_基于LabVIEW的发动机振动信号采集系统

_基于LabVIEW的发动机振动信号采集系统
_基于LabVIEW的发动机振动信号采集系统

【196】 第32卷 第9期

2010-9

基于LabVIEW 的发动机振动信号采集系统

Vibration signal acquisition system of engine based on LabVIEW

何 芸HE Yun

(武汉理工大学 信息工程学院,武汉 430070)

摘 要:本文基于LabVIEW图形化编程语言,实现了发动机曲轴轴承处振动信号采集系统的设计,系统

包括硬件和软件两大部分:硬件部分由传感器、调理电路、数据采集卡和计算机组成;软件部分主要完成信号采集程序的设计。通过对比验证,表明系统是稳定可靠的。

关键词:动力机械工程;信号采集;LabVIEW;发动机振动

中图分类号:U464.132 文献标识码:B 文章编号:1009-0134(2010)09-0196-03Doi: 10.3969/j.issn.1009-0134.2010.09.60

收稿日期:2010-05-05

作者简介:何芸(1988 -),女,本科,主要从事信息工程及控制工程方向的研究。0 引言

发动机作为车辆的核心部件,车辆的动力性、经济性、可靠性和环保性等性能指标都直接与其有关[1],它的技术状况直接决定了车辆是否能够正常运行。但由于该机械系统结构复杂、非线性和不确定性因素较多,为了减少设备故障造成的损失,需对发动机运行状态进行监测和诊断分析,而振动信号无疑是一个重要信息。发动机是往复运动机械,其激振力主要来源于活塞——曲柄机构周期性运动时产生的惯性力,以及气缸内气体燃烧产生的周期性气体压力[2]。因此,对产生激振力的发动机机构表面振动信号进行采集与监测,对进一步进行故障诊断、排除故障隐患、防止事故的发生以及提高发动机的经济性有着重要的现实意义。

传统检测发动机振动的物理仪器因功能单一、检测结果可靠性差和成本较高等因素影响,在实际应用中受到很大制约。随着计算机技术的发展,出现了有别于传统仪器的虚拟仪器,因其高性能的模块化、硬件结合灵活的软件功能,在机械测试与试验方面应用越来越广泛。本文基于LabVIEW 虚拟仪器开发平台设计了一套发动机振动信号采集系统,很好的实现了发动机表面振动信号的采集。

1 采集系统的构成

信号采集系统由传感器、调理电路、数据采集卡和计算机四部分组成。图1为采集系统的结构框图。数据采集硬件的选择需根据具体的应用场

合和现有的技术资源确定,由于本采集系统的应用场合为发动机实验室,其环境条件较恶劣,所

以对采集系统硬件的要求较高。

图1 采集系统结构框图

1.1 传感器

传感器选用压电式加速度计,它将传统的压电式传感器与电荷放大器集于一体,能直接与记录和显示仪器相连,简化了测试系统,提高了测试精度和可靠性。其突出特点是:输入阻抗低,抗干扰能力强,噪声小;性价比高,安装方便,可通过磁座吸附在发动机缸体表面,尤其适于多点测量;稳定可靠,抗潮湿、粉尘和有害气体;传感器外壳绝缘,避免了测试环境的干扰,保证了测试的可靠性。本系统选用的压电式加速度传感器测量范围:-100g ~+100g, 灵敏度为:50.81mv/g ,工作温度范围:-40~120℃。将传感器垂直安装在气缸体与曲轴箱的连铸体侧壁,这样采集的机体低频段振动信号直接反映了发动机工作中振动激励源的信息[3]。1.2 调理电路

调理电路将传感器信号与计算机隔开,放大弱信号,必要时进行滤波处理。调理电路由信号

第32卷 第9期 2010-9

【197】

隔直电路、交流信号放大电路、交流信号滤波电路和信号叠加电路等组成,经过放大、滤波后的信号叠加后送入数据采集卡。由于本系统选用的传感器产生的振动信号伴随一定的干扰,在进行加速度信号采集前,要对传感器输出信号进行滤波处理,实现对原始振动信号的提取。此外,还需要对测量信号进行放大处理,以满足采集卡模拟输入电压范围的要求。1.3 数据采集卡

数据采集卡是外界信号进入计算机的通道,在这个通道中要实现A/D 转换、放大等功能。数据采集卡选用NI USB-6009,8路模拟输入,2路模拟输出,14位模数转换,最高采样频率48kHz ,电压范围-10V ~+10V 。用户可以使用LabVIEW 自带的NI-DAQmx 测量软件进行自定义测量系统编程。图2

是数据采集卡模拟输入电路。

图2 模拟输入电路

一般来说,数据采集卡都有自己的驱动程序,该程序控制采集卡的硬件操作,通常这个驱动程序是由采集卡的供应商提供,用户只需对驱动程序的源程序进行适当的添加和修改,就可以满足系统硬件的需求。NI 公司为基于NI 数据采集设备的数据采集系统提供了相应的接口驱动及VI 函数 (VI ,Virtual Instrument)。本系统利用NI 公司提供的数据采集设备驱动程序DLL 文件在LabVIEW 环境下完成数据采集程序的编写。

2 系统软件设计

2.1 数据采集流程

软件设计基于LabVIEW 自带子VI 的基础上,通过CLF 方式(调用动态链接库方式)实现驱动程序的调用,从而实现数据采集、信号调理、数据存储和图形显示等功能。系统流程图如图3所示。

数据采集利用NI-DAQmx 模块下的DAQmx Read.vi 和DAQmx Clear Task.vi 来控制DAQ 采集卡实现模拟信号的数据采集,将外部模拟信号通过采集卡的A/D 功能转化为数字信号,再通过USB 总

线连接到控制主机上;信号调理通过Filter.vi 实现信号滤波;最后用写入测量文件Express VI 将滤波后的信号写入测量文件,进行数据的存储和图形的显示。2.2 采集参数设置

数据采集参数设置的主要作用是对采集卡的工作参数进行必要的设置,使之能够进行正常的数据采集。这些参数设置的是否合理,关系到传感器信号的采集乃至整套系统能否正常工作,因此具有重要的意义[4]。2.2.1 采集通道设置

采集通道设置用来设置同时采集的输入通道数。对于本系统选择的数据采集卡而言,1至8路模拟输入通道可同时采集数据。本系统只用到其中两个通道。

2.2.2 采样点数和采样频率设置

采集点数用来设置数据存储缓冲区的大小,本系统设为2048点,即存储在缓冲区内的采集点数为2048点。采样频率则是对采集卡的采集频率进行设置,根据采样定理,本系统设置的采样频率为24000Hz

图3 数据采集流程

2.3 数据采集程序编写

数据采集程序的编写利用NI-DAQmx 模块下

【198】 第32卷 第9期

2010-9

的相关VI 进行组合,实现发动机振动信号的数据采集功能。首先使用DAQmx 创建通道.vi 创建加速度计的测试通道;其次用DAQmx 定时.vi 和DAQmx 配置输入缓冲区.vi 分别对采样频率和缓冲区大进行设置;然后,在DAQmx 开始任务.vi 的触发下,利用DAQmx 读取.vi 对设置的两条输入通道进行数据读取,并在前面板显示波形;最后,利用DAQmx 清除任务.vi 清除任务。最终的

程序框图见图4所示。

图4 数据采集程序框图

2.4 数据的存储

数据的存储是将采集到的信号参数进行保存,为后续的分析处理做参考。为了满足不同数据的存储格式和性能需求,LabVIEW 提供了多种类型的文件存储格式,比如,文本文件(txt )、二进制文件、数据记录文件、基于文本的测量文件(LVM )、数据存储文件(TDM )和TDMS 文件等。本文选择基于文本的测量文件(LVM 文件)进行数据的存储,这种文件格式的特点是它能将动态数据按一定格式存储在文本文件中,并且在数据前加上一些信息头,例如采集时间等,可以由Excel 等文本编辑器打开查看其内容。2.5

系统验证

图5

设计系统采集到的发动机曲轴轴承处原始信号图6 采集仪采集到的发动机曲轴轴承处原始信号

LabVIEW 很大的一个优势就是它提供了丰富的数据图形化显示控件,而且使用起来极其方便[5]

。采用图形的形式来显示测试数据及分析结果,能看出被测对象的变化趋势,使虚拟仪器的前面板更加形象直观。图5是本设计系统采集到的发动机曲轴轴承处原始信号,图6是利用一数据采集与分析仪采集到的发动机曲轴轴承处原始信号,通过对比图5和图6可知,本系统采集的信号是稳定可靠的。

3 结论

1)本文基于LabVIEW 图形化编程语言,实现了对发动机曲轴轴承处振动信号采集系统的设计,整个系统实现了信号采集、信号调理、数据存储和图形显示几个功能,并通过系统验证,证明本系统是稳定可靠的;

2)对发动机曲轴轴承表面振动信号进行采集和存储,为进一步进行故障诊断、事故预防和提高发动机的经济效益都有重要意义;

3)与传统的数据采集系统相比,基于LabVIEW 的数据采集系统具有价格低廉,使用性强,开发周期短,数据处理简单方便以及便于维护等优点。参考文献:

[1] 曹炳元.应用模糊数学与系统[M].北京:科学出版社,2005.[2] 张小明,刘建敏,乔新勇.柴油机缸盖振动信号关联维数的

影响因素分析[J].装甲兵工程学院学报,2008,(02).

[3] 廖东,符欲梅,周荣建.柴油机供油系统故障的振动诊断法

研究[J].重庆大学学报,1998,(05).

[4] 张晓娟.基于LabVIEW 的发动机台架测试系统研究[D].

西北农林科技大学,2008.

[5] 赵易彬,周以琳.基于LabVIEW 的数据采集系统[J].青岛科

技大学学报,2005(10).

基于labview的低通滤波器设计要点

基于LabVIEW的低通滤波器设计 学号: 201220120214 姓名:敖智男 班级: 1221202 专业:测控技术与仪器 课程教师:方江雄 2015年6月14 日

目录 一.设计思路 (2) 二.设计目的 (2) 三.程序框图主要功能模块介绍 1.测试信号生成模块 (3) 2.滤波功能模块.................................................................. .3 3.频谱分析模块 (4) 4.While循环模块 (5) 四.进行频谱分析.................................................................6、7五.主要设计步骤..................................................................8、9六.运行结果.. (10) 七.设计心得 (11)

低通滤波器是指对采样的信号进行浦波处理,允许低于截至频率的信号通过,高于截止频率的信号不能通过,提高有用信号的比重,进而消除或减少信号的噪声干扰。 一.设计思路 本VI设计的低通滤波器主要是先将正弦信号和均匀白噪声信号叠加,利用Butterworth低通滤波器进行滤波处理,得到有用的正弦信号:再对经过低通滤波器处理后的信号及信号频谱与滤波前的进行比较分析,检测滤波后的信号是否满足用户的要求。 二.设计目的 基于LabVIEW虚拟平台,将“正弦波形”函数和“均匀白噪声”函数产生的信号进行叠加以产生原始信号,让其先通过一个高通滤波器,滤除白噪声的带外杂波,以便在后续程序中低通滤波器可以输出正弦波;然后经过低通滤波器滤波处理,对滤波前后的信号和信号频谱进行比较,从而对低通滤波器的滤波效果进行检验。

有效振动分析的信号处理

有效振动分析的信号处理 摘要 有效的振动分析首先始于从工业标准的振动传感器,如加速度传感器获得一个准确的时域变化的信号。一个手持式数字仪器一般接入原始的模拟信号,并为用户的多种要求进行处理。根据用户对分析的要求和原始信号的最初单位,信号可被直接处理或经由数学积分器变换成振动测量的其他单位。根据感兴趣的频率,信号可能要经过一系列高通滤波器和低通滤波器的调理。根据期望得到的结果,信号可能被多次采样和平均。如果在数字仪器中需进行时间波形分析,那么确定采样点数和采样速率是必要的。观察的时间长度等于采样周期乘以采样点数。大部分手持式仪器也具有FFT(快速傅里叶变换)处理方法,把全局时变输入信号采样分解为其单独的频率分量。在老式模拟仪器中,这个分析功能是由扫频滤波器来实现的。 定义FFT处理时要考虑很多设置参数:(1)分辨率线数;(2)最大频率;(3)平均类型;(4)平均次数,和(5)窗类型。这些参数互相作用影响得到的结果,并且需要在信息质量和完成数据采集所耗时间之间进行折中考虑。 预知维修的成功依赖于数据采集和变换过程中的几个要素:(1)总振动水平的趋势;(2)复合振动信号各个频率分量的幅值和频率;(3)在相同运行条件下,机器某一部分的振动信号相对于机器上另一个测量的相位关系。 本文将带领读者从振动传感器的输出,经过典型的现代数字技术振动测量仪器所完成的信号处理流程的各个阶段。并且,本文重点介绍了预知维修领域为完成准确分析而进行的快速有效的振动数据采集中所需的多个数据采集设置参数和折中考虑。 关乎振动分析成功的几项内容,将给予详细论述:模拟信号采样和调理;抗混淆测量;噪声滤波器技术;频带-低通,高通,带通;数据平均方法;和FFT频率转换。 1.讨论 振动分析始于传感器输出的时变物理信号。从此信号的输入到振动测量仪器,有很多可能的选择去分析信号。本文的目的是关注内部信号处理路径,以及它和原始振动问题的最终根源分析之间的关系。首先,我们看如图1所示的仪器中典型信号路径的框图。 2.时间波形 图2.所示是一个典型的来自加速度传感器的模拟时间波形信号。

利用labview进行信号的时域分析

利用labview进行信号的时域分析 信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 用于信号时域分析的函数,VIs,Express VIs主要位于函数模板中的Signal Processing子模板中,其中多数对象位于Waveform Measurements子模板,如图所示 LabVIEW8.0中用于信号分析的Waveform Measurements子模板 基本平均值与均方差VI 基本平均值与均方差VI-------Basic Averaged DC—RMS.vi用于测量信号的平均以及均方差。计算方法是在信号上加窗,即将原有信号乘以一个窗函数,窗函数的类型可以选择矩形窗、Haning窗、以及Low side lob窗,然后计算加窗后信号的均值以及均方差值。 演示程序的前面板和后面板如下图所示 Basic Averaged DC—RMS演示程序的前面板

Basic Averaged DC—RMS演示程序的后面板 平均值与均方差值 平均值与均方差值VI------Averaged DC—RMS.vi同样也是用于计算信号的平均值与均方差值,只是Averaged DC—RMS.vi的输出是一个波形函数,这里我们可以看到加窗截断后,正弦信号的平均值和均方差随时间变化的波形。 编写程序演示Average DC----Averaged—RMS.vi的使用方法,程序的后面板和前面板如下图所示 Averaged DC—RMS演示程序的后面板

基于labview的语音信号采集系统

电气与自动化工程学院《LabVIEW编程实训》评分表课程名称:LabVIEW编程实训 题目:基于labview的语音信号采集系统设计 班级:1601131自动化学号:160113113姓名:刘德旺 指导老师: 年月日

常熟理工学院电气与自动化工程学院《LabVIEW编程实训》技术报告题目:基于LabVIEW的语音信号采集系统设计 姓名:刘德旺 学号:160113113 班级:自动化131 指导教师:陈飞 起止日期:2016年6月20日-7月8日

LabVIEW编程实训答辩记录 自动化专业 1601131班级答辩人刘德旺 题目基于LabVIEW的语音信号采集系统设计 说明:主要记录答辩时所提的问题及答辩人对所提问题的回答

目录 1.任务书 (1) 2.基于LABVIEW的数据采集系统概述 (3) 2.1虚拟仪器概念与传统仪器概念主要区别 (3) 2.1.1LabVIEW虚拟仪器简介 (3) 2.1.2LabVIEW虚拟仪器特点 (3) 2.2 LabVIEW图形化程序的组成与特点 (4) 2.2.1前面版 (4) 2.2.2程序框图 (4) 2.2.3图标和连接器 (5) 3.语音信号采集总体设计方案与硬件配置 (6) 3.1语音信号采集系统的功能分析 (6) 3.2语音信号采集系统的总体构成 (6) 3.3语音信号采集系统的硬件配置 (6) 4.语音信号采集系统的软件设计与功能实现 (11) 4.1语音信号采集系统的软件前面板设计 (11) 4.1.1语音信号采样信息界面 (11) 4.1.2语音采集控制按钮界面 (11) 4.1.3时域波形和频域波形显示界面 (11) 4.2语音信号采集系统的软件程序框图设计 (12) 5.语音信号采集系统的运行与分析 (18) 6.收获与体会 (21) 参考文献 (23)

利用LabVIEW实现信号处理

利用LabVIEW实现信号处理 摘要 信号处理几乎涉及到所有的工程技术领域,而频谱分析正是信号处理中的一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员携带。而基于LabVIEW设计的虚拟频谱分析仪,用软件代替硬件,价格低,便于工程技术人员完成现场信号的采集、处理及频谱分析。 现今最有代表性的图形化编辑软件——LabVIEW,用之模拟从DAQ板卡中采集到一路带有均匀白噪声的正弦信号,显示其波形,并分析、显示其幅频特性曲线以及相频特性曲线。另外本文还根据LabVIEW中的子程序,实现了语音信号的录音与播放。 关键词虚拟仪器数据采集总线LabVIEW 1.1 LabVIEW简介 LabVIEW (laboratory virtual instrument engineering wokbench——实验室虚拟仪器工程平台)的概念,是直观的前面板与流程图式的编程方法的结合,是构建虚拟仪器的理想工具。LabVIEW和仪器系统的数据采集、分析、显示部分一起协调工作, 是简化了而又更易于使用的基于图形化编程语言G的开发环境。 LabVIEW集成了很多仪器硬件库,如GPIB/VXI/PXI/基于计算机的仪器、RS232/485协议、插入式数据采集、模拟/数字/计数器I/O、信号调理、分布式数据采集、图像获取和机器视觉、运动控制、PLC/数据日志等。 与传统的编程方式相比,使用LabVIEW设计虚拟仪器,可以提高效率4~10倍。同时,利用其模块化和递归方式,用户可以在很短的时间内构建、设计和更改自己的虚拟仪器系统。 1.2用LabVIEW设计虚拟仪器的步骤 LabVIEW编程一般要经过以下几个步骤。 1、总体设计:根据用户需求,进行VI总体结构设计,确定面板布局与程序流程,并保证所使用的虚拟仪器硬件在LabVIEW函数库中有相应的驱动程序。 2、前面板设计:在LabVIEW的前面板编辑窗口内,利用工具模板和控件模板进行VI 前面板的设计。 3、方框图编程:在LabVIEW的方框图编辑窗口内,利用工具模板和函数模板进行方框

振动信号的采集与预处理

振动信号的采集与预处理 几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点: 1. 振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3. 所有工作状态下振动信号采集均应符合采样定理。 对信号预处理具有特定要求是振动信号本身的特性所致。信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。预处理方法的选择也要注意以下条件: 1. 在涉及相位计算或显示时尽量不采用抗混滤波; 2. 在计算频谱时采用低通抗混滤波; 3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。 上述第3条是保障瞬态过程符合采样定理的基本条件。在瞬态振动信号采集时,机组转速变化率较高,若依靠采集动态信号(一般需要若干周期)通过后处理获得1X和2X矢量数据,除了效率低下以外,计算机(服务器)资源利用率也不高,且无法做到高分辨分析数据。机组瞬态特征(以波德图、极坐标图和三维频谱图等型式表示)是固有的,当组成这些图谱的数据间隔过大(分辨率过低)时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。一般来说,三维频谱图要求数据的组数(△rpm分辨率)较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,则要求较高的分辨率。目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。 影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最佳方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,部分系统采用16位甚至24位。 振动信号的采样过程,严格来说应包含几个方面: 1. 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 2. A/D转换

实验一-LabVIEW中的信号分析与处理

实验一 LabVIEW中的信号分析与处理 一、实验目的: 1、熟悉各类频谱分析VI的操作方法; 2、熟悉数字滤波器的使用方法; 3、熟悉谐波失真分析VI的使用方法。 二、实验原理: 1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法:·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。 ·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。 ·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。 2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。 3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。 三、实验容: (1) 时域信号的频谱分析 设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。

基于LabVIEW的数据采集与信号处理系统的设计_杜娟

基于L a b V I E W 的数据采集与信号处理系统的设计 杜 娟1,邱晓晖1,赵 阳2,颜 伟2,缪 飞1 (1.南京邮电大学通信与信息工程学院,江苏南京210003;2.南京师范大学电气与自动化工程学院,江苏南京210042) [摘要] 介绍了虚拟仪器领域中最具代表性的图形化编程开发平台L a b V I E W,并对基于L a b V I E W 编程环境实现数据采集进 行了研究,设计实现了一种基于L a b V I E W 8.5环境,以E M I 噪声分析仪为下位机的数据采集与信号处理系统的设计方法.该设 计方法主要实现了以R S 232为代表的串口通讯,数组转换及频谱分析等功能,结果表明应用该设计方法设计出的系统具有简 洁友好的人机界面,可直接在前面板上完成各种操作与观测.该设计方案较之目前大多数的设计方法相比有效地降低了程序的 运算量,节省了运算时间,成功实现了实时无差错的采集到由下位机发来的完整数据. [关键词] L a b V I E W,串口通讯,数组转换 [中图分类号]T M 461;T N 713+.7 [文献标识码]A [文章编号]1672-1292(2010)03-0007-04 D a t a A c q u i s i t i o n a n dS i g n a l P r o c e s s i n g S y s t e m B a s e do nL a b V I E W D u J u a n 1,Q i u X i a o h u i 1,Z h a o Y a n g 2,Y a n We i 2,Mi a o F e i 1 (1.C o l l e g e o f C o m m u n i c a t i o na n dI n f o r m a t i o nE n g i n e e r i n g ,N a n j i n g U n i v e r s i t y o f P o s t a n dC o m m u n i c a t i o n s ,N a n j i n g 210003,C h i n a ; 2.S c h o o l o f E l e c t r i c a l a n dA u t o m a t i o nE n g i n e e r i n g ,N a n j i n g N o r m a l U n i v e r s i t y ,N a n j i n g 210042,C h i n a )A b s t r a c t :L a b V I E W i s i n t r o d u c e di n t h i s p a p e r a s a k i n d o f m o s t r e p r e s e n t a t i v e g r a p h i c a l p r o g r a m m i n g p l a t f o r m s i n V i r - t u a l i n s t r u m e n t f i e l d ,a n dr e a l i z i n g d a t a a c q u i s i t i o n b a s e do n L a b V I E W p r o g r a m m i n g e n v i r o n m e n t i s s t u d i e d ,t h e n a d e - s i r e m e t h o d o f D a t a a c q u i s i t i o n a n dS i g n a l p r o c e s s i n g s y s t e m u s e dE M I n o i s e a n a l y z e r a s t h en e x t b i t m a c h i n e b a s e d o n l a b v i e w 8.5i s i n t r o d u c e d .T h es y s t e m r e a l i z e dR S 232s e r i a l c o m m u n i c a t i o n ,a r r a yc o n v e r s i o na n ds p e c t r a l a n a l y s i s f u n c t i o n s .T h e r e s u l t s h o w s t h a t t h e s y s t e m d e s i g n e d b y t h i s m e t h o d h a s a s i m p l e a n df r i e n d l y i n t e r f a c e ,a n d t h a t u s e r s c a n d o e v e r y o p e r a t i o na n do b s e r v a t i o n i n t h e f r o n t p a n e l d i r e c t l y .T h i s s c h e m e r e d u c e s t h e c a l c u l a t i o n p r o c e d u r e e f f e c - t i v e l y a n d s a v e t i m e ,a c h i e v e s t h e r e a l -t i m e a n d e r r o r -f r e e c o l l e c t e d t h e d a t a i n t e g r i t i l y . K e yw o r d s :l a b v i e w ,s e r i a l c o m m u n i c a t i o n ,a r r a y c o n v e r s i o n  收稿日期:2010-06-02. 基金项目:中国博士后基金(20080431126)、毫米波国家重点实验室开放基金(K 200903)、江苏省博士后基金(0702033B )、江苏省自然科 学基金(B K 2008429). 通讯联系人:邱晓晖,博士,副教授,研究方向:现代信号处理.E -m a i l :q i u x h @n j u p t .e d u .c n L a b V I E W (L a b o r a t o r y V i r t u a l I n s t r u m e n t E n g i n e e r i n g W o r k b e n c h )是基于图形编译G (G r a p h i c s )语言的虚拟仪器软件开发平台,具有数据采集、数据分析、信号发生、信号处理、输入输出控制等功能,是公认的标准数据采集和仪器控制软件.在L a b v i e w 环境下开发的应用程序称为V I (V i r t u a l I n s t r u m e n t ).一个完整的L a b V I E W 程序主要由前面板、程序框图和图标/连接端口3部分组成[1],前面板是交互式图形化用户界面,用于设置输入数值和观察输出量;程序框图是定义V I 功能的图形化源代码,包括前面板上没有但编程必须有的对象,如函数、结构和连线等,利用图形语言对前面板的控制量和指示量进行控制;图标/连接端口是用于把程序定义成一个子程序,以便在其他程序中加以调用.L a b V I E W 中自带450多个内置函数,专门用于从采集到的数据中挖掘有用的信息,用于分析测量数据及处理信号. 1 系统硬件结构部分 传导电磁干扰综合测量与分析系统可以对被测设备进行噪声诊断与抑制,包括硬件部分和软件部分[2,3].硬件部分的原理图如图1所示.系统硬件又分为模拟部分和数字部分,模拟部分由中心控制模块、第10卷第3期2010年9月 南京师范大学学报(工程技术版)J O U R N A LO FN A N J I N GN O R M A LU N I V E R S I T Y (E N G I N E E R I N GA N DT E C H N O L O G YE D I T I O N ) V o l .10N o .3S e p t ,2010

基于LabView的语音信号分析系统

学号:14112203211 毕业设计(论文) 题目: 基于LabVIEW的语音信号分析系统的设计 作者贾邦稳届别2015 届 院别信息与通信工程学院专业电子信息工程 指导教师彭仕玉职称副教授 完成时间2015 年 5 月

摘要 虚拟仪器与传统仪器相比,实现了仪器的智能化、模块化、多样化等功能,体现出多功能、低成本等操作优点,应用前景广阔。随着计算机的出现及计算机技术的快速发展,语音信号处理技术更是得到了飞速发展,得到了广泛的应用,如语音合成技术、语音压缩编码和语音识别技术。 本设计利用虚拟仪器软件平台LabVIEW 设计了一个语音信号分析系统。先介绍了四种采集语音信号的方法,并选择采用录音机录制的方法采集语音信号,然后设计基于LabVIEW的时域信号的FFT分析模块,接着设计截止频率为3000Hz的Butterworth低通滤波器对语音信号进行滤波去噪,最后根据以上设计进行语音信号的时频分析、特性分析等。 关键词:虚拟仪器;LabVIEW;语音信号;时频分析;数字滤波器

Abstract Compared with traditional instruments, virtual instruments achieve the intelligent, modularity, diversity and other functions of the instrument, and reflect the operating advantages, such as multi-purpose, low cost, etc. So it has broad application prospect. With the advent of computers and the rapid development of computer technology, speech signal processing technology has been develop rapidly, and used widely, such as speech synthesis technology, speech coding and speech recognition technology. This design projects a speech signal analysis system based on the virtual instrument software platform LabVIEW. The first step is to introduce the methods of four kinds of voice signal acquisition, and select the method of recording voice signal by recorder . The second step is to design FFT analysis of time-domain signals which based on LabVIEW. Then design Butterworth low pass filter to realize the filtration of speech signals which cutoff frequency is 3000hz. Finally it is to achieve time-frequency analysis and characteristic analysis according to the the above designs. Key words:Virtual instruments;LabVIEW;Speech signal;time-frequency analysis;digital filter.

004-振动信号的采集与预处理

004-振动信号的采集与预处理

振动信号的采集与预处理 1振动信号的采集 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多。在采集振动信号时应注意以下几点: 1.振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2.变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3.所有工作状态下振动信号采集均应符合采样定理。 1.1 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 1.2 A/D转换 A/D转换包括采样、量化和编码三个组成部分。 1.2.1采样 采样(抽样),是利用采样脉冲序列p(t)从模拟信号x(t)中抽取一系列离散样值,使之成为采样信号x(n△t)(n=0,1,2,…)的过程。△t称为采样间隔,其倒数称1/△t=f s之为采样频率。采样频率的选择必须符合采样定理要求。 1.2.2量化 由于计算机对数据位数进行了规定,采样信号x(n△t)经舍入的方法变为只有有限个有效数

字的数,这个过程称为量化。由于抽样间隔长度是固定的(对当前数据来说),当采样信号落入某一小间隔内,经舍入方法而变为有限值时,则 产生量化误差。如8位二进制为28 =256,即量化增量为所测信号最大电压幅值的1/256。 1.2.3 编码 振动信号经过采样和量化后,量化后的数据按照一定的协议进行编码,成为处理器可以处理的数据。 采样定理解决的问题是确定合理的采样间隔△t 以及合理的采样长度T ,保障采样所得的数字信号能真实地代表原来的连续信号x(t)。 衡量采样速度高低的指标称为采样频率f s 。一般来说,采样频率f s 越高,采样点越密,所获得的数字信号越逼近原信号。为了兼顾计算机存储量和计算工作量,一般保证信号不丢失或歪曲原信号信息就可以满足实际需要了。这个基本要求就是所谓的采样定理,是由Shannon 提出的,也称为Shannon 采样定理。 Shannon 采样定理规定了带限信号不丢失信息的最低采样频率为: 2s m f f ≥或2s m ωω≥ 式中f m 为原信号中最高频率成分的频率。 采集的数据量大小N 为: T N t =? 因此,当采样长度一定时,采样频率越高,采集的数据量就越大。 使用采样频率时有几个问题需要注意。 一, 正确估计原信号中最高频率成分的频率,对于采用电涡流传感器测振的系统来说,一

基于LabVIEW的信号与系统实验平台的设计

2012年第05期 吉林省教育学院学报 No.05,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总305期) Total No .305 收稿日期:2012—03—01 作者简介:满江红(1971—),男,吉林长春人。中国网通集团有限公司长春分公司网络建设部,技术主管,研究方向:综合通信技术。 基于LabVIEW 的信号与系统实验平台的设计 满江红 (中国网通集团有限公司长春分公司,吉林长春130000) 摘要:近年来,随着电子、计算机和网络技术的发展及其在测量仪器上的应用,产生了一种新的测试理论和方法———虚拟仪器(VirtualInstrument ,VI )。所谓虚拟仪器,就是指用户通过计算机平台,根据自己的需求设计仪器的测试功能。虚拟仪器的出现打破了人们对仪器的传统观念,在测试系统和仪器设计中用户可以尽量用软件代替硬件,而无需购买大量的、昂贵的实验仪器设备。 关键词:LabVIEW ;信号与系统实验平台;设计中图分类号:TN911.6 文献标识码:A 文章编号:1671—1580(2012)05—0153—02 基于Lab VIEW 构建虚拟实验室正逐渐被越来越多的高校所采用, 本课题能避开硬件系统的不足,巧妙地运用软件来仿真硬件才能实现的实验结果, 大大降低了实验设备要求,节约了人力和财力,而且有很多的库函数可以在实验时直接调用,避免了用硬件做实验的局限性,可以更方便地做信号系统实验。 一、 LabVIEW 简介LabVIEW 是一种用图标代替文本行创建应用程序的图形化编程语言,采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。LabVIEW 提供很多外观与传统仪器(如示波器、信号发生器等)类似的控件,可以方便地创建用户界面。通过使用图标和连线编程对前面板上的对象进行控制,这就是图形化源代码,又称“G 代码”或 “程序框图代码”。LabVIEW 的核心是VI 。VI 有一个人机对话的用户界面— ——前面板(FrontPanel )和相当于源代码功能的框图程序(Diagram ),前面板接受来自框图程序的指令。LabVIEW 还包含了大量的工具与函数用于数据采集、分析、显示与存储等 二、整体设计该信号与系统实验台的整体设计方案是:根据LabVIEW 自上而下的设计思想,构建出整个实验平台的系统结构框图,先设计系统的主界面,再设计各 个实验子界面和实验模块,最后通过调用子VI 程序 来实现链接。主界面包括运行按钮, 停止按钮和三个实验模块选项栏,实验模块包括初级实验、中级实 验和高级实验。 (一 ) 平台系统结构图平台系统结构图如下所示: 图1平台系统结构图 (二)人机界面 点击运行按钮就出现操作界面,界面上包括初级实验、中级实验、高级实验等三部分,当点击相应实验就会出现各个实验题目,然后点击进入就可以进行相应实验了,实验完成点击停止按钮就可以结束本次实验。人机界面如下图所示: 3 51

基于Labview的信号采集与处理

基于Labview的信号采集与处理 实验目的:了解、掌握连续时间信号数字化处理的原理、过程及分析方法; 实验环境:Labview软件平台、信号采集卡(DAQ, Data Acquisition),信号源及示波器等; 实验方案: 信号处理示意图 信号采集与恢复流程图 实验准备: 连接信号源、采集卡、示波器,要求用示波器观测处理前后的信号波形。 连线:采用采集卡的输入端口信号源(68正,34负)和输出端口示波器(22正,55负) 其中输入端口连信号源,输出端口连示波器

做实验前必须先确定采样频率(10倍),采样点数(时域默认3000点)以及恢复滤波器的截止频率(相当于第二个)等。 实验内容: 1.实现正弦波信号的采样恢复处理。信号频率分别选500Hz, 1kHz,, 观察信号的时、频域分布,并比较分析信号处理前后的波形变化。 2.实现周期性方波信号的采样恢复处理。信号的基波频率分别选1kHz, 10kHz, 观察信号的时、频域分布,并比较分析信号处理前后的波形变化。 3.把基波频率为10kHz的周期性方波信号进行采样,最终输出为10kHz 的正弦信号,在示波器中进行观察分析。 4.一个频率为2kHz的正弦波混杂了一个50Hz的工频干扰,试用数字滤波器进行滤波处理,输出纯净的正弦波形。 (注:市电电压的频率为50Hz,它会以电磁波的辐射形式,对人们的日常生活造成干扰,我们把这种干扰称之为工频干扰。) 思考题: 1.对欲采集处理的信号首先必须确定哪些技术指标? 2.采样点数的选取怎样影响信号的频率特性? 3.信号经过采集处理,恢复后与原信号有何不同? 4.通过本次实验有什么收获和建议?请写出你的实验小结。

MATLAB在机械振动信号中的应用

MATLAB在机械振动信号中的应用 申振 (山东理工大学交通与车辆工程学院) 摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 关键词:时域分析频域分析 MATLAB 信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。 时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。 MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。 本文主要运用了MATLAB R2014a对机械振动信号进行分析。分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。频域分析的性能指标包括对功率谱分析、倒频谱分析。在进行上述分析之前先要对振动信号进

labview信号处理完美版

第一章系统开发平台 1.1硬件平台 硬件平台是虚拟仪器的物理基础,所以为了完成虚拟仪器的设计,首先必须要选择合适的硬件平台。本文设计的系统,硬件平台主要由两部分组成:数据采集卡(DAQ)、PC机。硬件平台的结构如图1-1所示。 图1-1 硬件结构平台 1.1.1数据采集卡的选取 由于计算机所能识别的信号是数字信号,振动、温度、湿度等信号经过传感器和放大器可以输出为模拟电信号,必须经过离散化和数字化才能被计算机所识别,数据采集卡就是实现这一转换功能,为整个后续对信号处理中起到了乘前启后的关键作用。一般常用的数据采集卡(DAQ)的结构如图1-2 所示。 图1-2(a)共用一个A/D

图1-2(b)多个A/D 一般数据采集设备的两个主要指标: 1.采样率 对数据采集设备来说,采样率是A/D芯片转换的速率,不同的设备具有不同 的采样率,进行测试系统设计时应该根据测试信号的类型选择适当的采样率,盲 目提高采样率,会增加测试系统的成本。 2.分辨率 分辨率是数据采集设备的精度指标,用A/D转换的数字位数表示。如果把数 据采集设备的分辨率看作尺子上的刻度,同样长度的尺子上刻度线越多,测量就 越精确。同样的,数据采集设备A/D转换的位数越多,把模拟信号划分得就越细, 可以检测到的信号变化量也就越小。在图1-3所示中用一3位的A/D转换芯片去转换振幅为5V的正弦信号,它将峰—峰为10V的电压分成32=8段,则每次采样的模拟信号转换为其中的一个数字段,用000~111之间的码来表示。而用它得到 正弦波的数字图象是非常粗糙的。若改用16位的A/D转换芯片,则将10V电压2=65536段,经过A/D转换之后的数字图象是相当精细,完全能反映出原分成16 始的模拟信号。 图1-3 A/D芯片的位数对反映原始信号的影响

基于LabVIEW的陀螺仪振动信号采集与分析

基于LabVIEW 的陀螺仪振动信号采集与分析 窦修朋,尤传富,欧阳国鑫 (长春工业大学电气与电子工程学院,吉林长春130012) 摘 要:针对陀螺马达振动信号的微弱性,通过数据采集卡检测到的信号要进行大量复杂的线形系统分析,要求数 据准确,根据虚拟仪器设计思想在PC 下利用图形化编辑语言LabVIEW 对陀螺马达的振动信号进行过采样数据采集、波形显示、时域分析、数字滤波、数据存储、频域分析,从而实现对振动信号的多通道信号采集和实时分析。系统逻辑图形清晰,可以有效的防止波形失真,误差小,起到了很好的故障诊断分析作用,在工程应用中实用性强。 关键词:LabVIEW 系统;虚拟仪器;过采样;时域分析;频域分析中图分类号:TP311.52;TP274+.2 文献标识码:A 文章编号:1674-5124(2009)02-0064-03 Acquisition and analysis of gyroscopic vibration signal based on LabVIEW DOU Xiu-peng ,YOU Chuan-fu ,OUYANG Guo-xin (School of Electric and Electricity Engineering ,Changchun University of Technology ,Changchun 130012,China )Abstract:According to the weakness of the vibration signal of gyroscope motors ,a large number of complex linear system analyses needed to process the signal detected by data acquisition card ,and the data must be precise ,those of the gyroscope motor vibration signal such as data acquisition ,waveform display ,time domain analysis ,digital filtering ,data storage and frequency -domain and so on were analyzed according to the virtual instrument design with graphical progamming software LabVIEW on PC to realize the multi -channel signal acquisition and real -time analysis of the vibration signal.The logic diagrams of this system are clear ,the waveform distortion can be effectively prevented ,and the error can be reduced.Thus ,this system can play a very important role in the fault diagnosis and has very practical impacts on engineering. Key words:LabVIEW ;Virtual instrument ;Over-sampling ;Time-domain analysis ;Frequency domain analysis 收稿日期:2008-09-05;收到修改稿日期:2008-11-30作者简介:窦修朋(1982-),男,河北沧州市人,硕士研究生, 专业方向为信号分析及处理。 1引言 随着科学的不断发展,人们对惯性导航系统的 陀螺仪要求越来越高。 陀螺马达是陀螺仪的心脏,要使陀螺定向精度高,必须保证陀螺马达在工作过程中正常工作,尽量减少无规则振动和噪声。转子要保持高度的动态平衡,除此之外,马达轴承在高速旋转时也产生振动信号,转子高速旋转引起风阻和由此引起的噪声会诱导转子转动。而信号往往淹没在机械本体几信号处理电路包含的大量噪声中[1],这些振动和噪声都会影响陀螺罗盘的定向性能。因此,在陀螺马达的设计和安装高度中,非常需要明确振源,是由转子不平衡引起,还是轴承振动或风阻噪声引起的。 振动测试及分析系统主要用来分析陀螺转子的振动情况。引起陀螺转子振动的因素可分为质心 偏移因素和非质心偏移因素,质心偏移因素可通过 动平衡消除,而非质心偏移因素多数是由轴承(特别是滚珠轴承)引起的,无法通过动平衡消除。振动大的陀螺在系统使用中会对系统性能产生较大影 响。因此, 在陀螺总装前对陀螺马达进行振动测试和分析十分必要。 计算机和仪器的密切结合而成的虚拟仪器是目前仪器发展的一个重要方向。虚拟仪器的最突出的特点可以发挥出计算机的能力,具有强大的数值处理功能,可以根据自己的需要创造出功能强大的 仪器。在这一领域内, 使用较为广泛的计算机和开发环境的是美国NI 公司的LabVIEW 。整个系统只有输入、输出端,其他仪器功能键都在可视软件板上完成,操作简单方便[2],并且能进行远程控制[3]。 2系统硬件设计 如图1所示,陀螺仪振动的信号由传感器接收,经信号调理、数据采集卡后传递到虚拟仪器控制面版,其主要功能如下。 第35卷第2期2009年3月中国测试 CHINA MEASUREMENT &TEST Vol.35No.2Mar.2009

相关文档
最新文档