氢化钾晶体结构与储氢性能的理论计算

氢化钾晶体结构与储氢性能的理论计算
氢化钾晶体结构与储氢性能的理论计算

Journal of Advances in Physical Chemistry 物理化学进展, 2018, 7(3), 147-151

Published Online August 2018 in Hans. https://www.360docs.net/doc/1618398740.html,/journal/japc

https://https://www.360docs.net/doc/1618398740.html,/10.12677/japc.2018.73018

Crystal Structure and Hydrogen Storage

Properties of Kalium Hydride from

Theoretical Calculations

Guanghui Lin, Qian Zhao, Yun Liu, Jiehong Lei*

Physics and Space Science of Institute, West China Normal University, Nanchong Sichuan

Received: Aug. 9th, 2018; accepted: Aug. 22nd, 2018; published: Aug. 29th, 2018

Abstract

The physical properties of potassium hydride isotope compounds (KH x D1?x, KH x T1?x, KD x T1?x; x = 0,

0.25, 0.5, 0.75, 1.0) were calculated by the density functional theory method using plane wave

pseudopotential combined with generalized gradient approximation, including lattice constant, density, and density of H(D)T. The calculation results show that the lattice constant and density of KH(D,T) are very close to the experimental values; as the value of x increases, the lattice constant hardly changes and the density decreases. The calculated DT density in KD0.25T0.75 is about 0.13 g/cm3, which shows good hydrogen storage performance.

Keywords

Density Functional Theory, Crystal Structure, Hydrogen Storage Properties, Kalium Hydride

氢化钾晶体结构与储氢性能的理论计算

林光会,赵倩,刘芸,雷洁红*

西华师范大学物理与空间科学学院,四川南充

收稿日期:2018年8月9日;录用日期:2018年8月22日;发布日期:2018年8月29日

摘要

运用平面波赝势结合广义梯度近似的密度泛函理论方法计算了氢化钾同位素化合物(KH x D1?x, KH x T1?x, KD x T1?x; x = 0, 0.25, 0.5, 0.75, 1.0)的物理性质,包括晶格常数、密度及H(D)T的密度。计算结果显示*通讯作者。

林光会等

KH(D,T)的晶格常数和密度与实验值非常接近;随着x值增加,晶格常数几乎没有发生变化,而密度减小。

KD0.25T0.75中DT密度的计算值大约为0.13 g/cm3,表现出了良好的储氢性能。

关键词

密度泛函理论,晶体结构,储氢性能,氢化钾

Copyright ? 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/1618398740.html,/licenses/by/4.0/

1. 引言

随着化石燃料越来越少,人们正在寻找新能源来补充或替换正常能源。氢作为一种储量丰富的能源,被人们广泛认为是一种潜在的理想能源[1] [2] [3] [4]。许多金属和合金能够可逆地吸收大量的氢[5] [6] [7]

[8]。碱金属如锂、钾和钠能与氢反应生成类似KCl的结构。这些氢化物具有氢密度大、原子序数小等特

点,被许多人研究[9] [10]。我们已经证明了LiD x T1?x可以提高融合燃料容量不增加体积或充电点火目标的通胀压力在LiD x T1?x DT的密度等于DT冰[11]。由于氢化钾与氢化锂具有相同的性质,本文将研究氢化钾的晶体结构和储氢性能。到目前为止,科学家们主要研究了KH (氢化钾),KD (氘化钾)和KT (氚化钾)的性质,如晶格常数和密度[12] [13] [14] [15]。然而,几乎未见有对KH x D1?x,KH x T1?x,KD x T1?x的晶格参数、密度研究的公开报道,缺乏晶格常数、密度的数据。而系统研究x值对密度影响尚属首次。

2. 理论方法

本文的计算是基于密度泛函理论的第一性原理方法,利用MS4.1软件中的量子力学模块CASTEP软件包完成[16] [17]。在CASTEP软件包中,采用掺杂的方式[18]构建了KH x D1?x,KH x T1?x,KD x T1?x (x = 0,

0.25, 0.5, 0.75, 1.0)的晶体结构,运用平面波赝势结合广义梯度近似的密度泛函理论方法来优化不同x值

的晶体结构,得到晶格常数。交换相关函数是GGA-RPBE [19],电子和离子间的相互作用采用超软赝势采用超软心赝势(ultrasoft) [20],几何优化计算的精确性由下面的条件控制:能量偏差5.0 × 10?6e V/atom;

计算使用的截止能是330 eV;布里渊区积分采用Monkhorst-Pack形式的特殊K点方法,使用了6 × 6 × 6个特殊K点。

3. 结果与讨论

利用CASTEP软件包构建KH x D1?x,KH x T1?x,KD x T1?x (x = 0, 0.25, 0.5, 0.75, 1)结构。显然,三钾氢同位素化合物具有面心立方对称。K原子占据(0, 0, 0)网点和H(D,T)原子占据±(1/2, 1/2, 1/2)网点。

我们对晶格参数进行了优化。在下面的计算中,使用了优化结构。首先计算了零压力下的平衡体积,然后计算了单元中所有原子的总质量或H(D,T)的质量。最后,密度可以确定。

平衡晶格常数和氢化钾密度可以通过公式(1)计算得出。它们与其他理论值一起列于表1中。

M

ρ= (1)

V

其中,M指晶体一个单胞中原子的总质量,V指单胞的体积,由于KH、KD(KT)晶体都属于面心立方结

林光会 等

构,故3V a =。

晶格常数和密度的计算值与其它理论值接近,说明计算方法可行,结果可靠。 用同样的方法计算了三元氢化钾同位素的晶格常数和密度。这些数据列于表2中。

从表2中可知,不同x 值下的KH x D 1?x ,KH x T 1?x 和KD x T 1?x 晶格常数变化非常小,这可能是因为H 及其同位素的原子半径变化小的原因。密度随x 值的变化关系见图1。可以看出x 值相同时,KH x D 1?x 的密度值最小,KH x T 1?x 的密度值居中,KD x T 1?x 的密度值最大;且随着x 值的增大,它们的密度都减小。这是因为x 值几乎对晶格常数没有影响,而x 值不同,晶体中掺杂的H 同位素不同,原子量发生了变化,这就使得公式(1)中,V 值无变化,M 值发生变化,从而使得密度ρ变化。

从上述方法可知,要计算KH x D 1?x ,KH x T 1?x 和KD x T 1?x 中HT 、HD 和DT 的密度值,只需将公式(1)中的M 代换为一个原胞中H(D)、T 原子的总质量即可。KH x D 1?x ,KH x T 1?x 和KD x T 1?x 中HT 、HD 和DT 的密度值随x 的变化关系如图2所示。

Table 1. Comparison of lattice constants, densities and experimental values of KH (KD, KT) 表1. KH (KD, KT)晶格常数,密度与实验值的比较

KH (氢化钾) KD (氘化钾) KT (氚化钾)

a /nm ρ/g/cm 3 a /nm ρ/g/cm 3 a /nm ρ/g/cm 3 Present calculation

0.5625 1.47 0.5627 1.53 0.5626 1.60 Exp. 0.5704 [12] 1.44 [12] 0.5704 [12] 1.51 [12] --- --- Error (%)

1.38%

2.1%

1.35%

1.32%

---

---

Table 2. L attice constants and density values of three potassium hydride isotopes with different x values 表2. 不同x 值的三元氢化钾同位素化合物晶格常数和密度值

KH x D 1?x

KH x T 1?x

KD x T 1?x

x a /nm ρ/g/cm 3 a /nm ρ/g/cm 3 a /nm ρ/g/cm 3 0 0.5627 1.53 0.5625 1.60 0.5625 1.60 0.25 0.5625 1.51 0.5625 1.587 0.5625 1.586 0.5 0.5625 1.50 0.5625 1.543 0.5625 1.565 0.75 0.5625 1.49 0.5625 1.503 0.5625 1.55 1.0

0.5625

1.47

0.5625

1.47

0.5627

1.53

Figure 1. The relationship between the density value of three potassium hydride isotope compounds and the x value 图1. 三元氢化钾同位素化合物密度值随x 值的变化关系

林光会 等

Figure 2. H(D)T density under different x values 图2. 不同x 值下的H(D)T 密度

从图2中可以看出,x 值相同时,KH x D 1?x 的HD 含量最少,KH x T 1?x 的HT 含量居中,KD x T 1?x 的DT 含量最大;随着x 值的增加,H(D)T 密度减小。对于KD x T 1?x ,计算的结果显示它其中的DT 密度值较大,大约为0.136 g/cm 3,这个值小于激光惯性约束聚变中DT 冰的密度,但它具有优良的储氢性能。

4. 结论

我们采用掺杂的方式构建KH x D 1?x ,KH x T 1?x 和KD x T 1?x (x = 0, 0.25, 0.5, 0.75, 1.0)的晶体结构,运用平面波赝势结合广义梯度近似的密度泛函理论方法计算了x = 0, 0.25, 0.5, 0.75, 1.0时,它们的晶格常数、密度值及其H(D)T 的密度值。计算结果显示KH(D, T)的晶格常数和密度与实验数据符合的很好。首次通过理论计算得到了KH x D 1?x ,KH x T 1?x 和KD x T 1?x (x = 0.25, 0.5, 0.75)的晶格参数、密度的数据,这是研究金属氢化物储氢材料的储氢性能的一个重要理论基础。

基金项目

四川省科技厅应用基础研究面上项目(2017JY0145)。

参考文献

[1] Sakintuna, B., Lamari-Darkrim, F. and Hirscher , M. (2007) Metal Hydride Material s for Solid Hydrogen Storage: A

Revies . International Journal of Hydrogen Energy , 32, 1121-1140. https://https://www.360docs.net/doc/1618398740.html,/10.1016/j.ijhydene.2006.11.022 [2] Orimo, S., Nakamori, Y., Eliseo, J.R., et al . (2007) Complex Hydride for Hydrogen Storage . Chemical Reviews , 107,

4111-4132. https://https://www.360docs.net/doc/1618398740.html,/10.1021/cr0501846 [3] Satyapal , S., Petrovic , J., Read , C., Thomas, G . and Ordaz , G. (2007) The US Department of Energy’s National Hy-drogen Storage Project: Progress towards Meeting Hydrogen -Powered Vehicle Requirements. Catalysis Today , 120, 246-256. https://https://www.360docs.net/doc/1618398740.html,/10.1016/j.cattod.2006.09.022 [4] Lohstroh, W., Fichtner , M. and Breitung , W. (2009) Complex Hydrides as Solid Storage Materials: First Safety Tes ts.

International Journal of Hydrogen Energy , 34, 5981-5985. https://https://www.360docs.net/doc/1618398740.html,/10.1016/j.ijhydene.2009.01.030 [5] Graetz , J. (2009) New Approaches to Hydrogen Storage. Chemical Society Reviews , 38, 73-82.

https://https://www.360docs.net/doc/1618398740.html,/10.1039/B718842K

[6] Schlapbach , L . and Zuttel , A. (2001) Hydrogen -Storage Material s for Mobile Application s. Nature , 414, 353-358.

https://https://www.360docs.net/doc/1618398740.html,/10.1038/35104634 [7] Bloch, J . and Mintz , M.H. (1997) Kinetics and Mechanisms of Metal Hydrides Formati on—A Review . Journal of Al-loys and Compounds , 253, 529-541. https://https://www.360docs.net/doc/1618398740.html,/10.1016/S0925-8388(96)03070-8 [8] Van den berg , A.W.C. and Areán , C.C. (2008) Material for Hydrogen Storage: Current Research Trends and Perspe c-tives . Chemical Communications , 6, 668-681. https://https://www.360docs.net/doc/1618398740.html,/10.1039/B712576N [9] George , L. and Saxena , S.K. (2010) Structural Stability of Metal Hydrides, Alanates and Borohydrides of Alkali

and

林光会等Alkali-Earth Elements: A Review. International Journal of Hydrogen Energy, 35, 5454-5470.

https://https://www.360docs.net/doc/1618398740.html,/10.1016/j.ijhydene.2010.03.078

[10]Pandey, J.D. (1978) Properties of Isotopic Lithium Hydride in Crystalline State.Journal of Inorganic and Nuclear

Chemistry, 40, 1184-1185. https://https://www.360docs.net/doc/1618398740.html,/10.1016/0022-1902(78)80537-5

[11]Lei, J.H., Duan, H. and Xing, P.F. (2010) Calculation of the Physical Properties of an Isotopic Compoun d of Ternary

Lithium Hydride. Physica Scripta, 82, 5607-5610.

[12]Magg, U. and Jones, H. (1988) Th e Ground-State Infrared Spectrum of Sodium Hydride. Chemical Physics Letters,

146, 415-418.https://https://www.360docs.net/doc/1618398740.html,/10.1016/0009-2614(88)87469-4

[13]Smithson, H., Marianetti, C.A., Morganm, D., et al. (2002) First-Principles Study of the Stability and Electronic

Stru cture of Metal Hydrides. Physical Review B, 66, 4107-4116.https://https://www.360docs.net/doc/1618398740.html,/10.1103/PhysRevB.66.144107 [14]Maki, A.G. and Olson, W.B. (1989) Infrared Spectrum of Sodium Hydride.The Journal of Chemical Physics,90,

6887-6892.https://https://www.360docs.net/doc/1618398740.html,/10.1063/1.456263

[15]Bowman, R.C. (1973) Thermal Expansion Coefficients of Lithium Hydride. Journal of Physics and Chemistry of Sol-

ids, 34, 1754-1756. https://https://www.360docs.net/doc/1618398740.html,/10.1016/S0022-3697(73)80143-X

[16]Payne, M.C., Teter, M.P., Allen, D.C., Arias, T.A. and Joannopoulos, J.D. (1992) Iterative Minimization Techniques

for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradien ts. Reviews of Modern Physics, 64, 1045-1077.https://https://www.360docs.net/doc/1618398740.html,/10.1103/RevModPhys.64.1045

[17]Guo, Y.D., Cheng, X.L., Zhou, L.P., et al. (2006) First-Principles Calculati on of Elastic and Thermodynamic MgO and

SrO under High Pressure. Physica B, 373, 334-340. https://https://www.360docs.net/doc/1618398740.html,/10.1016/j.physb.2005.12.244

[18]Hammer, B., Hansen, L.B. and Norskov, J.K. (1999) Improved Adsorption Energetics within Density-Functional

Theory Using Revised Perdew-Burke-Ernzerh of Functionals. Physical Review B, 59, 7413-7421.

https://https://www.360docs.net/doc/1618398740.html,/10.1103/PhysRevB.59.7413

[19]Vanderbilt, D. (1990) Soft Self-Consistent Pseudopotential s in a Generalized Eigenvalue Formalis m. Physical Review

B, 41, 7892-7895.https://https://www.360docs.net/doc/1618398740.html,/10.1103/PhysRevB.41.7892

[20]Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review

Letters, 77, 3865-3868. https://https://www.360docs.net/doc/1618398740.html,/10.1103/PhysRevLett.77.3865

1. 打开知网页面https://www.360docs.net/doc/1618398740.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2168-6122,即可查询

2. 打开知网首页https://www.360docs.net/doc/1618398740.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.360docs.net/doc/1618398740.html,/Submission.aspx

期刊邮箱:japc@https://www.360docs.net/doc/1618398740.html,

金属储氢材料研究进展_范士锋

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

晶体结构的计算(历年高考题汇总)

选修3:物质结构与性质 晶体结构的计算 35.[化学—选修3:物质结构与性质](15分)(2018年全国卷I) Li是最轻的固体金属,采用Li作为负极材料的电池具有小而轻、能量密度大等优良性能,得到广泛应用。回答下列问题: (5)Li2O具有反萤石结构,晶胞如图(b)所示。已知晶胞参数为0.4665 nm,阿伏加德罗常数的值为N A,则Li2O的密度为g·cm?3(列出计算式)。 35.[化学——选修3:物质结构与性质](15分)(2018年全国卷II) (5)FeS2晶体的晶胞如图(c)所示。晶胞边长为a nm、FeS2相对式量为M,阿伏加德罗常数的值为N A,其晶体密度的计算表达式为___________g·cm?3;晶胞中Fe2+位于2 S 所形成的正八面体的体心,该正八面体的边长为______nm。 2 35.[化学——选修3:物质结构与性质](15分)(2018年全国卷III) 锌在工业中有重要作用,也是人体必需的微量元素。回答下列问题: (1)Zn原子核外电子排布式为________________。 (5)金属Zn晶体中的原子堆积方式如图所示,这种堆积方式称为_______________。 六棱柱底边边长为a cm,高为c cm,阿伏加德罗常数的值为N A,Zn的密度为 ________________g·cm-3(列出计算式)。

35.[化学——选修3:物质结构与性质](15分)(2017年全国卷III) 35.[化学——选修3:物质结构与性质](15分)(2017年全国卷I) 37.[化学——选修3:物质结构与性质](15分)(2016年全国卷III)

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

储氢材料综述

储氢材料研究现状与发展趋势 xxx 摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。 关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。 1.引言 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。图1给出了目前所采用和正在研究的储氢材料的储氢能力对比。

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

纳米储氢材料原理及示意图

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts Ki-Joon Jeon 1?,Hoi Ri Moon 2??,Anne M.Ruminski 2,Bin Jiang 3,Christian Kisielowski 4,Rizia Bardhan 2and Jeffrey J.Urban 2* Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142MJ kg ?1;ref.1),great variety of potential sources (for example water,biomass,organic matter),light weight,and low environmental impact (water is the sole combustion product).However,there remains a challenge to produce a material capable of simultaneously op-timizing two con?icting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state,but weakly enough to release it on-demand with a small temperature rise.Many materials under development,including metal–organic frameworks 2,nanoporous polymers 3,and other carbon-based materials 4,physisorb only a small amount of hydrogen (typ-ically 1–2wt%)at room temperature.Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH 2has a H f ~75kJ mol ?1),thus requiring unacceptably high release temperatures 5resulting in low energy ef?ciency.However,recent theoretical calculations 6,7and metal-catalysed thin-?lm studies 8have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption.Here,we report the synthesis of an air-stable composite ma-terial that consists of metallic Mg nanocrystals (NCs)in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6wt%of Mg,4wt%for the composite)and rapid kinetics (loading in <30min at 200?C).Moreover,nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. There have been various efforts to synthesize nanosized magnesium,such as ball-milling 9,sonoelectrochemistry 10,gas-phase condensation 11and infiltration of nanoporous carbon with molten magnesium 12.However,these approaches remain limited by inhomogeneous size distributions and high reactivity toward oxygen.Our synthesis for air-stable alkaline earth metal NC/polymer composites consists of a one-pot reduction reaction of an organometallic Mg 2+precursor in the presence of a soluble organic polymer chosen for its hydrogen gas selectivity (Fig.1).The Mg NCs/PMMA nanocomposites were synthesized at room 1Environmental Energy T echnologies Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,2The Molecular Foundry,Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,3FEI Company,NE Dawson Creek Dr.,Hillsboro,Oregon,97124,USA,4National Center for Electron Microscopy and Helios SERC,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA.?These authors contributed equally to this work.?Present address:Interdisciplinary School of Green Energy,Ulsan National Institute of Science and T echnology (UNIST),Ulsan 689-798,Korea.*e-mail:jjurban@https://www.360docs.net/doc/1618398740.html,. Mg 2+ + Li Lithium naphthalide Bis(cyclopentadienyl)- magnesium Mg/PMMA nanocomposites b a H 2 Mg nanoparticle Organic polymer with selective gas permeability PMMA THF H 2 H 2O O 2 Formation of MgH 2 Figure 1|Mg NCs in a gas-barrier polymer matrix.a ,Schematic of hydrogen storage composite material:high-capacity Mg NCs are encapsulated by a selectively gas-permeable polymer.b ,Synthetic approach to formation of Mg NCs/PMMA nanocomposites. temperature from a homogeneous tetrahydrofuran (THF)solution containing the following dissolved components:the organometallic precursor bis(cyclopentadienyl)magnesium (Cp 2Mg),the reduc-ing agent lithium naphthalide,and the gas-selective polymer poly(methyl methacrylate)(PMMA).Mg nanocrystals are then nucleated and grown in this solution by means of a burst-nucleation and growth mechanism 13in which lithium naphthalide reduces the organometallic precursor in the presence of a capping ligand (the soluble PMMA (M w =120,000)acts as a capping ligand for the Mg nanocrystals)14.Transmission electron microscopy (TEM)analysis of our reaction mixture before addition of reductant,immediately thereafter,and at later stages of the growth (Supplementary Fig.S1)further support this model.

晶体结构的分析与计算训练题

晶体结构的分析与计算训练题 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为1 3 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3 杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm -3 ,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×1 8= 1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3 ×d g·cm -3 ×N A ,则a =? ????2516.02×1023×d 1 3 cm =? ?? ??2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)? ?? ? ?2516.02×1023×d 1 3×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为______

储氢材料的分类及镍氢电池的机理

储氢材料分类 狭义上讲,储氢材料[8]是一种能与氢反应生成金属氢化物的物质;但是它与一般金属氢化物有明显的差异。即储氢材料必须具备高度的反应可逆性(可反复进行吸储氢和释放氢的可逆反应),而且,此可逆循环的次数(循环寿命)必须足够多,循环次数超过5000次。实际上,它必须是能够在适当的温度、压力下大量可逆的吸收和释放氢的材料。 对于理想的金属储氢材料应具备以下条件:1.在不太高的温度下,储氢量大,释放氢量也大;2.氢化物的生成热一般在-46 ~ -29 kJ/mol H2之间;3.原料来源广,价格便宜,容易制备;4.经多次吸、放氢,其性能不会衰减;5.有较平坦和较宽的平衡压力平台区,即大部分氢均可在一持续压力范围内放出;6.易活化,反应动力学性能好。 就目前发表的资料看,储氢材料尚无明确的、公认的分类方法,本文把它分为以下4类: (1) 金属(或合金)储氢材料 氢几乎可以同周期表中的各种元素反应,生成各种氢化物或氢化合物。但并不是所有金属氢化物都能做储氢材料,只有那些能在温和条件下大量可逆的吸收和释放氢的金属或合金氢化物才能做储氢材料用。例如:目前以开发的具有实用价值的金属型氢化物有稀土系AB5型;锆、钛系Laves相AB2型;钛系AB型;镁系A2B型;以及钒系固溶体型等几种。金属与氢反应的实验模型如图1-1所示。 图1-1 合金储氢材料与H2反应示意图 Fig.1-1 The reaction chart of metal with H2 (2) 非金属储氢材料 从目前的研究的情况分析,能够可逆的吸放氢的非金属材料[9,10]仅限于碳系

材料、玻璃微球等非金属材料,是最近几年刚发展起来的新型储氢材料。例如碳纳米管、石墨纳米纤维、高比表面积的活性炭、玻璃微球等。这类储氢材料均属于物理吸附模型,是一种很有前途的新一代储氢材料。 (3) 有机液体储氢材料 某些有机液体[11,12],在合适的催化剂作用下,在较低压力和相对高的温度下,可做氢载体,达到贮存和输送氢的目的。其储氢功能是借助储氢载体(如苯和甲苯等)与H 2的可逆反应来实现的。 (4) 其他储氢材料 除了上述3类储氢材料外,还有一些无机化合物和铁磁性材料可用作储氢,如KHNO 3或NaHCO 3作为储氢剂[13]。磁性材料在磁场作用下可大量储氢,储氢量比钛铁材料大6~7倍。 镍氢电池(Ni/MH)的基本原理 利用贮氢合金的电化学吸放氢特性研制成功的金属氢化物-镍(Ni/MH)二次电池是近年来发展比较迅速的一种高能绿色二次电池,它以贮氢电极合金充当活性物质的氢化物电极作为负极,以氢氧化镍电极作为正极。Ni/MH 电池具有能量密度高、功率密度高、可快速充放电、循环寿命长以及无记忆效应、无污染、可免维护、使用完全等特点。Ni/MH 电池的比能量是镍镉电池的 1.5~2倍,电流充放电时,无记忆效应、低温特性好、综合性能优于Ni/Cd 电池,而且Cd 有毒,废电池处理复杂。在能源紧张,环境污染严重的今天,Ni/MH 电池显示出广阔的应用前景。Ni/MH 电池目前主要应用在小型移动通讯设备、笔记本电脑、便携式摄像机、数码相机及电动自行车等领域。 Ni/MH 电池以Ni(OH)2/NiOOH 电极为正极,以贮氢合金电极为负极,以6 M 的KOH 溶液为电解液。其电化学式可表示为: (-)M/MH|KOH(6 M)|Ni(OH)2/NiOOH(+) 研究表明,在Ni/MH 电池的充放电过程中,正、负极发生的反应分别为: 正极:-22Ni(OH)OH NiOOH+H O+e + 负极:-2M+H O+e MH OH x x x x +

储氢材料概述 (1)

课程论文 储氢材料概述Hydrogen storage material in the paper 作者姓名:关体红 年级专业: 2010 级应用化学 课程名称:化工实用技术 学号: 20105052006 指导教师:许东利 完成日期: 2012-06-15 成绩: 信阳师范学院 Xinyang Normal University

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1 碳基储氢材料 (2) 1.1活性炭储氢 (2) 1.2 碳纤维储氢材料 (3) 1.3 碳纳米管储氢材料 (3) 1.4 碳化物的衍生物作为储氢材料 (4) 2 有机物储氢材料 (4) 3 储氢合金 (5) 3.1 镁系 (5) 3.2 稀土系 (6) 3.3 钛系 (6) 3.4 锆系 (6) 3.5 V基固溶体储氢合金 (6) 4 配位氢化物储氢材料 (7) 结束语 (7) 参考文献 (8)

信阳师范学院化学化工学院学年论文 储氢材料概述 学生姓名:关体红学号:20105052006 化学化工学院2010级应用化学 课程名称化工实用技术 摘要:氢能是21世纪主要的新能源之一。作为一种新型的清洁能源 ,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题 ,而氢的储存是氢能应用的关键。储氢材料能可逆地大量吸放氢 ,在氢的储存与输送过程中是一种重要载体。本文综述了目前研究最广的四大类储氢材料:碳基储氢材料、有机物储氢材料、储氢合金、配位氢化物储氢材料。 关键词:储氢;碳基;有机液体;储氢合金;配位氢化物 Hydrogen storage material in the paper Abstract:In the 21st century, the hydrogen is one of the major new energy. As a new type of clean energy, the cheap hydrogen production, storage and transportation safety and efficiency and scale of application is the key research subject, and hydrogen storage is the key of hydrogen application. Hydrogen storage material can absorb a large reversibly put hydrogen, in hydrogen storage and transport process is a kind of important carrier. This paper summarized the present study is the most extensive four categories of hydrogen storage material: carbon hydrogen storage material and organic hydrogen storage material, hydrogen storage alloy, coordination hydride hydrogen storage material. Keywords:Hydrogen storage; Carbon; Organic liquid. Hydrogen storage alloy; Coordination hydride 引言 人类进入21世纪,节能环保不再只是一句口号。随着能源紧张与环境污染问题的日益凸显,新能源和清洁能源的开发利用受到人们越来越多的关注。在众多新能源中,氢能被人们寄予了厚望。

高中化学选修三——晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=×晶胞顶角上的原子数+×晶胞棱上的原子+×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图,其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇,冰醋酸,蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例,可说明氢键具有方向性 ④笼状化合物--天然气水合物

纳米储氢材料

纳米储氢材料的研究应用现状及发展前景 摘要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米储氢材料,研究现状,发展前景 1 绪论 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型,储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。

新型氢能材料的研究与发展状况文献综述

新型氢能材料的研究与发展状况氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。氢能材料是伴随着氢能利用在最近三十多年才发展起来的新型功能材料。储氢合金在氢能系统中作为氢的存储与输送的载体是一种重要的候选材料。氢与储氢材料的组合,将是21世纪新能源—氢能的开发与利用的最佳搭档。本文对氢能源的储存材料,研究现状以及未来的发展进行一些研究。 关键词:氢能;储氢材料;储氢性能 随着人类社会的飞速发展和人们环保意识的日益增强,传统能源已经成为社会经济发展和人们生活水平提高的重大障碍。目前各国所采取的提高传统能源利用率、实现废物的循环利用等措施来减缓其消耗速度也仅仅是权宜之计,唯有开发出新型能源替代传统能源才能从根本上解决当前所面临的能源问题。太阳能、核能、氢能等新型能源因而成为当前研究的热点。其中,氢能由于可用作便携能源和车载能源;且与目前应用的汽油相比具有无污染、燃烧值高、自燃温度高等多重的优点,还可以利用现有的供油配套设施;因此成为目前化石燃料最具潜力的替代能源,而储氢材料正是装载氢能的关键。 一、氢能简介 氢位于元素周期表之首,它的原子序数为1,在常温常压下为气态,在超低温高压下又可成为液态。氢能作为一种清洁的二次能源,具有很多优越性能: (1)所有元素中,氢重量最轻。在标准状态下,它的密度为0. 0899g/L;在-252.7℃时,可成为液体,若将压力增大到数百个大气压,液氢就可变为金属氢。 (2)所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体。 (3)氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。 (4)除核燃料外,氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142. 351kJ/kg,是汽油发热值的3倍。 (5)氢燃烧性能好,点燃快,与空

相关文档
最新文档