极限(第1课时)数学归纳法及其应用举例(1)

极限(第1课时)数学归纳法及其应用举例(1)
极限(第1课时)数学归纳法及其应用举例(1)

课题:2.1数学归纳法及其应用举例(一)

教学目的:

1. 了解归纳法的意义,培养学生观察、归纳、发现的能力.能区分不完全归纳法与完全归纳法;学会由特殊到一般的思维方式

2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤.

3.能用数学归纳法证明一些简单的数学命题.并能严格按照数学归纳法证明问题的格式书写

教学重点:归纳法意义的认识和数学归纳法产生过程的分析.

教学难点:数学归纳法中递推思想的理解.

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.

理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件

教学过程:

一、复习引入:

问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?

方法一:把它倒出来看一看就可以了.

特点:方法是正确的,但操作上缺乏顺序性.

方法二:一个一个拿,拿一个看一个.

比如结果为:第一个白球,第二个白球,第三个白球,……,第十二个白球,由此得到:这一袋球都是白球.

特点:有顺序,有过程.

问题2:在数列{}n a 中,*111,,()1n n n a a a n N a +==

∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式.

过程:212a =,313a =,414a =,由此得到:*1,()n a n N n

=∈, 解决以上两个问题用的都是归纳法.

再请看数学史上的两个资料:

资料1: 费马(Fermat )是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献.但是,费马曾认为,当n ∈N 时,221n

+一定都是质数,这是他对n=0,1,2,3,4时的值分别为3,5,17,257,65537作了验证后得到的.

18世纪伟大的瑞士科学家欧拉(Euler )却证明了当n=5时, 5

221+ =4 294 967 297=6 700 417×641,从而否定了费马的推测.

有人说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!

资料2:f (n )=n 2+n+41,当n ∈N 时,f (n )是否都为质数?

f (0)=41,f (1)=43,f (2)=47,f (3)=53,f (4)=61,

f (5)=71,f (6)=83,f (7)=97,f (8)=113,f (9)=131,

f (10)=151,… f (39)=1 601.

但是f (40)=1 681=412是合数

算了39个数不算少了吧,但还不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来.

对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明 课件展示:多媒体课件(游戏:多米诺骨牌) ,多米诺骨牌游戏要取得成功,必须靠两条:

(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒;

(2)第一张牌被推倒.

用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的

证明方法就是数学归纳法.

二、讲解新课:

1.归纳法:由一些特殊事例推出一般结论的推理方法.

特点:由特殊→一般

2. 不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法.

如我们在推导涉及所有正整数的等差数列通项公式时,在考察了n=1,2,3,4几种特殊情形后得出的一般公式,就是作的一种不完全归纳.

我们已经知道,不完全归纳法所得到的命题并不能保证它成立,所以这种方法并不能作为一种论证方法;同时也应看到,不完全归纳法是研究数学的一把钥匙,是发现数学规律的一种重要手段.在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想.因而学会用不完全归纳法对问题进行探索,对提高我们的数学能力十分重要.

3. 完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.

完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法.

4.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k ≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法

5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.

6.用数学归纳法证明一个与正整数有关的命题的步骤:

(1)证明:当n取第一个值n0结论正确;

(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.

由(1),(2)可知,命题对于从n0开始的所有正整数n都正确

三、讲解范例:

例1.用数学归纳法证明:如果{a n}是一个等差数列,那么a n=a1+(n-1)d 对一切n∈N*都成立.

证明:(1)当n=1时,左边=a1,右边=a1+0·d=a1,等式是成立的

(2)假设当n=k时等式成立,就是a k=a1+(k-1)d.

那么a k+1=a k+d=[a1+(k-1)d]+d=a1+[(k+1)-1]d,

这就是说,当n=k+1时,等式也成立.

由(1)和(2)可以判定,等式对任何n ∈N *都成立.

例2.用数学归纳法证明:1+3+5+…+(2n -1)=n 2.

证明:(1)当n =1时,左边=1,右边=1,等式成立.

(2)假设当n =k 时,等式成立,就是1+3+5+…+(2k -1)=k 2,

那么1+3+5+…+(2k -1)+[2(k +1)-1]=k 2+[2(k +1)-1]=k 2+2k +1=(k +1)2. ∴n =k +1时也成立.

由(1)和(2),可知等式对任何n ∈N*都成立

四、课堂练习:

1.用数学归纳法证明:1+2+3+…+n =2

)1(+n n . 证明:(1)当n =1时,左边=1,右边=2

)11(1+?=1. ∴等式成立. (2)假设当n =k 时,等式成立,即1+2+3+…+k =

2)1(+k k . 那么当n =k +1时,

1+2+3+…+k +(k +1)=21k (k +1)+(k +1)=(k +1)(21k +1)=2

1(k +1)(k +1+1) ∴n =k +1时,等式也成立.

由(1)(2)可知等式对一切n ∈N*都成立.

2.首项为a 1,公比为q 的等比数列的通项公式是:a n =a 1q n -1.

证明:(1)n =1时,左边=a 1,右边=a 1·q 1-1=a 1q 0=a 1.

∴左边=右边.

(2)假设当n =k 时等式成立.即a k =a 1q k -1.那么当n =k +1时.

a k +1=a k q =a 1q k -1·q =a 1q (k +1)-1

∴n =k +1时等式也成立.

由(1)、(2)可知等式对一切n ∈N *都成立

五、小结 : (1)中心内容是归纳法和数学归纳法;(2)归纳法是一种由特殊到一般的推理方法,分类是完全归纳法和不完全归纳法二种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;(3)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,

它的证明步骤必须是两步,最后还要总结;(4)本节课所涉及到的数学思想方法有:递推思想、分类讨论思想、数形结合思想、函数与方程思想

六、课后作业:

1.对一切自然数n ,猜出使2

n t n >成立的最小自然数t 2.平面上有n 条直线,其中无两条平行,无三条共点,

问:(1)这n 条直线共有几个交点f(n)?(1()(1)2

f n n n =- (2)这n 条直线互相分割成多少条线段(或射线)?(2n 条)

(3)平面被这n 条直线分割成多少块区域?(2

22++n n ) 3.已知数列{a n }中,a 1=31, a n

n a -3求a 2, a 3, a 4,猜测通项公式a n )4

22(+=n n a n 4.设数列{a n }的各项均为正整数,a 1=1,设S n =a 1+a 2+……+a n ,若对自然数n 总有S n+1+S n =( S n+1-S n )2 ,试推测用n 表示Sn 的关系式(S 2

)1(+=

n n n 七、板书设计(略) 八、课后记:

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

数列的极限、数学归纳法

数列的极限、数学归纳法 一、知识要点 (一) 数列的极限 1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作 A a n n =∞ →lim . 2.运算法则:若lim n n a →∞ 、lim n n b →∞ 存在,则有 lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ±=±;lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ?=? )0lim (lim lim lim ≠=∞→∞ →∞→∞→n n n n n n n n n b b a b a 3.两种基本类型的极限:<1> S=?? ???-=>=<=∞ →)11() 1(1) 1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、 p b 且)(0)(N n n g ∈≠,则??? ????>=<=∞→)()() (0)()(lim q p q p b a q p n g n f q p n 不存在 4.无穷递缩等比数列的所有项和公式:1 1a S q = - (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞ = (当lim n n S →∞ 存在时) (二)数学归纳法 数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。 ②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。 二、例题(数学的极限)

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

数列、极限、数学归纳法 归纳、猜想、证明 教案

数列、极限、数学归纳法·归纳、猜想、证明·教案 张毅 教学目标 1.对数学归纳法的认识不断深化. 2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法. 3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点 用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明. 教学过程设计 (一)复习引入 师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明? 生:与连续自然数n有关的命题. 师:用数学归纳法证明的一般步骤是什么? 生:共有两个步骤: (1)证明当n取第一个值n0时结论正确; (2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确. 师:这两个步骤的作用是什么? 生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程. 师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么? 生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题. 今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1. (二)归纳、猜想、证明 1.问题的提出 a3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式. 师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上) 师:正确.怎么推测an的计算公式呢?可以相互讨论一下.

第11讲 数列的极限与数学归纳法 教案

第十一讲 数列的极限与数学归纳法 教案 【考点简介】 1.数列极限与数学归纳法在自主招生中的考点主要有:数列极限的各种求解方法;无穷等比数列各项和;数列的应用题;常用级数;数学归纳法证明等式与不等式。 【知识拓展】 1.特殊数列的极限 (1)1 lim 0(0,a n a a n →∞=>是常数) (2) lim 0(0)!n n a a n →∞=> (3)lim 0k n n n a →∞=(1a >,k 为常数) (4) 111 lim 1,lim 1n n n n e n n e →∞→∞ ????+=-= ? ????? 公式(4)证明:令11n M n ?? =+ ??? ,取自然对数得到1ln ln 1M n n ??=+ ???, 令1x n = ,得ln(1) ln x M x +=, 由洛比达法则得00ln(1)1 lim lim()11x x x x x →→+==+,即0limln 1x M →=, 所以,limln 1n M →∞=,则lim n M e →∞=,即1lim 1n n e n →∞ ?? += ??? 。 另外,数列11n n ???? ??+?? ?????? ?是单调递增的,理由如下:由11n n G A ++≤(1n +个正实数的几何平均数≤ 它们的算术平均数)有111 11111111n n n n n n n ?? ++ ?++??=+?<==+? ? +++? ?? , 所以1 11111n n n n +??? ?+<+ ? ? +???? 。 2.洛比达法则 若lim ()0x f x →∞ =(或∞),lim ()0x g x →∞ =(或∞),则()'() lim lim ()'() x x f x f x g x g x →∞ →∞=。 3.夹逼定理 如果数列{}n x 、{}n y 以及{}n z 满足下列条件: (1)从某项起,即当0n n >(其中0n N ∈),有n n n x y z ≤≤(123n =,,); (2)lim n n x a →∞ =且lim n n z a →∞ =;

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

数列、极限、数学归纳法()

第二章数列、极限、数学归纳法(2) 等比数列 【例题精选】: 例1:“b 2 = ac ”是a , b , c 成等比数列的 A .充分非必要条件 B .必要非充分条件 C .充分且必要条件 D .既不充分又不必要条件 分析:由a , b , c 成等比数列?b ac 2=;b ac 2=若a , b , c 中有等于零者,a , b , c 不成等比数列,故选(B ) 说明:只有当a , b , c 均不为零时, b ac 2=? a , b , c 成等比数列。 例2:已知数列{}a n 的前n 次和S k k n n =+3(为常数),那么下述结论正确的 是 A .k 为任意实数时,{}a n 是等比数列 B .k = -1时,{}a n 是等比数列 C .k = 0时,{}a n 是等比数列 D .{}a n 不可能是等比数列 分析:给出 s k k n n =+3(为常数),可由s n 求出通项a n 来进行判断: n a s k n a s s k k n n n n n n ===+≥=-=+-+=?---13123323211111 时,时,() ()() 当n a ==?=1223210时,由()式 当a k k 121321=+==-时代入()式得得, {}∴=-=?∈-当时,数列k a n N a n n n 1231()是等比数列,故选(B )。 小结:解好本题要准确掌握数列的前n 项和S n 与通项a n 关系式 a n =s n s s n n n 1 112=-≥?? ?- 例3:在等比数列{}a n 中,已知a a a a a 132492040+=-+=,,求 解:设等比数列的公比为q ,依题意:() ()a a q a q a q 112 1 13 201402+=-+=????? ()()()()()12112 214 421024 19188÷=-∴=-=-∴==--=-得 代入得q q a a a q 例4:(1)在等比数列6,…,1458,…,13122,…中,1458是第n 项, 13122

高中数学《数学归纳法及应用举例》说课稿

《数学归纳法及应用举例》第一课说课方案 一、说教材 (一)教材分析 本课是数学归纳法的第一节课。前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了 由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法它是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为 一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法─数学归纳法。 数学归纳法安排在数列之后极限之前,是促进学生从有限思维发展到无限思维的一个重要环节。并且,本 节内容是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。 (二)教学目标 学生通过数列等相关知识的学习。已基本掌握了不完全归纳法,已经有一定的观察、归纳、猜想能力。通过近几年教学方法的改革和素质教育的实施,学生已基本习惯于对已给问题的主动探究,但主动提出问 题和置疑的习惯还未形成。能主动提出问题和敢于置疑是学生具有独立人格和创新能力的重要标志。如何 让学生主动置疑和提出问题?本课也想在这方面作一些尝试。 根据教学内容特点和教学大纲、根据学生以上实际、根据学生终身发展需要而制订以下教学目标。 1.知识目标 (1)了解由有限多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)理解和记住用数学归纳法证明数学命题的两个步骤。 (4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。 2.能力目标 (1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。 (2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。 3.情感目标 (1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。 (2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。 (3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。 (三)教学重难点 根据教学大纲要求、本节课内容特点和学生现有知识水平,确定如下教学重难点: 1.重点 (1)初步理解数学归纳法的原理。 (2)明确用数学归纳法证明命题的两个步骤。 (3)初步会用数学归纳法证明简单的与正整数数学恒等式。 2.难点 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。 (2)假设的利用,即如何利用假设证明当n=k+1时结论正确。 二、说教法 本课采用交往式的教学方法。交往教学法的特点是:在教师的组织启发下,师生之间、学生之间共同 探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动 性、平等性、开放性、合作性。这种教学方法的优点是学生心态开放,主体性和主动性凸现,独立的个性 得到张扬,因而创造性得到解放。 三、说学法 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习。本课学生的 学习主要采用下面的模式进行: 观察情景提出问题分析问题猜想与置疑(结论或解决问题的途径) 论证应用。 探究学习法的好处是学生主动参与知识的发生、发展过程。学生在探究问题过程中学习,在探究问题 的过程中激发学生的好奇心和创新精神;在探究过程中学习科学研究的方法;在探究过程中形成坚韧不拔

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。 一、用数学归纳法证明整除问题 用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。 例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. 证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立. (2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1), 由于3k -1-1是2的倍数,故18(3k - 1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除. 由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36. 二、用数学归纳法证明恒等式问题 对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 例2、是否存在常数c b a ,,,使得等式)(12 )1()1(32212222c bn an n n n n +++=+?++?+?对一切自然数n 成立?并证明你的结论. 解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得 ???? ?????++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11 ,3===c b a ,于是对3,2,1=n ,下面等式成立: )10113(12)1()1(32212222+++= +?++?+?n n n n n n 令222)1(3221+?++?+?=n n S n 假设k n =时上式成立,即)10113(12 )1(2+++= k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12 )1(++++++=k k k k k k

数列极限和数学归纳法练习(有-答案)

数列极限和数学归纳法 一、知识点整理: 数列极限:数列极限的概念、数列极限的四则运算法则、常见数列的极限公式以及无穷等比数列各项的和 要求:理解数列的概念,掌握数列极限的四则运算法则和常见数列的极限,掌握公比q 当01 q <<时无穷等比数列前n 项和的极限公式及无穷等比数列各项和公式,并用于解决简单的问题。 1、理解数列极限的概念:2 1 ,(1),n n n -等数列的极限 2、极限的四则运算法则:使用的条件以及推广 3、常见数列的极限:1 lim 0,lim 0(1),lim →+∞→+∞→+∞ ==<=n n n n q q C C n 4、无穷等比数列的各项和:1lim (01)1→+∞==<<-n n a S S q q 数学归纳法:数学归纳法原理,会用数学归纳法证明恒等式和整除性问题,会利用“归纳、猜想和 证明”处理数列问题 (1)、证明恒等式和整除问题(充分运用归纳、假设,拆项的技巧,如证明22389n n +--能被64 整除,2438(1)9k k +-+-)22 9(389)64(1)k k k +=--++),证明的目标非常明确; (2)、“归纳-猜想-证明”,即归纳要准确、猜想要合理、证明要规范,这类题目也是高考考察数列的重点内容。 二、填空题 1、 计算:1 12323lim -+∞→+-n n n n n =_____3_____。 2、 有一列正方体,棱长组成以1为首项、2 1 为公比的等比数列,体积分别记为ΛΛ,,, ,n V V V 21 =+++∞ →)(lim 21n n V V V Λ87 . 3、 20lim ______313n n n →∞+=+1 3 4、 数列的通项公式,前项和为,则 =______32 _______. 5、 设{}n a 是公比为 2 1 的等比数列,且4)(lim 12531=+???+++-∞→n n a a a a ,则=1a 3. 6、 在等比数列{}n a 中,已知123432,2a a a a ==,则()12lim n n a a a →∞ +++=L _16±______. 7、 数列{}n a 的通项公式是13(2)--+=+-n n n a ,则)(lim 21n n a a a +++∞ →Λ=___76 ____ . 8、已知数列{}n a 是无穷等比数列,其前n 项和是n S ,若232a a +=,341a a +=, 则lim n n S →∞ 的值为 163 . {}n a *1 , 1 ()1 , 2(1)n n a n N n n n =?? =∈?≥?+? n n S lim n n S →∞

数学归纳法在离散数学中的应用

数学归纳法在离散数学中的应用 在由一系列有限的特殊事例得出一般性结论的推理方法称为归纳法。而 数学归纳法则是用于证明与自然数n 有关的结论的归纳法:如果我们能够证明当n=1时结论是成立的,而且我们能用相同的方法由n=1命题成立证得n=2命题也成立;由n=2命题成立证得n=3成立;由n=3命题成立证得n=4成立…而且这个过程显然可以无穷进行下去。则我们就断言对于所有自然数n 命题都是成立的。数学归纳法的一般形式为,关键是归纳: 初始步):先证n =1时,结论成立; 归纳步):再证若假设对自然数n =k 结论成立(或者对所有小于等于n 的 自然数k 结论都成立),则对下一个自然数n =k+1结论也成立; 结论): 根据初始步和归纳步的证明得出结论对所有自然数都成立。 当结论与多个自然数有关时这样一类题目的时候,要注意的一点就是对所要进行归纳的自然数的选择。 例1、对群的任意元素 a,b ,及任何正整数m ,n, a m *a n = a n m + 问题解析:这是自然数有关的结论。但这里涉及到两个自然数,但由元素 的幂的定义以及m 和n 的作用的对称性,故只要任意选择其中一个即可。 证明:用数学归纳法对n 进行归纳证明。 对任何正整数m ,当n=0时,有 a m *a n = a m *a 0= a m *e= a 0+m 。 故结论成立。 假设当 n=k 时, a m *a k = a k m +。则当n=k+1时,由*满足结合律、 元素的幂的定义及归纳假设a m *a 1+k = a m *(a k *a)= (a m *a k )*a= a k m +*a= a )1(++k m ,即结论对n=k+1也成立。 故对任何正整数m,n, e a m *a n = a n m + n m m n m n n m n m a a a a a a a a +-+--------==*=*=*1 ) (1 1 1 ) () () () ( 例2、设d 1,d 2,…,d n 为n 个正整数,n ≥2,并且∑=n i i d 1 =2n-2。证明:存在 n 个顶点的树T 使它的顶点度数分别是d 1,d 2,…,d n 。

数学归纳法几种常见方式及其应用中存在的问题论文

数学归纳法几种常见方式及其应用中存在的问题 摘要 在处理数学问题时,经常涉及与任意自然数有关的一些命题,这些命题实质上是由无限个n取具体整数时得到的无限个命题组成的,我们往往不能逐一验证,这时,数学归纳法就是我们最常应用的一个有效的推理方法,为什么我们能够相信数学归纳法的证明呢?因为数学归纳法实质上是一种演绎推理法,华罗庚老先生是这样解释数学归纳法原理的:“我们采用形式上的讲法,也就是:有一批编了号码的数学命题,我们能够证明第1号命题是正确的;如果我们能够证明在第K 号命题正确的时候,第K+1号命题也是正确的,那么,这一批命题就全部正确.”其实,数学归纳法的正确性在我们学到的自然数的公理系统已经得到说明,他是与皮亚诺公理等价的一个本原性命题. 关键字数学归纳法常见方式及问题无限有限 数学归纳法(Mathematical Induction,通常简称为MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。是用来研究与正整数有关的数学问题,在高中数学中常用来证明等式(不等式)成立和数列通项公式成立。 数学归纳法一般分为以下几种常见的方式: (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤 (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (三)倒推归纳法(反向归纳法): (1)验证对于无穷多个自然数n命题P(n)成立, (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (四)螺旋式归纳法

经典易错题总汇编极限与数学归纳法

经典易错题会诊与试题预测(十四) 考点14 极限 ?数学归纳法 ?数列的极限 ?函数的极限 ?函数的连续性 ?数学归纳法在数列中的应用 ?数列的极限 ?函数的极限 ?函数的连续性 经典易错题会诊 命题角度 1 数学归纳法 1.(典型例题)已知a>0,数列{a n }满足a 1=a,a n+1=a+ n a 1 ,n=1,2,…. (Ⅰ)已知数列{a n }极限存在且大于零,求A=n n a ∞ →lim (将A 用a 表示); (Ⅱ)设b n =a n -A,n=1,2…,证明:bn+1=-;) (A b A b n n + (Ⅲ)若|bn|≤ n 21, 对n=1,2…都成立,求a 的取值范围。 [考场错解] (Ⅰ)由n n a ∞ →lim ,存在,且A=n n a ∞ →lim (A>0),对a a+1=a+ n a 1两边取极限得,A=a+A 1 . 解得A= .242+±a a 又A>0, ∴A=.2 4 2++a a

(Ⅱ)由a n +b n +A,a n+1=a+n a 1得b n+1+A=a+A b n +1. ∴.) (1111A b A b A b A A b A a b n n n n n +-=++-=++-=+ 即) (1A b A b b n n n +- =+对n=1,2…都成立。 (Ⅲ)∵对n=1,2,…|bn|≤ n 21,则取n=1时,21||1≤ b ,得.2 1|4(21|2≤++-a a a ∴14.2 1|)4(2 1|22≤-+∴≤-+a a a a ,解得2 3≥ a 。 [专家把脉] 第Ⅲ问中以特值代替一般,而且不知{ b n }数列的增减性,更不能以b 1取代b n . [对症下药] (Ⅰ) (Ⅱ)同上。 (Ⅲ)令|b 1|≤2 1,得.2 1|)4(2 1|2≤++-a a a ∴.2 1 |421| 2≤-+a a ∴.2 3 ,142≥≤-+a a a 解得 现证明当23 ≥ a 时,n n b 2 1||≤对n=1,2,…都成立。 (i)当n=1时结论成立(已验证)。 (ii)假设当n=k(k ≥1)时结论成立,即k k b 21||≤ ,那么.2 1 ||1|)(|||||1k k k k k A b A A b A b b ?+≤+= + 故只须证明2 1 | |1 ≤+A b A k ,即证A|bk+A|≥2对a ≥2 3成立 由于,42 2 4 2 2a a a a A -+=++= 而当a ≥23时,而当a ≥2 3时,.2,142≥∴≤-+A a a ∴,1212||||≥- ≥-≥+k k k b A A b 即A|b k +A|≥2. 故当a ≥2 3时,.21212 1||1 1++= ?≤k k k b 即n=k+1时结论成立。 根据(i)和(ii),可知结论对一切正整数都成立。

相关文档
最新文档