数学必修五 三角函数应用举例 教学设计

数学必修五 三角函数应用举例 教学设计
数学必修五 三角函数应用举例 教学设计

数学必修五三角函数应用举例教学设计

教学分析

本章通过章头图中的古建筑和台风问题实例,引入要学习的数学知识,由此可见实际测量在本章的中心地位.实际上解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解斜三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.教学时要充分利用数形结合的方法,充分利用多媒体课件给学生以动态演示,加强直观感知.学习这部分知识有助于增强学生应用数学的意识和提高解决实际问题的能力.本节教材提出了四个问题:问题1和问题2为测量题.这类问题在我们的日常生活中比比皆是,学生对实际背景非常熟悉,这给教学带来了极大的便利.由于底部不可到达,这类问题不能直接用解直角三角形的方法来解决,但用正弦定理和余弦定理就可以计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.问题3是介绍解决平衡力系的数学方法.学习此题教师应先引导学生简要地复习一下向量求和的平行四边形法则和三角形法则.问题4是解三角形方法用于天气预报的一个典型例子,有很好的教育价值.本节学习可增强学生的数学应用意识,激发学生学习数学的积极性.由于解决的是一些实际问题,在进行近似计算时,要求学生算法要简练、清楚,计算要准确.本节后的练习和习题都是解三角形应用的基本题,应要求学生全部掌握.三维目标

1.通过巧妙的设疑,结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,使学生能够运用正弦定理、余弦定理等知识解决一些有关测量距离的实际问题.同时通过多媒体课件直观演示,加强学生的动态感知,帮助学生掌握常规解法,能够通过类比解决实际问题.

2.通过对解斜三角形在实际中应用的讲解,让学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用,同时

培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.3.通过本节的探究,引导学生经过自己的数学活动,从实际问题中提取数学模型,使学生经历发现和创造的过程,进一步拓展学生的数学活动空间,发展学生“做数学”“用数学”的意识.

重点难点

教学重点:掌握应用正弦定理和余弦定理解决测量问题的一般方法,并能应用正弦定理、余弦定理列方程求解一些实际问题,进一步熟悉数学建模的方法步骤,提高解决实际问题的能力.

教学难点:将实际问题转化为数学问题,即根据实际问题建立数学模型.课时安排

2课时

教学过程

第1课时

导入新课

思路 1.(问题导入)本章引言中就提出了经常萦绕着我们的这么一个问题:“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以借助解直角三角形等方法,但由于在实际测量问题的真实背景下,某些方法不能实施.上面的问题用以前的方法是不能解决的.那么我们用刚刚学习的正弦定理、余弦定理就可以解决以前不能解决的问题,究竟如何测量呢?下面我们就来探究这个问题,由此展开新课.

思路 2.(情境导入)你有坐汽车(或者火车)经过山前水平公路的经历吗?如果身边带着测角仪,那么根据路标(100米杆)就会立即测算出你所看到的山的高度.利用正弦定理、余弦定理你也会马上算出来,在学生急切想知道如何测算山高的期待中展开新课.

推进新课

新知探究

提出问题

1 提示学生先回顾正弦定理、余弦定理,并提问:若已知三角形的两边及其中一边的对角用哪个定理解三角形?若已知三角形的两角及其夹边又可选用哪个定理解三角形呢?

2 回忆过去的一些测量方法,如测量两点间的距离都有哪些测量方法?

3 如果底部可到达,如电线杆的高度应怎样测量?如果底部不能到达,如工厂的烟囱的高度应怎样测量呢?

4 对解题中的近似值要怎样处理才能减小误差呢?

5 解决实际问题的一般程序是什么?

活动:教师先让学生回忆正弦定理、余弦定理的内容,学生很快回忆起来,若已知三角形的两边及其中一边的对角,则用正弦定理较好,鼓励学生多动手画图,特别是对想象能力较弱的学生,更应画出图形,在图形上标出已知的数据以加强直观感知.

对于底部可到达的物体的高度问题,如测量电线杆的高度,利用初中的知识即可解决.如图1,只要测出∠B及BC即可算出AC的高度.对于底部不能到达的物体的高度又该怎样测量呢?

图1

图2

教师引导学生分组讨论,充分发挥学生的想象力.学生会提出许多的方案.教师可一一指导,选出其中有代表性的方案作为本节教学的切入点,比如有的学生会提出:既然底部不可到达,则BC就不可测出,但解三角形至少需有一边,如此可否使原来的B点后退至B′点,测量BB′的距离.如图2,引导学生深入探究,效果将会更好.

在具体解题过程中,教师可针对解题中的近似值处理问题,适时地提醒学生

注意:(1)应根据题中对精确度的要求,合理选择近似值;(2)为避免误差的积累,解题过程中应尽可能地使用原始(已知)数据,少用间接求出的量.讨论结果:

(1)~(4)略.

(5)解决实际问题的一般程序是:(1)审题,逐字逐句地阅读题目,弄清题目的条件、要求,找出其中的数学关系;(2)建模,分析题目的变化趋势,选择适当的数学模型;(3)求解,也就是对所建立的数学模型进行数学解答得到数学结论;(4)还原,即把数学结论还原为实际问题的解答,包括检验是否符合实际意义等.本节所研究的问题都是把实际问题转化成解三角形的问题,然后利用正弦定理、余弦定理、三角函数等来解决.

应用示例

例1(教材问题1)

活动:教师借助多媒体,引导学生观看实物图片,让学生明确建筑物的底部不可到达,需在宫墙外护城河畔的马路边选择一个观测点,移动测量仪再选择一个观测点.在动态的演示中让学生充分理解我们为什么要这样做.然后教师指导学生画出平面示意图,并在图上标出相关的数据,让学生自己思考怎样根据正弦定理和余弦定理计算出建筑物的高度.

点评:解完本例后让学生总结测量的方法,本例的关键是选择观测点和测量的基线,与实物的实际高度仅有0.3 m的误差,可让学生分析误差产生的原因.变式训练

如图,在山顶铁塔上B处测得地面上一点A的俯角α=54°40′,在塔底C 处测得A处的俯角β=50°1′.已知铁塔BC部分的高为27.3 m,求出山高CD.(精确到1 m)

解:如下图,在△ABC 中,∠BCA=90°+β,∠BAC=α-β,∠BAD=α.

根据正弦定理,BC sin α-β =AB sin 90°+β

, 所以AB =BCsin 90°+β sin α-β =BCcos βsin α-β

. 解Rt△ABD,得BD =ABsin∠BAD=BCcos βsin αsin α-β

.将测量数据代入上式,得 BD =27.3cos50°1′sin54°40′sin 54°40′-50°1′ =27.3cos50°1′sin54°40′sin4°39′

≈177(m), CD =BD -BC≈177-27.3≈150(m).

答:山的高度约为150 m.

例2(教材问题2)

活动:教师借助多媒体,引导学生观看实物图片,明确要解决的问题.在实

际生活中,这样的问题随处可见,如学生熟悉的河两岸的某两点之间的距离.在例1的类比下,学生很容易想到选择一个观测点,移动测量仪再选择一个观测点.本例可让学生画图探究.教师给予适时点拨.

点评:结合例1可对这类测量问题进行小结,解决这类测量问题的关键是选

择观测点和测量的基线.可让学生进一步探究,除了教材中的测量方法和计算,还有其他的方法吗?

变式训练

如图,为了测量隧道口AB 的长度,给定下列四组数据,测量时应当用数据

( )

A.α,a,b B.α,β,a

C.a,b,γ D.α,β,b

答案:C

解析:由a,b,γ利用余弦定理可求出AB.

例3如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北15°的方向上,行驶5 km后到达B处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD.

活动:教师引导学生充分理解题目背景,引导学生画出图形.首先理解什么是仰角,西偏北25°是什么意思.本题的图形是一个立体几何图形,让学生充分理解图形中的各个已知量和要求的量.

解:在△ABC中,∠A=15°,∠C=25°-15°=10°,

根据正弦定理,

BC

sinA

AB

sinC

,BC=

ABsinA

sinC

5sin15°

sin10°

≈7.452 4(km),

CD=BC3tan∠DBC≈BC3tan8°≈1 047(m).

答:山的高度约为1 047 m.

点评:此例即为本课导入时思路2提出的问题,切入生活实际.教师可提醒学生总结,我们是如何根据已知条件及所求的边长,恰当地选取我们需要的三角形的.

知能训练

1.为了测量河的宽,在河岸的一边选取两点A和B,观测对岸标记C点,测得∠CAB=45°,∠CBA=75°,AB=120 m,则河宽为__________ m.

答案:20(3+3)

解析:由题意画出示意图,如下图,则∠ACB=180°-45°-75°=60°,

由正弦定理,知

AB sin∠ACB =AC sin75°

, ∴AC=sin75°sin60°

2120=20(32+6). 在Rt△ACD 中,CD =ACsin45°=20(3+3),

即河的宽为20(3+3) m.

2.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个

测点C 与D.测得∠BCD=15°,∠BDC=30°,CD =30米,并在点C 测得塔顶A 的仰角为60°,则塔高AB =__________.

答案:156米

解析:在△DBC 中,∠CBD=180°-15°-30°=135°.

由正弦定理得CD sin∠CBD =BC sin∠BDC

, ∴BC=30sin30°sin135°

=15 2. 在Rt△ABC 中,AB =BC2tan60°=15233=156(米),

即塔高为156米.

课堂小结

先由学生自己回顾本节所学的测量底部不可到达的建筑物高度和测量地面上两个不能到达的地方之间的距离的方法,是如何从实际问题情境中寻求到解决问题的方案的,你是否能根据题意准确地画出示意图?你没有画出的原因是什么呢?

在学生自己总结归纳而对本节有了一个整体认识的时候,教师可作进一步的归纳.解决实际问题的关键是建立数学模型,特别是画出示意图是准确迅速解这类数学问题的关键,也是本节要体现的技能,这在高考中体现得很突出,需要在反复的练习和动手操作中提高这方面的能力.

作业

课本本节习题1—2A组1、2、3.

设计感想

本教案设计以情境教学、问题教学为主,教师引导和学生积极参与探究相结合,充分体现以学为主、逐步领悟的原则.日常生活中的实例体现了数学知识的生动运用.通过合作学习和相互提问补充的方法让学生多感受问题的演变过程,通过多媒体课件的演示让学生切身感受实际问题所反映的数学本质,让学生在轻松愉快的互动气氛中学到知识,提高能力.

本教案设计的中心主线是在学生探究活动中提炼数学建模,不要求学生死记硬背解决实际问题的方法步骤.本教案的设计始终抓住本节乃至本章的这一重点,不在一些细枝末节上浪费时间.

通过本节探究,学生基本上熟悉了解决实际问题的思想方法,下一步教师要在规范步骤等方面加以关注.

备课资料

一、拓展资源

1.利用余弦定理证明正弦定理

在△ABC中,已知a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2

-2abcosC,求证:

a

sinA

b

sinB

c

sinC

.

证明:由a2=b2+c2-2bccosA,得cosA=b2+c2-a2

2bc

∴sin2A=1-cos2A=1- b2+c2-a2 2

2bc 2

2bc 2- b2+c2-a2 2

2bc 2

= 2bc+b2+c2-a2 2bc-b2-c2+a2

4b2c2

b+c+a b+c-a a+b-c a-b+c

4b2c2

.

a2

sin2A

4a2b2c2

a+b+c -a+b+c a+b-c a-b+c

.

记该式右端为M,同理可得

b2

sin2B

=M,

c2

sin2C

=M,

a2

sin2A

b2

sin2B

c2

sin2C

.

a

sinA

b

sinB

c

sinC

.

2.如图,P为△ABC内的一点,且∠PAB=∠PBC=∠PCA=θ,记BC=a,

CA=b,AB=c,求证:

1

sin2θ

1

sin2A

1

sin2B

1

sin2C

.

证明:在△PAC中,由正弦定理,得

AP

sinθ

b

sin∠APC

.

∴∠APC=180°-θ-(A-θ)=180°-A.

AP

sinθ

b

sinA

.

从而S

△PAB =

1

2

c2APsinθ=

1

2

c2

bsinθ

sinA

2sinθ=

1

2

bcsinA2

sin2θ

sin2A

S △ABC 2sin 2

θsin 2A

. 同理可得S △PBC =S △ABC 2sin 2θsin 2B ,S △PCA =S △ABC 2sin 2θsin 2C

. 相加后即得S △ABC =S △ABC (sin 2θsin 2A +sin 2θsin 2B +sin 2θsin 2C

). ∴1sin 2θ=1sin 2A +1sin 2B +1sin 2C

. 二、备用习题

1.在一幢20 m 高的楼顶测得对面一塔顶的仰角为60°,塔基的俯角为45°,

则塔高为( )

A .20(1+33) m

B .20(1+3) m

C .10(6+2) m

D .20(6+2) m

2.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( )

A .a ,c ,α

B .b ,c ,α

C .c ,α,β

D .b ,α,β

3.如图,B 、C 、D 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点

的仰角分别是β、α(α<β),则A 点离地面的高AB 等于 ( )

A.asin αsin βcos β-α

B.asin αsin βsin β-α

C.

asinαcosβ

sin β-α

D.

acosαcosβ

cos β-α

4.如图,有一长为10 m的斜坡,它的倾斜角是75°,在不改变坡高和坡

顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延伸( ) A.5 m B.10 m C.102 m D.10 3 m

5.如下图,我炮兵阵地位于地面A处,两观察所分别位于地面点C和D处,

已知CD=6 000 m,∠ACD=45°,∠ADC=75°,目标出现于地面点B处时,测

得∠BCD=30°,∠BDC=15°,求炮兵阵地到目标的距离.(结果保留根号)

6.如下图,测量人员沿直线MNP的方向测量,测得A点的仰角分别是∠AMB

=30°,∠ANB=45°,∠APB=60°,且MN=PN=500 m,求塔高AB.

参考答案:

1.B 解析:如图,AB为楼,CD为塔,AM为水平线,则有AB=20.

∠DAM=45°,∠C AM=60°,

∴MD=20,AM=20,CM=20 3.

∴CD=20(1+3)(m).

2.D 解析:由α,β,b可利用正弦定理求出BC. 3.B 解析:在△ABC中,CD=a,∠DAC=β-α,

由正弦定理,得

a

sin β-α

AC

sinα

∴AC=

asinα

sin β-α

.

在Rt△ABC中,AB=AC2sinβ=asinα2sinβsin β-α

.

4.C 解析:在△ABC中,由正弦定理,可知

x

sin45°

10

sin30°

,∴x=10 2

m.

5.解:在△ACD中,∠CAD=180°-∠ACD-∠ADC=60°,CD=6 000 m,∠ACD=45°,

由正弦定理,有AD=CDsin45°

sin60°

6

3

2CD.

同理,在△BCD中,∠CBD=180°-∠BCD-∠BDC=135°,CD=6 000,∠BCD =30°.

由正弦定理,有BD=CDsin30°

sin135°

2

2

CD.

又在△ABD中,∠ADB=∠ADC+∠BDC=90°,根据勾股定理,得

AB=AD2+BD2=

6

3

2+

2

2

22CD=

42

6

CD=1 00042 m.

答:炮兵阵地到目标的距离为1 00042 m. 6.解:设AB的高为x.∵AB与地面垂直,∴△ABM,△ABN,△ABP均为直角三角形.

∴BM=x2cot30°=3x,BN=x2cot45°=x,BP=x2cot60°=

3

3

x.

在△MNB中,BM2=MN2+BN2-2MN2BN2cos∠MNB,在△PNB中,BP2=NP2+BN2-2NP2BN2cos∠PNB,又∵∠BNM与∠PNB互补,MN=NP=500,

∴3x2=250 000+x2-23500x2cos∠MNB,①

1

3

x2=250 000+x2-23500x2cos∠PNB.②

①+②,得10

3

x2=500 000+2x2,∴x=2506(m).

答:塔高AB为250 6 m.

第2课时

导入新课

思路 1.(本章章头图导入)有的学生可能要问:正弦定理探究完了,余弦定理也探究完了,那么本章开始引言中提出的问题究竟怎样解决呢?也就是怎样算出几小时后某城市开始受到台风的侵袭和怎样测出海上航行的轮船的航速和航向呢?学过本节后就简单清晰了,由此展开新课.

思路 2.(猜想导入)上节课我们探究了怎样测量不可到达的点的距离,又解决了怎样测量底部不可到达的建筑物高度的问题,这些都是距离问题,那么能否借助正弦定理、余弦定理测量一些角度的问题呢?回答是肯定的,由此展开新课.推进新课

新知探究

提出问题

1 回忆前面是如何测量距离和高度的?

2 在测量距离和高度时,是怎样由三角形的一些已知边和角来求其他边的?

3 回忆上册中向量求和的平行四边形法则和三角形法则.

4 日常生活中还有一个例子,如航海,在浩瀚无垠的海面上如何确保轮船不迷失方向,同时保持一定的航速和航向前进,还有如何预防台风的侵袭等,这些可否像前面探究的距离和高度那样,转化为解三角形模型来解决呢?

活动:教师引导学生再次回忆正弦定理、余弦定理.为了提高学生兴趣,可换个提法,前面解决实际问题的顺序是“实际问题→数学建模→数学模型的解→实际问题的解”,我们如果不按这个步骤进行结果会怎样?通过这样反复强化,使学生的“数学建模”意识得以巩固,这里关键是找出已知量和未知量,画好平面示意图,确定需要解决的三角形.

三角形模型应用很广泛,像航海确定方向等都离不开角,当然也就离不开解三角形,也就需要用正弦定理、余弦定理等有关的三角形知识来解决它.

讨论结果:

(1)~(4)略.

应用示例

例1(教材问题3)

活动:本例题是解三角形与向量结合的典例,教师可引导学生复习向量的相关知识.利用多媒体课件明确所要探究问题的已知量和未知量,指导学生画出平面示意图,这是解好本问题的关键.

点评:本例背景是我们人人都熟悉的三角形灯架,目的是让学生熟悉解决平衡力系的数学方法,解决问题的关键是把受力情况和角度都放在三角形中,然后用正弦定理解决.

变式训练

有两根柱子相距20 m ,分别位于电车的两侧,在两柱之间连接一条水平的绳子,电车的送电线就悬挂在绳子的中点,如果送电线在这点垂直向下的作用力是17.8 N ,则这条成水平的绳子的中点下降0.2 m ,求此时绳子所受的张力.

解:如图所示,设重力作用点为C ,绳子AC 、BC 所承受的力分别记为CE →、CF →,

重力记为CG →

.

由C 为绳子的中点,知|CE

→|=|CF →|. 由CE →+CF →=CG →,知四边形CFGE 为菱形. 又∵cos∠FCG=cos∠DCB=0.2102+ 0.2 2

≈0.02, ∴|CE →|=|CF →|=12|CG →|cos∠FCG =8.90.02

=445, 即绳子所受的张力为445 N.

例2如图,一艘海轮从A 出发,沿北偏东75°的方向航行67.5 n mile 后到达海岛B ,然后从B 出发,沿北偏东32°的方向航行54.0 n mile 后到达海岛

C.如果下次航行直接从

A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0. 1°,距离精确到0.01 n mile)

活动:教师引导学生根据题意画出平面示意图,这是解决本类题目很重要的一方面.教师可就此点拨学生注意:画图、用图、识图是学好数学的一项基本功,能否准确画出示意图直接决定着解题的成败,这项基本功较弱的同学可就此加强自己的补弱训练.我们前面学习时有过这样的经历:有些选择题,甚至解答题,只要画出示意图,解答结果很快就出来了,这就是数形结合的强大威力之所在,提醒学生关注这一点.

解:在△ABC 中,∠ABC=180°- 75°+ 32°=137°,根据余弦定理, AC =AB 2+BC 2-2AB3BC3cos∠ABC

=67.52+54.02-2367.5354.03cos137°≈113.15.

根据正弦定理,

BC

sin∠CAB

AC

sin∠ABC

sin∠CAB=BCsin∠ABC

AC

54.0sin137°

113.15

≈0.325 5,

所以∠CAB≈19.0°,75°-∠CAB=56.0°.

答:此船应该沿北偏东56.0°的方向航行,需要航行113.15 n mile.

点评:本例综合运用了正、余弦定理,体现了正弦定理、余弦定理在解斜三角形中的重要作用.解完本例后教师引导学生进行反思领悟,让学生把重点放在数学建模这一共性上和对一般方法的掌握上.

变式训练

如图,港口A北偏东30°方向的C处有一观测站,港口正东方向的B处有一轮船,测得BC为31 n mile,该轮船从B处沿正西方向航行20 n mile后到D 处,测得CD为21 n mile,问此时轮船离港口A还有多远?

解:由条件知∠CAD=60°,设∠ACD=α,∠CDB=β,

在△BCD中,由余弦定理,得

cosβ=CD2+BD2-BC2

2CD2BD

=-

1

7

.

∴sinβ=1-cos2β=43 7

.

∴sinα=sin(β-60°)=sinβcos60°-cosβsin60°=53 14

.

在△ABC中,由正弦定理,得

CD

sin∠CAD

AD

sinα

∴AD=CD2sinα

sin∠CAD

=15 n mile.

答:此时轮船离港口还有15 n mile.

例3(教材问题4)

活动:为降低难度,本题已经给出了平面示意图,教学时,可先不让学生看这个图形,让学生通过阅读题意自己画出图形,然后对照题目给出的图形,以便找出偏差.或者教师以幻灯片的形式打出题意,稍后再出示示意图,留给学生足够的思考空间.

点评:(1)本例右边的边注可作为本例的变式训练.在教材图116中,延长PQ 到Q′,使∠AQQ′=40.3°,台风沿PQ 方向过点Q′时,则台风终止侵袭A 城.侵袭A 城的时间为台风经过Q 到Q′所用的时间.解△AQQ′,求出Q 与Q′的距离,然后除以台风移动的速度就可得到侵袭A 城的时间.

(2)解完此题后教师引导学生总结应用正、余弦定理解斜三角形的解题方法.在解三角形的应用题时,通常会遇到两种情况:①已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.②已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.

知能训练

1.已知a 、b 、c 为△ABC 的三个内角A 、B 、C 的对边,向量m =(3,-1),n =(cosA ,sinA).若m⊥n ,且acosB +bcosA =csinC ,则∠B=__________.

2.如图所示,海中小岛A 周围38海里内有暗礁,一船正在向南航行,在B 处测得小岛A 在船的南偏东30°,航行30海里后,在C 处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?

答案:

1.π6

解析:由题意,得3cosA -sinA =0,即tanA = 3.

又∵0<A<π,∴A=π

3

.

由正弦定理,得sinAcosB+sinBcosA=sin2C,即sinC=sin2C. ∵sinC≠0,∴sinC=1.

又∵0<C<π,∴C=π

2

.

∴B=π-(π

2

π

3

)=

π

6

.

2.解:在△ABC中,BC=30,∠B=30°,∠ACB=135°,∴∠A=15°.

由正弦定理,知AC=30sin30°

sin15°

=60cos15°=15(6+2),

∴A到BC所在直线的距离为AC3sin45°=15(3+1)≈40.98(海里).

∵40.98海里>38海里,

∴船继续向南航行,没有触礁的危险.

课堂小结

先让学生回顾本节所探究的有关角度的知识过程,熟悉有关角的概念;回顾在本节实际问题的探究中,是怎样画出方位角的,是如何将实际问题转化为数学问题的,又是怎样灵活地选用正弦定理、余弦定理的.

通过本节利用物体受力情况和航海、台风侵袭等实际问题,我们感受到数学模型可以有效地描述自然现象和社会现象;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分.

作业

课本本节习题1—2A组4;习题1—2B组3.

设计感想

本教案是根据课程标准,学生的认知特点,内容的安排而设计的,由于本节课的前面已经有了举例探究经验,因此设计的活动主要都是通过学生自己完成;只是教材一开始就呈现出台风侵袭城市的背景图,涉及到方位角,学生对图形难

以把握,特别从空间的视角去审视的时候有些困难.因此教师应充分利用多媒体课件演示,让学生从动态中发现实物背景下的数学图形及有关的角度问题,引导学生自己画出平面示意图——这是解决本例的关键所在,教师不要怕在此浪费时间.

本教案的设计意图还在于,通过本节课的展示,让学生体会到数学离不开生活,生活离不开数学,数学知识来源于生活而最终服务于生活;数学课堂的最后呈现标准不是学生成为解题能手,而是让学生体会到数学的实用价值.

备课资料

一、备用习题

1.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系是( )

A.α>β B.α=β C.α+β=90° D.α+β=180°

2.已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的( ) A.北偏东10° B.北偏西10°

C.南偏东10° D.南偏西10°

3.如图,有两条相交成60°角的直线XX′、YY′,交点是O,甲、乙分别在OX、OY上,起初甲在离O点3千米的A点,乙在离O点1千米的B点,后来两人同时以每小时4千米的速度,甲沿XX′方向,乙沿Y′Y方向步行.

(1)起初,两人的距离是多少?

(2)用包含t的式子表示t小时后两人的距离;

(3)什么时候两人的距离最短?

4.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘

渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援.(角度精确到1°)

5.如图,已知A、B两点的距离为100海里,B在A的北偏东30°处,甲船自A以50海里/时的速度向B航行,同时乙船自B以30海里/时的速度沿方位角150°方向航行.问航行几小时,两船之间的距离最近?

6.在某时刻,A点西400千米的B处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心、300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A进入台风圈?A处在台风圈中的时间有多长?

7.在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域,点E正北55海里处有一个雷达观测站A.某时刻测得一般匀速直线行驶的船位于点A北偏东45°,且与点A相距402海里的位置B,经过40分钟又测得该船已

行驶到点A北偏东45°+θ(其中sinθ=

26

26

,0°<θ<90°)且与点A相距

1013海里的位置C.

(1)求该船的行驶速度;(单位:海里/时)

(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.

参考答案:

1.B

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高一数学 必修五 1.2 应用举例 教案

课题: §2.2解三角形应用举例 第一课时 ●教学过程 Ⅰ.课题导入 1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境] 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 Ⅱ.讲授新课 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题讲解] (2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m) 启发提问1:?ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。 分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。 解:根据正弦定理,得 ACB AB ∠sin = ABC AC ∠sin AB = ABC ACB AC ∠∠sin sin = ABC ACB ∠∠sin sin 55=)7551180sin(75sin 55?-?-??= ? ?54sin 75sin 55≈ 65.7(m) 答:A 、B 两点间的距离为65.7米 变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30?,灯塔B 在观察站C 南偏东60?,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型。 解略:2a km 例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。

高中数学必修三角函数常考题型同角三角函数的基本关系

高中数学必修三角函数常考题型同角三角函数 的基本关系 集团文件版本号:(M928-T898-M248-WU2669-I2896-

同角三角函数的基本关系 【知识梳理】 同角三角函数的基本关系 (1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2 α+cos 2 α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即 sin α cos α=tan_α ? ?? ??其中α≠k π+π2?k ∈Z ?. 【常考题型】 题型一、已知一个三角函数值求另两个三角函数值 【例1】 (1)已知sin α=12 13 ,并且α是第二象限角,求cos α和tan α. (2)已知cos α=-4 5 ,求sin α和tan α. [解] (1)cos 2 α=1-sin 2 α=1-? ????12132=? ?? ??5132 ,又α是第二象限角, 所以cos α<0,cos α=- 513,tan α=sin αcos α=-125 . (2)sin 2 α=1-cos 2 α=1-? ????-452=? ?? ??352 , 因为cos α=-4 5 <0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-3 4;当α是第 三象限角时,sin α=-35,tan α=sin αcos α=3 4 .

【类题通法】 已知三角函数值求其他三角函数值的方法 (1)若已知sin α=m,可以先应用公式cos α=±1-sin2α,求得 cos α的值,再由公式tan α=sin α cos α 求得tan α的值. (2)若已知cos α=m,可以先应用公式sin α=±1-cos2α,求得 sin α的值,再由公式tan α=sin α cos α 求得tan α的值. (3)若已知tan α=m,可以应用公式tan α=sin α cos α =m?sin α= m cos α及sin2α+cos2α=1,求得cos α=± 1 1+m2 ,sin α= ± m 1+m2 的值. 【对点训练】 已知tan α= 4 3 ,且α是第三象限角,求sin α,cos α的值.解:由tan α= sin α cos α = 4 3 ,得sin α= 4 3 cos α,① 又sin2α+cos2α=1,② 由①②得 16 9 cos2α+cos2α=1,即cos2α= 9 25 . 又α是第三象限角,故cos α=- 3 5 ,sin α= 4 3 cos α=- 4 5 . 题型二、化切求值 【例2】已知tan α=3,求下列各式的值.

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

高一数学必修一和必修四的三角函数公式

三角函数公式 (一)同角三角函数的基本关系式 (1)平方形式:sin 2α+cos 2α=1 (2)倒数形式:sinα/cosα=tanα (二)诱导公式 (1)sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α (其中k ∈Z) (2)sin (2k π-α)=-sin α cos (2k π-α)=cos α tan (2k π-α)=-tan α (其中k ∈Z) (3)sin (-α)=-sin α cos (-α)=cosα tan (-α)=-tan α (4)sin (π-α)=sin α cos (π-α)=-cosα tan (π-α)=-tan α (5)sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α (6)sin (π/2-α)=cos α cos (π/2-α)=sin α (7)sin (π/2+α)=cos α cos (π/2+α)=-sin α (8)sin (3π/2+α)=-cos α cos (3π/2+α)=sin α (9)sin (3π/2-α)=-cos α cos (3π/2-α)=-sin α (三) 两角和与差的三角函数公式 (1)sin (α+β)=sin αcosβ+cos αsinβ (2)sin (α-β)=sin αcosβ-cos αsinβ (3)cos (α+β)=cos αcosβ-sin αsinβ (4)cos (α-β)=cos αcosβ+sin αsinβ (5)tan (α+β)= tanα+tanβ1-tanαtanβ (6) tan (α-β)=tanα-tanβ1+tanαtanβ (四)二倍角的正弦、余弦和正切公式 (1)sin2α=2sin αcos α (2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α (3)tan2α= 2tan α/(1-tan 2α) (五)三角函数的降幂公式 (六)半角的正弦、余弦和正切公式 (七)(辅助角的三角函数的公式) (八)正、余弦定理公式及其变形 ● a sinA =b sinB =c sinC =2R (R 为△ABC 的外接圆的半径) ● a 2=b 2+c 2-2bccosA ● b 2= a 2+ c 2-2accosB ● c 2= b 2+ a 2-2abcosC (ⅰ) sinA=a 2R ,sinB=b 2R ,sinC=c 2R (ⅱ)a=2RsinA b=2RsinB c=2RsinC (ⅲ)a:b:c=sinA: sinB: sinC (ⅳ)asinB=bsinA bsinC=csinB asinC=csinA (九)常用的三角形面积公式 (ⅰ) S=12 absinC=12 acsinB=12 bcsinA (ⅱ)S =12 (a+b+c)r (r 为△ABC 的内切圆的半径) (ⅲ)S=abc 4R (R 为△ABC 的外接圆的半径) (十)利用余弦定理判断三角形的形状 (ⅰ)在△ABC 中,若a 2﹤b 2+c 2,则0°﹤A ﹤90°;反之,若0°﹤A ﹤90°,则a 2﹤b 2+c 2。 (ⅱ)在△ABC 中,若a 2=b 2+c 2,则A=90°;反之,若A=90°,则a 2=b 2+c 2。 (ⅲ)在△ABC 中,若a 2﹥b 2+c 2,则90°﹤A ﹤180°;反之,若90°﹤A ﹤180°,则a 2﹥b 2+c 2。

人教版高中数学版必修四教案 同角的三角函数的基本关系

1.2.2同角三角函数的基本关系 一、教学目标: 1、知识与技能 (1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法. 2、过程与方法 由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识. 3、情态与价值 通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法. 二、教学重、难点 重点:公式1cos sin 22=+αα及αα αtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αα αtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学设想 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何 性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形, 而且1OP =.由勾股定理由221MP OM +=,因此22 1x y +=,即22sin cos 1αα+=.

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

人教版必修四 同角三角函数的基本关系教案

1.2.2同角三角函数的基本关系(3) 教学目的: 知识目标:根据三角函数关系式进行三角式的化简和证明; 能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。 (2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法; 教学重点:同角三角函数的基本关系式 教学难点:如何运用公式对三角式进行化简和证明。 授课类型:新授课 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.同角三角函数的基本关系式。 (1)倒数关系:sin csc 1αα?=,cos sec 1αα?=,tan cot 1αα?=. (2)商数关系: sin tan cos ααα=,cos cot sin ααα =. (3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=. (练习)已知tan α43=,求cos α 2.tan αcos α= ,cot αsec α= ,(sec α+tan α)·( )=1 二、讲解新课: 例82tan α=-,试确定使等式成立的角α的集合。 =|1sin ||1sin |cos ||cos |αααα+-- =1sin 1sin |cos |ααα+-+=2sin |cos | αα. 2tan α-=-, ∴2sin |cos |αα2sin 0cos αα +=, 即得sin 0α=或|cos |cos 0αα=-≠. 所以,角α的集合为:{|k ααπ=或322,}22 k k k Z πππαπ+<<+∈. 例9.化简(1cot csc )(1tan sec )αααα-+-+. 解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα -+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=?=?112sin cos 2sin cos αααα-+?==?. 说明:化简后的简单三角函数式应尽量满足以下几点: (1)所含三角函数的种类最少; (2)能求值(指准确值)尽量求值; (3)不含特殊角的三角函数值。 例10.求证: cos 1sin 1sin cos x x x x +=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

人教新课标版数学高二人教版必修四教案 任意角的三角函数(第二课时)

第二课时任意角的三角函数(二) 【复习回顾】 1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的同一三角函数的值相等; 5、三角函数的定义域. 要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以, 凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】 1.引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的 函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念 呢?换句话说,能否用几何方式来表示三角函数呢? 2.[边描述边画]以坐标原点为圆心,Array以单位长度1为半径画一个圆,这个圆 就叫做单位圆(注意:这个单位长度不 一定就是1厘米或1米).当角α为第一 象限角时,则其终边与单位圆必有一个 交点(,) P x y,过点P作PM x ⊥轴交x轴于 点M,则请你观察: 根据三角函数的定义:|||||sin| MP yα ==;|||||cos| == OM xα 随着α在第一象限内转动,MP、OM是否也跟着变化?

3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP、OM规定一个适当的方向,使它们的取值与点P的坐标一致? (2)你能借助单位圆,找到一条如MP、OM一样的线段来表示角α的正切值吗? 我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O为始点、M为终点,规定: 当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM 与x轴反向时,OM的方向为负向,且有正值x;其中x为P点的横坐标.这样,无论那种情况都有 == OM xα cos 同理,当角α的终边不在x轴上时,以M为始点、P为终点,规定: 当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向 时,MP的方向为负向,且有正值y;其中y为P点的横坐标.这样,无论那种情况都有 == sin MP yα 4.像MP OM 、这种被看作带有方向的线段,叫做有向线段(direct line segment). 5.如何用有向线段来表示角α的正切呢? 如上图,过点(1,0) A作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

高中数学必修四三角函数重要公式

高中数学必修四三角函数重要公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα

初中三角函数教案

初中数学 三角函数 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3 4 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A 90 B 90∠-?=∠? =∠+∠得由B A 对边 邻边 C A 90 B 90∠-?=∠? =∠+∠得由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 :i h l =h l α

数学必修四三角函数公式总结与归纳

数学必修四三角函数公式盘点与归纳 1、诱导公式: sin(2kπ+α)=sinα, cos(2kπ+α)=cosα sin(-α)=-sinα, cos(-α)=cosα sin(2π-α)=-sinα, cos(2π-α)=cosα sin(π-α)=sinα, cos(π-α)=-cosα sin(π+α)=-sinα, cos(π+α)=-cosα sin(+α)=cosα, cos(+α)=-sinα sin(-α)=cosα, cos(-α)=sinα 2、同角三角函数基本关系: sin2α+cos2α=1, =tanα, tanα×cotα=1, 1+tan2α=, 1+cot2α= cosα=, sinα= 3、两角和与差的三角函数: cos(α+β)=cosαcosβ-sinαsinβ, cos(α-β)=cosαcosβ+sinαsinβ, sin(α+β)=sinαcosβ+cosαsinβ,

sin(α-β)=sinαcosβ-cosαsinβ tan(α+β)=, tan(α-β)=, 4、二倍角的三角函数: sin2α=2sinαcosα, cos2α=cos2α-sin2α =1-2sin2α =2cos2α-1, tan2α=, sin=, cos=, tan= = = 5、万能公式: sin2α=, cos2α= 6、合一变式: asinα+bcosα =sin(α+γ)(tanγ=)7、其他公式: sinαcosβ=[sin(α+β)+sin(α-β)], cosαsinβ=[sin(α+β)-sin(α-β)],

cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=[cos(α+β)-cos(α-β)],sinα+sinβ=2sin cos, sinα-sinβ=2cos sin, cosα+cosβ=2cos cos, cosα-cosβ=2sin cos

必修4三角函数所有知识点归纳归纳

《三角函数》【知识网络】 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 8、角度与弧度对应表: 9、弧长与面积计算公式

弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α 终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)

必修四1.3.三角函数的诱导公式(教案)

人教版新课标普通高中◎数学④ 必修 1 1.3 三角函数的诱导公式 教案 A 教学目标 一、知识与技能 1.理解诱导公式的推导过程; 2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用. 3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力. 二、过程与方法 利用三角函数线,从单位圆关于x 轴、y 轴、直线y x 的轴对称性以及关于原点O 的中心对称性出发,通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想. 三、情感、态度与价值观 通过本节的学习使学生认识到了解任何新事物须从它较为熟悉的一面入手,利用转化的方法将新事物转化为我们熟知的事物,从而达到了解新事物的目的,并使学生养成积极探索、科学研究的好习惯. 教学重点、难点 教学重点:五组诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等. 教学难点:六组诱导公式的灵活运用. 教学关键:五组诱导公式的探究. 教学突破方法:问题引导,充分利用多媒体引导学生主动探究. 教法与学法导航 教学方法:探究式,讲练结合. 学习方法:切实贯彻学案导学,以学生的学为主,教师起引导的作用,具体表现在教学过程当中. 1. 充分利用多媒体引导学生完善从特殊到一般的认知过程; 2. 强调记忆规律,加强公式的记忆; 3. 通过对例题的学习,完成学习目标. 教学准备 教师准备:多媒体,投影仪、直尺、圆规. 学生准备:练习本、直尺、圆规. 教学过程 一、创设情境,导入新课 我们利用单位圆定义了三角函数,而圆具有很好的对称性.能否利用圆的这种对称

人教版高中数学三角函数全部教案

人教版高中数学三角函数 全部教案 This model paper was revised by the Standardization Office on December 10, 2020

三角函数 第一教时 教材:角的概念的推广 目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角” “终边相同的角”的含义。 过程:一、提出课题:“三角函数” 回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义 的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。 二、角的概念的推广 1.回忆:初中是任何定义角的(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘” 2.讲解:“旋转”形成角(P4) 突出“旋转”注意:“顶点”“始边”“终边” “始边”往往合于x轴正半轴 3.“正角”与“负角”——这是由旋转的方向所决定的。 记法:角α或α ∠可以简记成α

4.由于用“旋转”定义角之后,角的范围大大地扩大了。 1角有正负之分如:=210=150=660 2角可以任意大 实例:体操动作:旋转2周(360×2=720)3周(360×3=1080) 3还有零角一条射线,没有旋转 三、关于“象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角 角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限) 例如:是第Ⅰ象限角30060是第Ⅳ象限角 5851180是第Ⅲ象限角2000是第Ⅱ象限角等 四、关于终边相同的角 1.观察:390,330角,它们的终边都与30角的终边相同 2.终边相同的角都可以表示成一个0到360的角与) k∈个周角的和 k (Z 390=30+360)1 k (= 330=30360)1 (= k = (- k30=30+0×360)0

高中数学必修4重点公式与解题技巧

高中数学必修4重点公式与解题技巧公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα

上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切; 四余弦”。 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。 其他三角函数关系: ⒈同角三角函数的基本关系式 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

人教版高中数学必修五教案

第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理知识结构梳理几何法证明正弦定理的证明向量法证明 已知两角和任意一边 ?正弦定理的两种应用正弦定理正弦定理 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形 1.1.2余弦定理知识点1 余弦定理1.余弦定理的概念 2.余弦定理的推论 3.余弦定理能解决的一些问题: 4.理解应用余弦定理应注意以下四点:1)(2)(3)(4)(余弦定理的的证明知识点2 :证法1 :证法2 余弦定理的简单应用知识点3 利用余弦定理可以解决以下两类解三角的问题:(1)已知三边求三角;(2)已知两边和它们的夹角,可以求第三边,进而求出其他角。73. btanC=、c,的对边分别为、(山东高考)在△例1ABC中,角AB、Ca、C cos;求(1)5CACB?,且a+b=9=,求c. (2)若2

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 ○1一般有:距离问题,如从一个可到达点到一个不可到达(2)实习作业中的选取问题,点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。 第二章数列 2.1数列的概念与简单表示法 知识点1 数列的概念 1.按照一定顺序排列着的一列数叫做数列。 2.关于数列的概念须理解好的以下几点: (1)

[教案精品]新课标高中数学人教A版必修四全册教案1.3三角函数的诱导公式(一)

1.3诱导公式(一) 教学目标 (一)知识与技能目标 ⑴理解正弦、余弦的诱导公式. ⑵培养学生化归、转化的能力. (二)过程与能力目标 (1)能运用公式一、二、三的推导公式四、五. (2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明. (三)情感与态度目标 通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质. 教学重点 掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式. 教学难点 运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明. 教学过程 一、复习: 诱导公式(一)

tan )360tan(cos )360(cos sin )360sin(αααααα=+?=+?=+?k k k 诱导公式(二) tan )180tan(cos )180cos( sin )180sin(ααα ααα=+?-=+?-=+? 诱导公式(三) tan )tan(cos )cos( sin )sin(ααα ααα-=-=--=- 诱导公式(四) tan )180tan(cos )180cos( sin )180sin(ααα ααα-=-?-=-?=-? 对于五组诱导公式的理解 : ①可以是任意角;公式中的α ②这四组诱导公式可以概括为: 符号。 看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,, , ),Z (2-+-∈+k k 总结为一句话:函数名不变,符号看象限 练习1:P27面作业1、2、3、4。 2:P25面的例2:化简 二、新课讲授: 1、诱导公式(五) sin )2cos( cos )2sin(ααπ ααπ=-=- 2、诱导公式(六) sin )2cos( cos )2sin(ααπ ααπ-=+=+ 总结为一句话:函数正变余,符号看象限 例1.将下列三角函数转化为锐角三角函数: ).317sin()4( ,519cos )3( ,3631sin )2( ,53tan )1(πππ-?

相关文档
最新文档