三自由度并联机器人的运动学分析

三自由度并联机器人的运动学分析
三自由度并联机器人的运动学分析

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。 (2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。 自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload)有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。

全转动副三自由度并联机器人设计说明书资料

河北工业大学城市学院 毕业论文 作者:周** 学号:***** 系(专业):机械系 专业:机械设计与制造及其自动化 题目:全转动副三自由度并联机器人 指导者:李** 教授 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2015 年6月11 日

目录 1 绪论 ........................................................................................................................ - 4 - 1.1 引言 .............................................................................................................. - 4 - 1.2 此次课题研究背景和意义 ........................................................................ - 4 - 1.3 串并联机器人的国内外研究现状、使用范围及发展趋势 ...................... - 5 - 1. 4 本次毕业设计主要完成工作 ..................................................................... - 6 - 1.4.1 基本内容 ............................................................................................ - 6 - 1.4.2 课题研究拟采用的手段和工作路线 ................................................ - 6 - 2 总体方案的设计 .................................................................................................... - 7 - 2.1 总体布局的设计 ....................................................................................... - 7 - 3 由基本参数选定标准件的型号 .......................................................................... - 10 - 3.1 减速机的选择 .......................................................................................... - 10 - 3.2 选择伺服电机并对其检验 ...................................................................... - 12 - 3.3 轴承的选择及校核 .................................................................................... - 15 - 3.4 联轴器的选择 .......................................................................................... - 17 - 4.1 支链尺寸的确定 ........................................................................................ - 19 - 4.2 对主动轴尺寸的确定及校核 .................................................................... - 20 - 4.3 对支链上转动副的设计 ............................................................................ - 22 - 4.4 支链末端设计 ............................................................................................ - 25 - 5 机构的整体布局设计及机架设计 ...................................................................... - 2 6 - 结论 ...................................................................................................................... - 29 - 参考文献 .................................................................................................................... - 31 - 致谢 ............................................................................................................................ - 32 -

平面并联机器人的运动学和动力学研究

平面2自由度并联机器人的运动学 和动力学研究 林协源1刘冠峰1 (1.广东工业大学广州) 摘要:本文面向高速高精LED电子封装设备设计了一种高速高精2自由度平面并联机构(2-PPa并联机器人)。该机构由一个动平台和两个对称分布的完全相同的支链组成,每个支链中都有一个移动副(驱动关节)和一个由平面平行四边形组成的特殊转动动副。首先推导出该机器人的运动学模型包括正反解;其次结合焊线机实际工艺要求提出多项机构性能指标对该机构的几何参数进行多目标优化;然后基于Euler-Lagrange 方程建立该机器人的动力学方程,最后通过算例分析两个移动副在动平台按照一定轨迹运动时其速度、加速度和驱动力的变化规律。这些为接下来研究该机器人的动态性能和系统解耦控制等都具有重要意义。 关键词:2自由度平面并联机器人运动学动力学 Kinematic and Dynamic Analysis of a Planar Two-degree-freedom Parallel Manipulator LIN Xieyuan1LIU Guanfeng1 (1.Guangdong University of Technology Guangzhou ) Abstract:In this paper,a type of planar 2-DOF parallel manipulator is proposed for uses in design of high- speed and high-accuracy LED packaging machines. The manipulator consists of a moving platform and two identical subchains. Each subchain is made of a prismatic joint (actuator) and a parallelogram with four passive revolute joints. We first derive the kinematic model of the manipulator. Then, we determine the optimal geometric parameters of the manipulator by solving a multi-goal optimization problem based on performance indices. We compute the dynamic equation use Euler-Lagrange formulation and use it to analyze the relationship between velocity, acceleration and driving torque of joints. This analysis is important for further study of the dynamic performance and the decoupling control methods for the manipulator. Key words:2-DOF Planar parallel manipulator Kinematics Dynamics 0 前言 在电子、包装和食品等轻工业场合中,机器人只需要3到4个自由度即可满足使用要求。串联机器人由于自身具有较大的质量和惯性,很难应用到需要高速高负载能力的场合。并联机器人很好的弥补了串联机器人这方面的不足。所以,近年来少自由度并联机器人的研究相当热门。其中3自由度并联机器人的研究已是相当深入[1-4]。在Z方向只需要较小的操作位移时,末端搭载一个1或2自由度的串联机构的2自由度并联机器人相对应3或4自由度的并联机器人会显得更加经济适用。 清华大学曽提出过两种平面2-DOF并联机器人:一种是PRRRP(P表示移动副,R 表示转动副)并联机器人,其中两移动副运动方向平行,且机器人的末端姿态是可变的[5];一种是2-PPa(Pa表示平行四边形机构)并联机器人,同样,该机器人的移动副运动方向也平行,不过其末端姿态不可变[6]。文章[6]中的并联机器人最后应用在了立式机床上。同样的2-PPa并联机器人,上海交通大学将其应用在高速高精度的场合

三自由度并联机械手的设计

学号: 密级: 武汉东湖学院本科生毕业论文(设计) 三自由度并联机械手的设计 院(系)名称:机电工程学院 专业名称:机械设计制造及其自动化 学生姓名: 指导教师: 二〇一六年五月六日

郑重声明 我郑重声明:本人恪守学术道德,崇尚严谨学风,所呈交的学术论文是本人在老师的指导下,独立进行研究工作所取得的结果。除文中明确注明和引用的内容外,本论文不包含任何他人已经发表和撰写过得内容。论文为本人亲自撰写,并对所写内容负责。 本人签名: 日期:2016年5月7号

摘要 随着机器人技术的快速发展,并联机械手的应用领域越来越广,已成为当今机器人领域新的研究热点。针对并联机械手机构比传统串联机械手更复杂的问题,本文以一种轻型高速的三自由度Delta 并联机械手为例,在完成其运动学的基础上,对并联机械手进行了建模以及装配。 首先,本文介绍了三自由度并联机械手机构的工作原理,并对其进行了运动学分析。其中,对机构的自由度进行的计算,采用几何法求得了其运动学正解以及其运动学逆解。其次,对机构进行了速度模型及雅克比矩阵的分析。实现了solidworks对机构的零部件与装配图三维建模。最后,通过个零部件的配合,实现了三自由度并联机械手的装配。 关键词:并联机械手;三自由度;3D建模

ABSTRACT With the rapid development of robot technology, parallel manipulator used more and more widely, has become the hot spot in the field of new robots today. In view of the parallel manipulator mechanism more complex than the traditional serial manipulator problem, based on a lightweight high-speed three degree of freedom parallel manipulator as an example, the Delta at the completion of its kinematics, on the basis of the parallel manipulator has carried on the modeling and assembly. First, this paper introduces the working principle of three degrees of freedom parallel manipulator mechanism, and carries on the kinematics analysis. Among them, the institution of degree of freedom for the calculation of geometric method is used to obtain the positive kinematics solution and its inverse kinematics solution. Second, the institutions for the velocity model and the Jacobi matrix analysis. Implements the solidworks for spare parts and assembly drawing 3 d modeling of the organization. Finally, by a spare parts, implements the three degree of freedom parallel manipulator assembly. Keywords: Parallel manipulator;Three degrees of freedom;3D modeling

3自由度并联机器人构型综合 杨国彬

既具有平面操作模式和空间平移操作模式的3自由度并联机器人构型 综合 专业:交通运输工程 学号:M015115102 姓名:杨国彬

本篇论文分为三个部分: 第一部分:确定论文主旨:即通过简化确定多模式并联机器人支链的步骤,来改进多模式并联机器人构型综合的方法。同时规定一些符号的意思: :在机械装置中,轴线平行于平面运动旋转轴的转动副(R jionts ) :在一支链中,彼此轴线平行但是不平行于副轴线的R 副:在一支链中,彼此轴线平行;同时,在同样一个腿中,其 轴线不与副和副这两者的轴线平行。 :在一支链中,彼此的轴线经过同一个点。 ()E :代表一个平面运动链:由具有Bennett 链接的三个连续的转动副组成的Bennett CU (如图1所示) //R \R //R /R //R \R .R ~RRR

:代表一个不满足上述提到的一些转动副的情况(即具有平面运动链(()E )的R 副、、、、、这些情况):代表在过渡配置中的R 副,该R 副在平面运动模式下表现为副,或者在空间平移模式和过度配置下表现为副。:代表一个在过渡配置中的R 副,该R 副在平面运动模式和过度配置下表现为副,或者在空间平移模式下表现为 副。 图1 Bennett CU ~ R //R \R /R .R ~RRR /~??? ??R ~R /R ' //??? ??R //R \R

第二部分: 平面并联机器人的构型综合,即研究平面并联运动支链,这里分为三个部分来进行介绍。 2.1、用虚拟链的方法来研究并联机器人的构型综合(在研究平面并联机器人支链时,在底座和动平台之间加有一个E虚拟链,以保证该支链是可以在平面上运动,然后去除E虚拟链,就可以得到平面并联机器人支链) 平面虚拟链(E virtual chain 如图2)可以用来代表一个平面运动 图2 E virtual chain

平面2自由度并联机器人的动力学设计_刘善增

2008年第27卷2月第2期机械科学与技术M e c h a n i c a l S c i e n c e a n dT e c h n o l o g y f o r A e r o s p a c e E n g i n e e r i n g F e b r u a r y V o l .272008 N o .2 收稿日期:2006-06-13 基金项目:国家自然科学基金项目(50575002),北京市自然科学基 金项目(3062004),北京市 教委科技发展计划项目(K M 200610005003)和北京工业大学研究生科技基金项目(y k j -2007-1069)资助 作者简介:刘善增(1977-),博士研究生,研究方向为并联机器人 等,l i u s h a n z e n g @163.c o m 刘善增 平面2自由度并联机器人的动力学设计 刘善增 (北京工业大学机电学院,北京 100022) 摘 要:通过对平面二自由度并联机器人动力学的研究和系统存在耦合原因的分析,得出了机构设计的五点措施。采用这些措施对提高平面二自由度并联机构系统的动态特性、易控性,以及增强系统运行的稳定性和精度等都具有重要的作用。最后,通过两个算例验证了这些措施的可行性和效果,经过参数调整后的系统大大降低了驱动力矩和能耗。 关 键 词:并联机器人;机构设计;动力学分析 中图分类号:T H 112 文献标识码:A 文章编号:1003-8728(2008)02-0230-04 D y n a mi cD e s i g no f a 2-D O FP l a n a r P a r a l l e l R o b o t L i u S h a n z e n g (B e i j i n g U n i v e r s i t y o f T e c h n o l o g y ,B e i j i n g 100022) A b s t r a c t :T h e p a p e r p r e s e n t s f i v e m e a s u r e s f o r t h e m e c h a n i s md e s i g n o f a 2-D O F p l a n a r p a r a l l e l r o b o t o n t h e b a s i s o f i t s d y n a m i c a n a l y s i s a n d t h e a n a l y s i s o f c a u s e s f o r f a i l u r e .T h e m e a s u r e s a r e u s e f u l f o r i m p r o v i n g t h e d y n a m i c p r o p e r t i e s ,c o n t r o l l a b i l i t y ,s t a b i l i t y a n d a c c u r a c y o f t h e p a r a l l e l r o b o t .T h e p a p e r g i v e s t w o n u m e r i c a l e x a m p l e s t o v e r i f y t h e f e a s i b i l i t y a n d e f f e c t s o f t h e m e a s u r e s .T h e a d j u s t m e n t o f t h e p a r a l l e l r o b o t ′s p a r a m e t e r s g r e a t l y r e d u c e s i t s a c t u a t o r t o r q u e s a n d e n e r g y c o n s u m p t i o n .K e y w o r d s :p a r a l l e l r o b o t ;m e c h a n i s m d e s i g n ;d y n a m i c s a n a l y s i s 随着机构学发展和研究领域的拓宽及机械产品创新的需求,平面多自由度机构已广泛应用于并联机器人、串联机械手等领域,以实现高速、高精度、高稳定性的运动输出或完成更复杂的运动规律。近年来,对平面并联机构的研究日益受到国内外学者的重视。 然而,由于并联机构存在运动学和动力学的强耦合性,使得这类机构系统的控制较为困难,运行精度低。解耦合在动力学中的研究是个难题。因此,如果能采取有效的结构设计措施,使得机构的动态方程得到简化。那么,对改善系统的动态特性,提高系统的运动精度和实际控制都是非常有利的。 文献[1]中利用平衡自适应的方法对平面二自由度串联机械手进行了静平衡和完全解耦,但系统结构复杂。文献[2]中采用动态质量等价分布和平 衡的方法对平面二自由串联机械手进行了研究,消除了重力项的影响,使得系统的驱动力矩降低了70%和能耗减少了40%。文献[3]中对二自由度五 杆机构进行了动力学分析,并在分析的基础上得出了一种平行四边形的四杆机构(第五杆杆长为0),从而实现了五杆机构的完全解耦。但本质上这种完全解耦的五杆机构已不是真正意义的五杆机构。本文对平面二自由度并联机构的动力学进行了深入研究,分析了系统动态方程中的耦合项,为了达到改善系统动态性能和降低能耗的目的,提出了机构设计的5点措施。1 机构的运动学分析 平面二自由度并联机构A B C D E 的示意图,如图1。图1中A E 为机架;各杆杆长为l i (i =1~5);各杆件的质心S i (i =1~4)位置分别为(l s i ,αi )(i =1~4),αi 为各杆质心与其自身杆件所成夹角,相应的各杆质量为m i (i =1~4)。假定杆A B 和D E 为主动构件,即杆A B 和D E 与驱动器相连。以A 为原点o ,建立直角坐标系o x y ,如图1中所示。则并联机构A B C D E 的向量环方程 DOI :10.13433/j .cn ki .1003-8728.2008.02.029

一种三自由度并联机器人运动轨迹精度的可靠性研究

一种三自由度并联机器人运动轨迹精度的可靠性研究六 口李兵 口张晓瑾 口谢里阳口魏玉兰 东北大学机械工程与自动化学院沈阳 110004 摘要:机器人轨迹精度的可靠性是评价机构性能的重要参数。压电材料作为一种驱动器能够抑制机器人柔性连接杆的振动,在抑制振动的同时也提高了机器人运动轨迹的精度。首先介绍了一种三自由度平面并联机器人系统;其次表达了振动控制系统的工作原理和实验分析;然后分别表达了不考虑振动和考虑振动因素时机器人轨迹精度的可靠度计算方法;最后分析了无振动控制和有振动控制时机器人运动轨迹精度的可靠度。可靠度计算表明,振动控制系统能够提高机器人运动轨迹精度的可靠度。 关键词:并联机器人减振轨迹精度可靠性中图分类号:TP242 0328 文献标识码:A文章编号:1000一4998(2010)lO—O005一04 Abstract:Thereliabilityofthetrajectoryaccuracyofthemnipulator is an imponant p啪meter toevaluatethe perfomance of tIle m粕ipulator.ThevibmtionoftIlenexiblelinkIge8ofthem肌ipulatorc锄besuppressedwhenthepiezoelectricmaterialisu鸵d 鹊a咖sducer. Andthe kine啪tic trajectoryaccuracyofthem锄ipulatorisimproved at the s舢e time. Athree—degree—of— f}eedom pl衄盯paraUelrnanipulatori8 in删uced first.Thentheworkingprincipleandexperimentalanalysisofthevibration suppression8ystema聆pre鸵med.Thecalculatingmethodsofthereliabilityofthet阳jectoryaccuracyof山e毗njpulator with or withoutvibmtionfactorcorIside陀d are alsoprovided.Finally,tlIe陀liabilityofkinematict陋jectory∞curacyofIhe mIlipIllator with or without、ribmtionsupp陀ssion is锄lyzed.The resultsshowthatthereliabilityofthekinematic tmjectoryaccumcyofthe 眦nipulator can beimpmvedwit}Ithehelpofvibmtionsuppres8ion. Key words:Par棚elMaIIipIllatorVmmti帅Su坤re辎i伽TrajectoryAc饥ncyReIiability 并联机器人具有刚度大、运动精度高等优点而被广泛使用在航天工业和制造业中…。为了获得更高的运动速度和加速度,轻质量连接杆的机器人被使用,但同时却造成了系统振动,影响了运动精度。 多种方法可以抑制柔性杆的振动,例如选用刚性或阻尼更大的材料【2.”。近十几年,利用智能结构抑制柔性系统的振动被越来越重视,一个智能结构包含4个要素:驱动器、传感器、控制策略和动力控制装置。压电材料能被作为智能驱动器和传感器,PzT压电材料要求更低的驱动电压,并可使用在更大的频率范围而被广泛使用¨】。多种控制策略能实现柔性连接杆的动态振动抑制,其中应变反馈控制策略具有更宽的动态阻尼频率区域,能实现更大范围的振动抑制”】。 机器人在运动过程中产生的振动会影响其运动轨迹的精度№1。振动越强,运动轨迹精度越差,若振动幅度超过规定值就认为机器人动态性能失效,即意味着机器人不能按照预定的轨迹运动。当使用PzT振动控制系统后,能明显抑制机器人的振动,提高运动轨迹精度。机器人运动轨迹精度可靠性研究的主要任务是评价机器人运动可靠度及其机构动态精度,对机器人的 ★国家863高技术研究发展计划项目(编号:2007AA042428)科技部重大专项资助项目(编号:2009zx04013)收稿日期:2010年4月 器 机械制造48卷第554期 运动精度作出合理的可靠性预计。因此,机器人运动轨迹精度的可靠性研究具有重要的意义。 1机器人模型 如图1,这种三自由度(3一DOF)并联机器人由3个对称布置的连接杆以封闭形式组成,每一组连接杆机构都由一个直线位移约束和两个转动约束组成n1。机器人使用了比较轻的连接杆,能够获得更快的运动速度和加速度,但系统却产生了振动,而且使运动轨迹的精度降低。 机器人的系统坐标系,如图2所示,其中标出了连 20lO/lO 囤 万方数据

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

六自由度机器人运动分析及优化

本 科 毕 业 论 文(设 计) 题目(中文 学学 完 成 日 期 2017 年 3 月

摘要 当今世界,工业化日趋成熟,机器人被广泛的应用于各行各业,最常用到的有四自由度,六自由度机器人。其中,自动化水平较高的汽车制造业和电子装配业经常常常要使用到六自由度机器人。因此对其实施运动学分析,是进行科学设计的基础,也是降低机器人生产成本,优化机器人运动轨迹的前提。此外,运动分析过程有效的模拟了机器人运动的真实情况,有助于提供有效可行的优化方案。本文主要探讨六自由度机器人的运动分析,基于经典运动学以及动力学的研究方法概念,首先通过solidworks做出机械臂各部分零件的三维图,然后通过SolidWorks装配出六自由度机器人机械臂的三维模型。通过该模型,选取其中一个关节和底座,并用SolidWorks进行运动学分析,对六自由度机器人的运动学和动力学计算方法进行了仿真验证。最后得到六自由度机器人的其中一个自由度的运动仿真实例。通过对该运动仿真实例的分析,得出最佳优化方案,优化机器人的运动轨迹提高机器人的工作效率,降低机器人生产成本。 关键词:六自由度机器人;运动分析;运动学;动力学;

目录 摘要 ...................................................................................................................... I Abstract ............................................................................... 错误!未定义书签。 1 绪论 (1) 1.1课题背景及研究的目的和意义 (1) 1.2机器人国内外发展现状及前景展望--------------------------1 2 六自由度机器人运动学分析 (3) 2.1六自由度机器人的结构-------------------------------------1 2.2运动学分析----------------------------------------------1 3 六自由度机器人动力学分析 (5) 3.1综述----------------------------------------------------3 3.2机器人动力学研究方法------------------------------------3 3.2.1几项假设-------------------------------------------3 3.2.2目标-----------------------------------------------4 3.2.3数学工具-------------------------------------------5 3.3动力学原理----------------------------------------------3 3.3.1动量矩定理---------------------------------------------------------------6 3.3.2能量守恒定理--------------------------------------6 3.3.3牛顿—欧拉方程------------------------------------7 3.3.4达朗贝尔原理--------------------------------------8 3.3.5拉格朗日方程--------------------------------------9 4 六自由度机器人运动分析 (8) 4.1运动分析的软件背景---------------------------------------3 4.2运用solidworks建立六度机器人机械臂三维模型--------------9 4.3运用Solidworks对进行运动学分析-------------------------4 5 结论 (14)

并联机器人发展现状与展望

并联机器人发展现状与展望 引言 并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。本文根据掌握的大量并联机器人文献,对其分类和应用做了简要分析和概括,并对其在运动学、动力学、机构性能分析等方面的主要研究成果、进展以及尚未解决的问题进行了阐述。 1并联机构的发展概况 (一)并联机构的特点 并联机构是一种闭环机构,其动平台或称末端执行器通过至少2个独立的运动链与机架相联接,必备的要素如下:①末端执行器必须具有运动自由度;②这种末端执行器通过几个相互关联的运动链或分支与机架相联接;③每个分支或运动链由惟一的移动副或转动副驱动。 与传统的串联机构相比,并联机构的零部件数目较串联构造平台大幅减少,主要由滚珠丝杠、伸缩杆件、滑块构件、虎克铰、球铰、伺服电机等通用组件组成。这些通用组件可由专门厂家生产,因而其制造和库存备件成本比相同功能的传统机构低得多,容易组装和模块化。 除了在结构上的优点,并联机构在实际应用中更是有串联机构不可比拟的优势。其主要优点如下: (1)刚度质量比大。因采用并联闭环杆系,杆系理论上只承受拉、压载荷,是典型的二力杆,并且多杆受力,使得传动机构具有很高的承载强度。 (2)动态性能优越。运动部件质量轻,惯性低,可有效改善伺服控制器的动态性能,使动平台获得很高的进给速度与加速度,适于高速数控作业。 (3)运动精度高。这是与传统串联机构相比而言的,传统串联机构的加工误差是各个关节的误差积累,而并联机构各个关节的误差可以相互抵消、相互弥补,因此,并联机构是未来机床的发展方向。 (4)多功能灵活性强。可构成形式多样的布局和自由度组合,在动平台上安装刀具进行多坐标铣、磨、钻、特种曲面加工等,也可安装夹具进行复杂的空间装配,适应性强,是柔性化的理想机构。 (5)使用寿命长。由于受力结构合理,运动部件磨损小,且没有导轨,不存在铁屑或冷却液进入导轨内部而导致其划伤、磨损或锈蚀现象。 并联机构作为一种新型机构,也有其自身的不足,由于结构的原因,它的运动空间较小,而串并联机构则弥补了并联机构的不足,它既有质量轻,刚度大,精度高的特点,又增大了机构的工作空间,因此具有很好的应用前景,尤其是少自由度串并联机构,适应能力强,且易于控制,是当前应用研究中的一个新热点。 (二)并联机构的分类 从运动形式来看,并联机构可分为平面机构和空间机构;细分可分为平面移动机构、平面移动转动机构、空间纯移动机构、空间纯转动机构和空间混合运动机构, 另可按并联机构的自由度数分类:

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.360docs.net/doc/1112327983.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

相关文档
最新文档