术由于目标分子在适配体上精确的结合位点与构象变化通常并不十分清楚,直接导致合适标记核酸适配体存在一定的难度,因此,适配体的无标记型检测技术已成为近年来的研究热点,尤其在生物检测、环境监控等领域无标记简单快速检测具有非常重要的意义。本章以腺苷为研究对象,采用羧基修饰的磁性微球作为分离载体,基于3,4,5-三甲氧基苯甲酰甲醛(TMPG)与鸟嘌呤(G)碱基之间的瞬时化学发光衍生反应,实现了生物小分子腺苷的无标记检测。本章包括以下两种腺苷检测原理的设计,具体实验步骤如下:(1)活化磁性微球,固定捕获探针序列;(2)方法A:一定量的适配体先与不同量的腺苷特异性结合,随后剩余的自由腺苷适配体与捕获探针序列在磁性微球表面进行杂交反应,从而连接在磁性微球上;方法B:适配体先与捕获探针序列进行杂交反应,随后加入不同量的腺苷,导致部分适配体序列脱离磁性微球表面,与溶液中腺苷形成复合物;(3)磁性分离后,TMPG直接检测结合在磁性微球表面的适配体中G碱基产生的CL信号,进行腺苷间接定量。结果表明:该两种方法均具有准确可靠、重现性和选择性好的特点。第一种方法的最低腺苷检测限为8×10~(-8)M,腺苷浓度在4×10~(-7)-1×10_(-5)M范围内,CL 信号呈线性增加(R~2=0.9852);第二种方法的腺苷浓度在4×10~(- 2)5×10(_5)M范围内,CL信号呈线性增加(R~=0.9764)。综合而言:本章发展的无标记检测生物小分子腺苷的CL新技术,具有简单,快速,灵敏度高等特点,有望在临床诊断、药学研究以及环境监测等领域发挥作用。第三章:基于核酸适配体

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号: 033 授课教师: 考试日期: 2012 年 1 月 10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA 传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA 膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电极、

核酸适配体

SELEX适体选择的过程 RNA或DNA的核酸片段,与蛋白质,多肽或小分子结合,使三维结构互补。蛋白质,多肽或小分子。“适”来自拉丁词Aptus匹配。可应用于各种领域包括传感器探针,用于医疗诊断和环境毒性检测,分子成像,病毒治疗如疫苗和抗病毒药物,靶向药物送的发展与开拓新兴心态注定改变范式病人的护理。这个有前途的适体可在体外用。这个过程被称为“SELEX(系统的演变通过指数enrechiment 配体)”,在体外进化,库的单链DNA或RNA包含40-60基地随机序列区在~ 20基本常数序列引物地区有利于放大产生。SELEX过程继续,直到收敛于一个收集池序列为目标的亲和力和通常得到的周期后8-15选择。由于他们的高亲和力和选择性,适配体已经成功地分离出目标包括范围广泛小分子,肽,蛋白质,甚至整个cells5-8。在这里,在技术回顾系列,我们将在评价的适体技术更集中毒性。特别是,在这个问题上,不同的技术为获得适体,包括“技术”要讨论。传统的适体的选择技术的“技术”采用SELEX最成功的适体代表1 109 1013的分子在1从library9。通常选择过程的开始与低比例的核酸蛋白质为检查是否所有的分子结合的target10。选择第一轮需要长时间的培养时间和不严格的条件,而后来的周期通常需要严格的条件,如改变缓冲液条件下,反应体积和时间的潜伏期。 之间的核苷酸结合后的反应图书馆与靶分子,绑定物种分离通过各种分离技术。然后,该放大的分子被用于下一轮选择过程。目标结合的分离未结合的适配体在筛选的过程是成功的适体的选择是至关重要的一步。适体的选择是通过连续重复丰富目标绑定和未绑定的寡核苷酸去除步骤,其次洗脱,放大,和所选择的寡核苷酸净化。由于蒂尔克和黄金的第一次尝试使用硝酸纤维素过滤方法,其他几个适体被选定,它仍然被认为是一种有效的分离的方法。硝化纤维素过滤器的结合用于广泛调查的平衡结合和蛋白质oligonucleitides络合物的动力学性质由于硝基优先保留蛋白质和蛋白质的DNA或RNA复杂但不是免费的寡核苷酸。完成整个选择的过程,通常需要12个周期,之后选定的分子可以被克隆到一个合适的载体并测序。SELEX方法,而过滤策略已用于隔离适体对各种靶蛋白,这种技术仍然是一个繁琐,耗时的过程。此外,一些DNA核酸适配体已选择使用硝酸纤维素大肠杆菌RecA protein11)。同时,由于分离过滤效率,大量的选择轮是必需的。传统的各种改进技术1990中描述的方法已被报道在近十年来,如毛细管电泳(CE)- SELEX,量身定制的SELEX,切换技术,照片—研究开发新的技术应用简单,容易和廉价的方法,如非SELEX,NP(纳米)- SELEX(例如,磁珠,胶体金粒子),细胞SELEX,溶胶-凝胶技术和微流控技术。在本审查,几个隔离高亲和力的先进的分离方法和特异性核酸适配体的提供。这些新的变异大大缩短时间的选择和改进适体的亲和性和特异性。基于核酸适体的选择neccem;非SELEX毛细管电泳的应用(CE)为SELEX造成了巨大的改进

核酸检测技术及其在国内外血液筛检中的应用

核酸检测技术及其在国内外血液筛检中的应用 输血相关传染病的预防和控制已经成为全社会关注的焦点,新技术的引进是进一步提高血液安全性的重要一环。本文就病原体核酸检测技术(nucleic acid testing, NAT)及其在国内外血液筛检中的应用情况和结果作一介绍,并对该方法在我国推广和应用的必要性和可行性作初步探讨。 1. NAT在血液筛检中的必要性 酶免检测(EIA)技术已经广泛运用于血液筛检,该方法的灵敏度和特异性也在不断地改进和提高,但每年仍有少数新发输血后肝炎病例报道,如美国无偿献血者每单位供血传播HBV、HCV和HIV 的危险性分别为1∶66000、1∶103000和1∶676000[1]。这些危险的主要原因是: 病毒感染者“窗口期”献血,病毒变异,免疫静默感染(immuno silent infection)以及人工操作错误[2]。所谓“窗口期”,是指从感染病原开始,直至用某种检测方法能够检测到该病原存在为止的这一段时间[3]。血清学抗原、抗体检测的“窗口期”较长, 如HBsAg、抗-HIV、抗-HCV检测的“窗口期”分别为45-56d、22d、72d[4,5],故美国90%以上输血传播HIV和HBV以及75%以上输血传播HCV的危险性来自“窗口期”感染献血[6]。EIA“窗口期”漏检是当前影响血液安全性进一步提高的瓶颈,对于献血者的筛选,单纯抗原或抗体血清学检测不能有效地保障血液安全。 NAT检测是直接检测病原体核酸的一系列技术的总称。其基本步骤包括核酸提取、扩增、和检测。NAT敏感性高,可检出标本中极微量的核酸,在病毒感染后数天即能检出,可大大缩短“窗口期”。初步研究表明,混合血样NAT检测可将HBV、HCV和HIV感染的平均“窗口期”缩短9d(缩短“窗口期”20%)、59d(82%)和11d(50%)[5,7];此外NAT还可以检出因上述其它3种原因而漏检的被感染献血。如法国应用NAT,从大约150万份献血中筛检出4份HCV RNA阳性、抗体阴性的样本,其中1份即为免疫静默感染[8]。尽管NAT从理论上并不能完全消除感染“窗口期”,但病毒核酸转阳之前的血液传染性极低,可以有效地预防经输血传播病毒性疾病[9]。因此,NAT的引入可使输血传播疾病的危险性降到最低[10]。 2. NAT检测的技术方法 1985年具有划时代意义的聚合酶链反应(polymerase chain reaction, PCR)的发明,标志着NAT 的诞生。随后,在PCR的基础上,派生出许多其它原理的体外NAT方法[11]。这些技术灵敏度和特异性或高或低,操作或简单或复杂,适合在各自不同的领域运用,目前适用于大样本量血液筛查并能满足高灵敏度要求的扩证扩增技术主要为PCR技术和TMA技术。 2.1 PCR扩增方法 PCR是一种体外模拟自然DNA复制过程的核酸扩增技术,以其高敏感性、高特异性和快速简便等优势得到了广泛的应用。通过简单的技术改进和联合,涌现出了各种各样不同的PCR方法,如检测RNA的逆转录PCR(RT PCR)、敏感性和特异性均较高的巢式PCR (nested PCR)、可对靶序列进行定量检测的定量PCR、检测基因超长分布的多重PCR以及PCR结合酶标技术(PCR ELISA)、PCR结合寡核酸探针杂交技术(PCR SSOP)、荧光PCR和免疫PCR等。 目前在临床检测中使用较多的是荧光定量PCR,主要用于各种传染病的诊断、病毒滴度监测以及疗效评估,因采用荧光标记的探针杂交或直接使用能和双链DNA结合的荧光素检测PCR扩增产物,

如何自制核酸探针

如何自制核酸探针? 什么是核酸探针? 核酸探针是能与特定的靶分子发生特异性结合的一段核苷酸分子。通过在核酸探针上连接一些小分子化合物,如生物素、荧光素、地高辛等,或者放射性同位素标记核苷酸,可以达到检测靶基因序列和纯化的目的。这一过程被称为核酸杂交。其原理是碱基互补的两条核酸分子退火形成双链。 探针应用 核酸探针技术作为分子生物学中最常见的技术之一,是印记杂交,原位杂交,实时荧光PCR,microarray(微阵列)等技术不可或缺的组成部分。探针技术能定性或者检测特异性DNA/RNA序列,还可用于病原微生物和寄生虫的检测,疾病诊断等领域。 探针制备 探针标记主要分为放射性和非放射性标记法。探针制备流程如图1所示。Southern印迹、Northern印迹等需要较长的DNA探针,常使用缺口平移法和随机引物法进行标记。而这些方法对于较短的DNA(200 bp以下)来说,效率很低,常使用末端标记法。除了这三种方法,常见的还有PCR标记法。 图1. 探针制备流程。 随机引物法 随机引物法的原理是利用随机引物(random primer,即DNA 水解、分离得到的六聚脱氧核苷酸作)与单链DNA随机互补结合,在Klenow大片段酶的作用下,合成互补链,直至下一个引物。如果模板是RNA,则使用反转录酶。随机引物法可以使标记均匀跨越探针全长。相比于缺口平移法,探针的活性更高,但是产量相对较低。

图2. 随机引物法的原理。 Protocol 试剂: [α-32P]dCTP (3000Ci/mmol), dATP,dTTP,dGTP (5 mmol/L),Klenow大片段(2U/uL),模板,随机引物, NA终止/贮存缓冲液(50 mmol/L Tris-Cl (pH 7.5),50 mmol/L NaCl,5 mmol/L EDTA (pH 8.0),0.5% (m/V) SDS) 5X 随机引物缓冲液(250 mmol/L Tris (pH 8.0),25 mmol/L MgCl2,100 mmol/L NaCl,10 mmol/L 二琉苏糖醇(DTT),1 mol/L HEPES ( 用 4 mol/L NaOH 调至 pH 6.6),1 mol/L DTT 贮存于 -20℃,临用前用水稀释,使用后弃去稀释的 DTT。) 实验步骤: 1、在一个 0.5 mL 的微量离心管中加入溶于 30 uL 水的模板 DNA ( 25 ng ) 及 1 uL 随机脱氧核苷酸引物(约 125 ng)。 2、使用PCR或者预热的水浴锅95℃热变性10min,迅速放冰上1min。 3、4℃离心混合物10s,重新置于冰上。 4、引物和模板的混合物中加入: dATP, dTTP, dGTP 各1 uL 5X 随机引物缓冲液 10 uL

电化学气体传感器的优缺点

不同电化学气体传感器中所包含的不同成份决定了它可与相应的毒气发生反应;测量头可测量反应所产生的电流并将其转换成气体浓度值(ppm或ppb)。催化传感器在涂有催化剂的小球上“无焰燃烧”可燃性气体;测量头可测量电阻的变化并通过a/d 转换,显示变化相应的读数。一般以爆炸下限作为满量程。 由于电化学型和催化燃烧型测量头相对较低的成本,它们通常被用于“源点”(即泄漏有可能发生的地方)处的测量。因而对泄漏的反应迅速并可连续探测。另外,由于没有可移动部件,所以不会造成机械故障。 但是,这两种类型的传感器也有缺点:一些气体传感器不但对与之相应的气体(即它们按照设计应该反应的气体)反应,而且对其他气体(干扰气体)也发生反应,因此有必要注意在设计和安装过程中避免将这些传感器用在有可能有干扰气体存在的地方。传感器需要定期标定,通常为三个月一次(视不同品牌,工作环境,工作状态等因素的影响);传感器在使用1到3年后通常需要更换(视不同品牌,工作环境,工作状态等因素的影响)。另外,有些品牌的传感器使用的是电解溶液,这就需要定期填充电解液。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/1d9959556.html,。

核酸适配体在治疗肿瘤中的的作用

核酸适配体在治疗肿瘤中的的作用 江西理工大学邹涛 摘要: 核酸适配体是一类能够特异性地和靶物质结合的寡核苷酸序列。它可作用于蛋白质、金属离子、小分子化合物、细胞膜表面受体等靶标。该寡核苷酸序列可以是RNA也可以是DNA,较其他识别分子而言,适配体具有性质稳定、易合成、易标记、分子量较小和目标分子广泛等优势。其结合能力可与抗体相当甚至更强, 并可结合各种药物及载体构建多元复合靶向给药系统用于肿瘤靶向治疗, 在生物医学领域引起了极大的关注.。 关键词:核酸适配体;肿瘤治疗;量子点 1990年,Ellington与Szostak及Tuerk与Gold筛选出了能与T4 DNA聚合酶高亲和力和特异性结合的随机寡核苷酸,并命名为核酸适配体(aptamer,Apt),该筛选方法被命名为指数富集的配体系统进化技术(SELEX),原理是首先构建容量巨大的随机寡核苷酸序列库,然后经过多轮结合和洗脱,从中筛选得到能够和靶标物质高亲和力结合的寡核苷酸。核酸适配体是通过折叠形成特定空间结构而与靶标结合,其亲和力可与抗体相当,亲和常数(Kd)可达纳摩尔或皮摩尔水平。近年来,核酸适配体受到科学家的广泛关注,由于其分子量较小、可化学合成、生物相容性好等优点,其在基础、临床、药物开发中的研究不断增多,越来越多的针对生命活动中重要分子的适配体被筛选出来,各种基于核酸适配体的分析方法和技术也有报道,核酸适配体在生物医学、疾病诊疗领域已显示出广阔的应用前景。靶向配体在抗肿瘤药物靶向传递方面有很大的应用潜能,其对靶分子结合的选择性可赋予抗癌药物靶向特异性,同时增加药物在病变组织内的富集。核酸适配体可体外合成且易于修饰,同时因其带负电荷,在体循环中很少参加非特异性相互作用。它们对靶物质可高亲和力并特异性地结合,使其具有高的穿透性。抗肿瘤药物一般都是在细胞内发挥作用,提高药物摄取量是其有效性的关键。纳米粒子能通过细胞内吞途径进入细胞,如果将核酸适配体连接到纳米粒子表面,药物靶向肿瘤细胞后,可介导内吞发生,有利于提高药物摄取量,这种给药方式成为目前研究的热点。以下综述了核酸适配体在肿瘤靶向治疗中的研究进展。 1 肿瘤标志物 肿瘤标志物(Tumor Marker)是反映肿瘤存在的化学类物质。它们或不存在于正常成人组织而仅见于胚胎组织,或在肿瘤组织中的含量大大超过在正常组织里的含量,它们的存在或量变可以提示肿瘤的性质,借以了解肿瘤的组织发生、细胞分化、细胞功能,以帮助肿瘤的诊断、分类、预后判断以及治疗指导。利用它的这一特性,可以筛选出某一肿瘤标志物的特异性适配体,从而靶向肿瘤细胞,达到诊断和治疗的目的。 1.1甲胎蛋白 甲胎蛋白(AFP)是肝细胞癌定性诊断中最重要的血清肿瘤标志物。利用

相关文档
最新文档