吸收式热泵原理和计算

空气源热泵工作原理分析

空气源热泵工作原理分析 一、热泵简要介绍 日常生活中泵的应用很多,泵是一种提高位能的装置,根据用途不同有水泵、气泵、油泵等。 热泵,顾名思义就是泵热的装置。热泵技术是近年来在全世界备受关注的新能源技术,目前较多地应用于冷暖空调机。 热泵按结构、用途等可以有多种分类,如果按所取热源方式,常见的可分为空气源热泵、水源热泵、地热热泵等。 三、空气源热泵原理介绍 空气源热泵热水器是空气源热泵的其中一种用途方式。空气源热泵系统的主要工作原理就是利用少量高品位的电能作为驱动能源,从低温热源(空气当中蕴涵的热能)高效吸收低品位热能并传输给高温热源(水箱里的水),达到了“泵热”的目的。 热泵技术是一种提高能量品位的技术,它不是能量转换的过程,不受能量转换效率极限100%的制约。利用热泵热水机释放到水中的热量不是直接用电加热产生出来的,而是通过热泵热水机把热源搬运到水中去的,所以平均能效比能达到400%以上。也就是1度电通过热泵能产生4度电的效果。

三、各种热水器的比较能源利用率 家用型空气源热泵系统结构示意图: 四、系统结构流程说明 压缩机→高压保护器→换向阀→热交换器(家用型水箱)→节流装置→蒸发器→低压保护器→气液分离器→压缩机。 商用型空气源热泵系统结构示意图:

商用型空气源热泵系统安装示意图: 五、斯米茨水源热泵介绍

多乐?斯米茨水源热泵是一种空气能产品,适用于宾馆、商场、办公楼、学校、别墅、住宅小区的制热及制冷。 多乐?斯米茨水源热泵优势特点: 1、高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。运行费用仅为普通中央空调的40~60%。 2、节水省地

热泵热水系统设计选型

热水系统设计一、热泵做方案需了解的信息 用水标准有特殊要求的请说明,否则按规范计算用水定额。

二、热泵选型参考数据 1、冷水计算温度表(表1) 2、广西省各类建筑物的热水定额表(表2)

3、广西2008年电费一览表(表3) 中央热水选型案例 一、工程概述 该建筑使用场所为酒店,共153间为标准客房,需要24小时提供生活55℃热水。 二、热负荷计算及机组选型 1、机组选型: 日用水量:30600 L/天

热量需求:Q=CM△T=1kcal/kg·℃×30600L/天×(55℃-15℃)=1224000Kcal (C=水的比热,M=用水量, △T=供应热水与自来水的温度差,冷水初始水温按冬季温度15℃考虑,热水出水水温为55℃) 在冬季环境温度10℃时,机组能满足系统负荷要求,加热时间一般为12~16小时。则供水所需的总制热功率为: P总= Q d÷860kcal/kw =1224000KcalKcal÷860kcal/kw =1423kw 设定每天加热时间13小时,则 机组的制热功率为P 时= P 总 /T=1423kw /13=109kw 选择格力空气源热水热泵机组KFRS-36SM/AS(制热量36kw)3台即可满足要求.机组实际每天工作时间: 1423÷(36kw×3)=13.2小时 2、水箱选型: 配置2个8吨和1个5吨不锈钢保温水箱(按高峰期70%的用水量),内胆选用SUS304-2B不锈钢;50㎜聚氨脂发泡保温;外用彩钢板保温,可满足用水需求。 3、方案说明 水箱分为1个5吨加热水箱和2个8吨保温。机组也分为加热机组和保温机组,2台用于加热,1台用于保温。 开始,加热水箱内补充进自来水,水满后机组启动开始加热。当加热水箱内热水温度达到设定温度且保温水箱不再高水位时,放水电磁阀打开,热水流入储水箱。之后,副水箱补充进自来水,重新开始加热。这个过程,直至主水箱的热水到达预定水位,同时副水箱内热水温度到达设定温度为止,机组停机。当储水箱的温度低于设定温度时,保温机组启动,加热至设定温度停机。 主机采用微电脑自动控制,可自动检测水箱温度,水箱温度达到设定值后自动停机,以最大限度节约能源。 机组配有完善的保护功能,适应各种恶劣的工作环境,无须专人值守,为业主节省人工费用。

吸收式热泵

吸收式热泵的工作原理 吸收循环按用途不同可以分为制冷、热泵、热变换器三类,其中后两者都可以称为吸收式热泵。通常所说吸收式热泵(Absorption heat pumps,简称AHP)指的是第一类吸收式热泵,利用高温热能驱动,回收低温热量,提高能源利用率;第二类吸收式热泵又称吸收式热变换器(Absorption heat transformer,简称AHT),AHT利用中低温废热驱动,将部分废热能量转移到更高温位加以利用。 暖通百科 无论是哪一类吸收式热泵,其节能的方法都是充分利用了低级能源,从而减少了高级能源的消耗。因此,利用吸收式热泵回收余热等低级能源,可提高一次能源利用率,同时还可以减少因燃料燃烧产生SO2、NO2、烟尘等所造成的环境污染。 吸收式热泵的工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。热泵在工作时,它本身消耗一部分能量,把环境介质中储存的能量加以挖掘,通过传热工质循环系统提高温度进行利用,而整个热泵装置所消耗的功仅为输出功中的一小部分,因此,采用热泵技术可以节约大量高品位能源。水从高处流向低处,热由高温物体传递到低温物体,这是自然规律。然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。同样,在能源日益紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等中的热量,热泵被用来将低温物体中的热能传送至高温物体,然后高温物体来加热水或采暖,使热量得到充分利用。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体)。 吸收式热泵工作原理示意图

一类、二类溴化锂吸收式热泵工作原理图

一类、二类溴化锂吸收式热泵工作原理图 一类吸收式热泵工作原理 一类吸收式热泵是以高品位热能(如蒸汽、高温热水、燃气等)为动力,回收低温热源(如废热水)的热量,制取较高温度的热水以供采暖或工艺等之需求的设备。 蒸发器中的冷剂水吸取废热水的热量后(即余热回收过程),蒸发成冷剂蒸汽进入吸收器。吸收器中溴化锂浓溶液吸收冷剂蒸汽变成稀溶液,同时放出吸收热,该吸收热加热热水,使热水温度升高得到制热效果。而稀溶液由溶液泵送

往发生器,被工作蒸汽(热水)加热浓缩成浓溶液返回到吸收器。浓缩过程产生的冷剂蒸汽进入冷凝器,继续加热热水,使其温度进一步升高得到最终制热效果,此时冷剂蒸汽也凝结成冷剂水进入蒸发器进入下一个循环,如此反复循环,从而形成了一个完整的工艺流程。 二类两段吸收式热泵工作原理

二类吸收式热泵通常情况下以温度较低的余热(或废热)做为动力,通过溴化 锂吸收式热泵特有功能“吸收热”,制取比余热温度高的热水的一种设备。这 种设备的一个典型特征是:在没有其它热源(或动力)的情况下,制取的热水 温度比余热(也是驱动热源)的温度要高。所以,二类吸收式热泵也称为升温 型吸收式热泵。 废热水以串连形式分别进入蒸发器2、蒸发器1和发生器1和发生器2。在蒸 发器1与蒸发器2中冷剂水吸取废热水的热量后(即余热回收过程),蒸发成冷剂蒸汽进入吸收器1与吸收器2,吸收器中溴化锂浓溶液吸收冷剂蒸汽变成 稀溶液,同时放出吸收热,该吸收热加热热水,使热水温度升高得到制热效果。而稀溶液流经换热器与浓溶液换热,温度降低后分别回到发生器1和发生器2。在压力较低的发生器内被废热水加,热浓缩成浓溶液后,再由溶液泵分别送往 吸收器1和吸收器2。产生的冷剂蒸汽则分别进入冷凝器1和冷凝器2。冷剂 蒸汽在冷凝器被低温冷却水凝结成冷剂水,由冷剂泵送到蒸发器1和蒸发器2,这样往复循环达到连续制取热水的目的。

风冷热泵机组工作原理

风冷热泵机组工作原理 风冷热泵机组是中央空调机组的一部分,它主要区别于风冷冷水机组,风冷热泵机组通过强制换热,来满足室内温度的需要。风冷热泵主要用于家用中央空调领域,大型中央空调则一般采用水冷热泵机组,这和风冷热泵工作原理是分不开的,下面我们一起来认识一下风冷热泵以及风冷热泵原理。 什么是风冷热泵 “热泵”是一种能从自然界的空气、水或土壤中获取低品位热能,经过电力做功,提供可被人们所用的高品位热能的装置。 风冷热泵的风为何物,即是流动的空气,流动的空气作为热媒的热泵,即是空气源热泵只是在设置上,风冷热泵可能借助风机等设备加速空气流动,空气源热泵多数为自然流通。 风冷热泵机组应当放在空气对流良好的地方也就是说,他应当就是放在室外的,放室内,空气不流通,那么空气就会越来越冷,最后效率越来越低从低温环境中吸收热量,高温环境获得热量。 风冷热泵机组工作原理图

风冷热泵工作原理 风冷热泵机组是空调系统中的主机,由于采用风冷冷凝器不需要冷却塔,而蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的、风冷热泵相对于空气源热泵来说他的能力要低一点,他的进出水温是5摄氏度左右(大部分公司的设置参数),而空气源的进出水温差能达到40摄氏度。 风冷热泵机组与风机盘管共同使用,前者提供冷水或热水,后者将冷水或热水通过热交换,吸出冷风或热风。我们可以形象的把风冷热泵机组比作是中央空调的大脑,如果大脑不工作了,那中央空调将丧失全部功能,系统也将停止运行。 本文由舒适100网编辑部整理发布

空气源热泵选型计算

4 主要设备选型计算 4.1冷源设备的选择 1)冷源形式:本项目冷源采用空气源热泵机组。 2)设备容量计算与配置 根据项目的设备布置条件,选用5台机组,其中3台布置在201号楼5楼,2台布置在181号楼7楼。项目计算冷负荷为2574kW,181号楼预留冷负荷1096kW,总冷负荷3670kW。选用单台制冷量为735kW的空气源热泵机组5台。 4.2热源设备的选择 1)热源形式:本项目冷源采用空气源热泵机组。 2)设备容量计算与配置 项目计算热负荷为1411kW,181号楼预留热负荷768kW,总热负荷2179kW。 项目空气源热泵容量根据夏季制冷工况选择,按冬季-2.2℃工况修正校核。 根据设备厂家资料,温度修正K1=0.72;融霜修正K2=0.9;机组单台制热量为Q=735*0.72*0.9=475kW。 机组制热量可以满足冬季制热需求。 4.3水泵选型计算 1)水泵流量计算 2)水泵扬程计算 a)最不利环路水系统简图 b)扬程计算汇总表 (注4.3-2) 3)水系统水力平衡 空调水系统各管道环路,通过设置平衡阀和调节阀使各并联环路之间的压力损失相对差额不大于15%。(注4.3-3) 4)水系统输送能效比计算

(注4.3-4) 5通风系统计算 5.1 通风系统风量计算(注5.1) 5.2通风系统水力计算与风机单位风量耗功率计算1)通风系统水力计算简图 2)通风系统水力计算表(注5.2-1) 3)通风系统风机单位风量耗功率计算(注5.2-2)

6空调系统计算 6.1 空调系统焓湿图计算 (注6.1) 6.2空调系统水力计算与风机单位风量耗功率计算 1)空调风系统水力计算简图 2)空调风系统水力计算表(注6.2-1) 3)空调风系统风机单位风量耗功率计算(注6.2-2) 7节能措施 7.1本工程夏季计算冷负荷XX kW,冬季计算热负荷XX kW。建筑面积为XX m2,单位面积冷负荷指标为XX W/m2, 单位面积热负荷指标为XX W/m2。 7.2主要冷(热)源设备及能效比 (注7.2) 7.3空调水系统输送能效比详4.3,均满足相关节能规范要求。 7.4普通通风系统风机单位风量耗功率详5.2,均满足相关节能规范要求。

除湿热泵的工作原理

除湿热泵的工作原理 首先从设备选型上,避免了原有单独分散的设备,而采用了带有除湿功能的带机电一体化控制的除湿热回收组。这种一体化游泳池过滤设备,具有避免管道泄漏、不需传统机房节省建筑空间、节能节水、运行费用较低、便于维护管理、出水水质高的优点。其主要组成部分是除湿热泵机组,它的工作原理如图所示。 设备的风机从室内游泳馆上空抽入温暖潮湿的空气,该空气流经蒸发器(除湿机)盘管,将热能传递给冷液态制冷剂,进行除湿降温。这种能量交换可使空气温度降至其露点以下,在蒸发器盘管上形成结露。凝结的水分流入设备的滴水盘中。液态制冷剂流过蒸发器膨胀之后就变为一种低温低压的气态制冷剂。然后低温气态制冷剂进入压缩机,经压缩低温低压的气态制冷剂变为高温高压气态。在进入压缩机期间,制冷剂吸收了用于操作压缩的能量。这种高温高压气态制冷剂流过空气再加热盘管(冷凝器)、池水冷凝器,或流过任选空调冷凝器(可以是风冷式,也可以是水冷式)。需要对空气加热时使用再加热盘管,高温的制冷剂与来自蒸发器的较冷的经过除湿的气流进行能量交换,这可使空气的温度升高达到加热空气的目的。如果池水需要加热,高温的制冷剂就流入池水冷凝器,将能量施加给进入的池水。在给池水加热的同时,高温的制冷剂也被冷凝成低温高压的液态。如果需要进行空气冷却时,制冷剂就绕过再加热盘管和池水冷凝器流向辅助风冷式泠凝器。让来自蒸发器的冷空气给室内游泳馆提供干燥凉爽的空气环境。热泵加热能力=消耗的电能+从环境中吸收的热量。目前国际先进的除湿热泵设备通过全自动微电脑精确控制室内相对湿度在65%±5%,确保室内不会因为相对湿度过高而导致结构腐蚀和装修破坏。

热泵选型计算书

1.淋浴系统热负荷设计 按水箱积进行计算 1.1系统每天耗热量计算: h kw t t C M Q r l r /0.7853600 1)1055(187.4150003600)(1=?-??=-=ρ 式中:Q ——淋浴系统计算日耗热量(kw/h ); 1M ——每天总热水量(L ); C ——水的比热,C)/(187.4??=kg kJ C ; r t ——热水温度(℃),)℃(55=r t ; l t ——冷水温度(℃);)℃(10=r t ; r ρ——热水密度(kg/L ); 1.2设计小时最大耗热量计算: h kw T t t C M K Q r l r h h /8.8124 36001)1055(187.4150005.23600)(1=??-???=?-=ρ 式中:h Q ——设计小时耗热量(kw/h ); T ——每日使用时间(h );24h ; h K ——小时变化系数;取值=2.5 3.2.4设计小时加热功率 kw T t t C M k K Q r r l r 0.9024 36001)1055(187.4150001.15.23600)(11 h =??-????=-?=ρ淋 式中:淋Q ——空气源热泵设计供热功率(kw ) 1k ——安全系数,10.1~05.11=k 取值1.1 综合上述:系统最大小时制热量90kw

1.3.2游泳池热水系统热负荷设计 室内游泳池水体面积长25 m与宽10m,面积250㎡,水深1.45m,容积为362.5 m3。 池水热负荷计算应包含恒温热负荷计算和初始加热负荷计算两部分,按照两个负荷中较大的一个进行加热主设备选型。 泳池水恒温所需热量,应为下列热量的总和: (1)、水面蒸发和传导损失的热量; (2)、池壁和池底和设备传导损失的热量; (3)、补充水加热需要的热量。 恒温热负荷计算过程如下: (1)水表面蒸发损失热量: Qz=r(0.0174Vi+0.0229)(Pb-Pc)A(760/B)=48619.44Kcal/h 式中:Qz——池水表面蒸发损失的热量(Kcal/h); r——与池水温相等的饱和蒸汽的蒸发汽化潜热(Kcal/kg); 580.6Kcal/kg Vi——池水面上的风速(m/s);按照0.5m/s ——与池水温相等的饱和空气的水蒸汽分压力(mmHg);30.1mmHg P b ——池水环境空气的水蒸汽压力(按照65%相对湿度)(mmHg); P c 19.5mmHg A——池水表面面积(㎡);250㎡ B——当地的大气压力(mmHg);760mmHg (2)、游池、游乐池水表面、池底、池壁、管道和设备等传导所损失的热量,按照游泳池水 表面蒸发损失热量20%计算; Qs= Qz×20%=48619.44 Kcal/h×20%=9723.89Kcal/h (3)补充水加热所需的热量,按下式计算: Qb=qb r( tr- tb )=326250Kcal Qb——补充水加热所需的热量(Kcal); qb ——每日的补充水量(L);按照5%补水量计算,18.125m3暨18125L

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

热泵的循环工作原理

热泵的工作原理 作为自然界的现象,正如水由高处流向低处那样,热量也总是从高温区流向低温区。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。 热泵在工作时,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,通过传热工质循环系统提高温度进行利用,而整个热泵装置所消耗的功仅为输出功中的一小部分,因此,采用热泵技术可以节约大量高品位能源。 在运行中,蒸发器从周围环境中吸取热量以蒸发传热工质,工质蒸汽经压缩机压缩后温度和压力上升,高温蒸气通过冷凝器冷凝成液体时,释放出的热量传递给了储水箱中的水。冷凝后的传热工质通过膨胀阀返回到蒸发器,然后再被蒸发,如此循环往复。 余热利用的强力工具--热泵 水从高处流向低处,热由高温物全传递到低温物体,这是自然规律。然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。同样,在能源日益紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等中的热量,热泵被用来将低温物体中的热能传送高温物体中,然后高温物体来加热水或采暖,使热量得到充分利用。 热泵的工作原理和家用空调、电冰箱等的工作原理基本相同,通过流动媒体(以前一般为氟利昂,现天上由替代氟利昂所代替)在蒸发器、压缩机,冷凝器和膨胀阀等部品中的气相变化(沸腾和凝结)的循环来将低温物体的热量传递到高温 物体中去。 具体工作过程如下:①过热液体媒体在蒸发器内吸收低温物体的热量,蒸发成气体媒体。②蒸发器出来的气体媒体液压缩机的压缩,变为高温高压的气体媒体。 ③高温高压的气体媒体在冷凝器中将热能释放给给高温物体、同时自身变为高压液体媒体。④高压液体媒体在膨胀阀中减压,再变为过热液体媒体,进入蒸发器,循环最初的过程。 基本原理 热泵热水器的基本原理:它主要是由压缩机、热交换器、轴流风扇、保温水箱、水泵、储液罐、过滤器、电子膨胀阀和电子自动控制器等组成。接通电源后,轴流风扇开始运转,室外空气通过蒸发器进行热交换,温度降低后的空气被风扇排出系统,同时,蒸发器内部的工质吸热汽化被吸入压缩机,压缩机将这种低压工质气体压缩成高温、高压气体送入冷凝器,被水泵强制循环的水也通过冷凝器,被工质加热后送去供用户使用,而工质被冷却成液体,该液体经膨胀阀节流降温后再次流入蒸发器,如此反复循环工作,空气中的热能被不断“泵”送到水中,使保温水箱里的水温逐渐升高,最后达到55℃左右,正好适合人们洗浴,这就是空气源热泵热水器的基本工作原理

热泵机组的选型与计算

机组的选型与计算 本计算过程仅针对学生宿舍1、2、9栋热泵热水系统,其他系统计算过程相同。 1、日用水量:84960L/d (学生宿舍1栋18800L/d ,学生宿舍2栋17200L/d ,学生宿舍9栋48960L/d ); 2、冷水温度:10~15℃,机组出水温度:55℃;△t=45℃; 3、娄底市气象参数:全年平均气温16.5~17.5℃,年极端最高气温40.1℃,年极端最低气温-12.1℃; 4、机组的选型和计算 4.1、最高日耗热量,按下公式(1)计算: )360024/()(?-=L r r r d t t C Q Q ρ · ······························· 式(1) 式中:Q d ——最高日平均秒耗热量(KW ); Q r ——最高日热水量(m 3/d );取84.960 m 3/d ; C ——水的比热,C=4187(kJ/kg ·℃); ρr ——热水密度(kg/L );取0.9857; t r ——热水设计温度(℃),取50℃; t L ——冷水设计温度(℃),取10℃。 代入式(1),Q d =84.960×4187×0.9857×(50-10)/(24×3600)=162.33(KW) 4.2、热泵机组制热量,按下式(2)计算,设热泵机组在最不利工况下的运行时间为每 天T l =18h,则: 11/24T Q k Q d g ?= · ··················································· 式(2) 式中:Q g ——热泵机组设计小时平均秒供热量(KW ); T 1——热泵机组设计工作时间(h )。T 1应根据用水规律、低温热源和系统经济 性等因素综合考虑确定。全日供水时,建议取12~20(h );定时供水时, T 1由设计人定; k 1——安全系数,可取K1=1.05~1.10; 代入式(2),Q g =24×1.05×162.33/18=227.267(KW) 4.3、机组选型配比,考虑温度及结霜的影响取综合影响系数为0.7。则机组的名义制热 量为: Q=227.267/0.7=284.08(kW )

(完整版)空气源热泵机组的设计选型总结

空气源热泵机组的设计选型总结 一、热水量及耗热量的计算 1、日耗热量的计算 依据规范《建筑给水排水设计规》GB50015-2003,全日供应热水的宿舍( I 、 II 类)、 住宅、别墅、酒店式公寓、招待所、培训中心、旅馆、宾馆的客房 ( 不含员工 ) 、医院住院部、养老院、幼儿园、托儿所 ( 有住宿 ) 、办公楼 等建筑的集中热水供应系统的设计日耗热量应按下式计算 : )(t t q Q l r r r d m c -???=ρ 式中 Q d —— 日耗热量 ,KJ/ d ; C —— 水的比热,4.187 KJ/ k g · ℃ q r —— 热水用水定额 L/ 人·d 或 L/ 床·d m —— 用水计算单位数 (人数或床位数) ρr —— 热水密度 ,kg/L t r —— 热水的温度,t r = 60℃ t l —— 冷水温度 ,℃ 2、设计日用水量 )(11 t t Q q l r r d rd c -=ρ 式中 q r d —— 设计日用水量 ,L/ d ; Q d —— 日耗热量 ,KJ/ d ; C —— 水的比热,4.187 KJ/ k g · ℃ ρr —— 热水密度 ,kg/L m —— 用水计算单位数 (人数或床位数) t r 1 —— 设计热水的温度,℃ t l 1 —— 设计冷水温度 ,℃ 3、设计小时耗热量

全日供应热水的宿舍( I 、 II 类)、 住宅、别墅、酒店式公寓、招待所、培训中心、旅馆、宾馆的客房 ( 不含员工 ) 、医院住院部、养老院、幼儿园、托儿所 ( 有住宿 ) 、办公楼 等建筑的集中热水供应系统的设计小时耗热量应按下式计算: T c m r l r r h h t t q K Q ρ)(-= 式中 Q h —— 设计小时耗热量 ,KJ/ h ; C —— 水的比热,4.187 KJ/ k g · ℃ q r —— 热水用水定额 L/ 人·d 或 L/ 床·d m —— 用水计算单位数 (人数或床位数) ρr —— 热水密度 ,kg/L t r —— 热水的温度,t r = 60℃ t l —— 冷水温度 ,℃ T —— 每日使用时间,h K h —— 小时变化系数 ,见下标6.4.2 选取 4、设计小时用水量 )(t t Q q l r r h rh c -=ρ

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长 课题:空气源工作原理

㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就是通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家和市场集中分布在长江以南。主要生产厂家集中在珠江三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分 热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)→压缩→冷凝(放出热量)→节流→再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀是一种节流装置,控制制冷剂的流量,可提高系统的能效比和可靠性。 风机主要是起加强气体流通量的作用,是依靠输入的机械能,提高气体压力并排送气体的设备。 制冷剂是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术是基于逆卡诺循环原理实现的;如同在自然界中水总是由高处流向低处一样,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上是一种热

溴化锂热泵介绍

第一类溴化锂吸收式 热泵介绍

一、第一类溴化锂吸收式热泵 第一类吸收式热泵是利用工质的吸收循环实现热泵功能的一种装置,以少量的高温热源(蒸汽、燃气)为驱动热源,溴化锂溶液为吸收剂,水为载冷剂,回收利用低温热源(废热水)的热能,制取所需的工艺或采暖用高温热媒,实现从低温向高温输送热能的设备。 第一类吸收式热泵(AHP):也称增热型热泵,是利用少量的高温热源,提取低温热源的热量,产生大量能被利用的中温热能。即利用高温热能驱动, 把低温热源的热能提高到中温,从而提高了热能的利用效率。 驱动热源+ 废热源= 用热需求 1)可利用的废热:一般可以使用温度在10℃~70℃的废热水、单组分或多组分气体或液体。 2)可提供的热媒:可获得比废热源温度高40℃左右,不超过100℃的热媒。 3)驱动热源:0.1~0.8MPa蒸汽、燃气或高温烟气。 4)制热COP在1.6~1.8左右:就是利用1MW的驱动热源可以得到1.8MW左右的生产生活需要的热量。 5)废热水进出水温度越高获得的热媒温度越高,效率越高。 二、第一类吸收式热泵工作原理图

三、第一类吸收式热泵采暖原理图 四、吸收式热泵供暖方案论证说明 1、电厂余热 火力发电厂在能量传送和转化过程中是不可能把所有燃烧煤的

能量转化成电能的。按1Kg 标煤(7000 kcal/Kg )发电3度电(860 kcal/KW)考虑,发电厂的煤的能量只有35%左右转化成为电能时。除去设备及管道能量损失,电厂无论是水冷还是空冷,都将冷凝热排入大气,近60%的能量通过锅炉烟筒和汽轮机凝汽器的循环冷却水排放到环境当中。 排放到环境中的能量其中乏汽造成比例非常大,如果机组容量为25MW,那么循环水量每天为2424t ,如果温升为8~10度,那么每年向大气中排放掉的热量相当于3.4万吨标煤的发热量。 热力学第二定律告诉我们,一个巨大的热量损失时热机生产过程中不可避免的,因此只有通过其他途径进行利用,以期全部或部分回收,才能提高综合热效率,降低电厂煤耗,同时减少对环境的污染。 现在我们可以通过溴化锂吸收式热泵将这些以往排放到环境中的热量进行回收,在冬季时用作供暖使用。利用吸收式热泵回收汽机 排汽中量大、集中、品位低的冷凝热,实现城市集中供热,这种供热方式节能、节水、环保。每发25MW 电可以回收汽机的冷凝热30MW 。能量输入 100% 转变为电力 30-40% 循环水(通过冷却塔、海水 或河水)带走的热量 50-60% 其他损失 10-20%

地源热泵工作原理图讲解

地源热泵工作原理图讲 解 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

地源热泵工作原理图讲解 地源热泵工作原理图讲解 今天为大家介绍一下关于地源热泵以及地源热泵工作原理的详细讲解。地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。 地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。下面安徽绿能通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。 地源热泵原理简述 作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用着名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。 地源热泵原理图 地源热泵工作原理

地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。 夏季通过机组将房间内的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,大地土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。 地源热泵原理图 冬季地源热泵工作原理 冬天热泵中制冷剂正向流动,压缩机排出的高温高压R22气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压变为低温低压的液体进入蒸发器,从地下循环液中吸取低温热后相变为低温低压的饱和蒸汽后进入压缩机吸气端,由压缩机压缩排出高温高压气体完成一个循环。如此循环往复将地下低温热能“搬运”到集水器,从而不断的向用户提供45 ℃ -50 ℃的热水。 夏天热泵中制冷剂逆向流动,与用户换热的冷凝器变为蒸发器从集水器中的低温水(7 -12 ℃)提取热能,与地下循环液换热的蒸发器变为冷凝器向地下循环液排放热量,循环液中热量再向地下低温区排放,如此循环往复连续地向用户提供7 -12 ℃ 的冷水。

热泵工作原理

热泵热水器原理 热泵热水器机组根据逆卡诺循环原理,采用极少的电能驱动,通过吸热工质把空气中零下15以上的空气热源传递到空气发生器导致空气交换器内的冷媒受热升温气化产生的热量被释放到水中,致使水温升高。 一、热泵热水器节能原理: 空气源热泵热水器是目前世界上能效比最高的热水设备之一。它根据逆卡诺循环原理,采用电能驱动,通过制冷剂把自然界的空气、水等其它难利用的低品位热能吸收,提升为可用的高品位热能对水进行加热的设备。空气源热泵热水器一般由压缩机、蒸发器、过滤器、节流器、储液罐、冷凝器、储水箱等几个部组成。 二、热泵热水器工作原理: 采用制冷剂的能量传递特点,让制冷剂压缩机的作用下循环工作,不断地在蒸发器中被蒸发而吸收空气(或水)中的热能,同时又不断地在冷凝器中释放热量从而使制冷剂循环工作,最大程度地减少热传递所需的用电量,达到高效节能的目的。 三、热泵热水器机组构成、原理及运行: 热泵式热水器机组是由一个制冷循环组成,包括主机和冷凝器两部分。其中主机部分包括蒸发器、风扇、压缩机及膨胀阀;冷凝器为内放冷凝盘管的保温箱。制冷剂在蒸发器内吸收外部空气的热量,通过热泵循环在冷凝盘管内释放热量,加热水箱内的水。水箱的保温层采用闭孔橡胶海绵或聚氨脂发泡,且具有良好的保温性能。 热泵热水器机组设备内专置一种吸热媒质——冷媒(制冷剂),它在液化的状态下常温低于零下20℃,故此,它与外界温度存在着温差,冷媒吸收了外界的温度,在蒸发器内部产生压力并蒸发汽化,通过热交换器(热泵)的工作,使冷媒从汽化状态转化为液化状态时,客观存在的热量便释放给热泵热水器机组水箱中的储用水。电只用在使热能释放出来,而不是用在直接加热,故用电很少,在夏季气温高时,生产一吨热水约损耗5——6度电,冬季寒冷的天气约损耗20——25度电。 空气能热泵热水器是创新一代的热水设备,是一种高效集热并转移热量的装置,用电能驱动热泵,由热泵装置中的压缩机、电子膨胀阀、干燥过滤器、四通阀、蒸发器、套管冷凝器、风机等主要部件组成,它成功地运用了逆卡诺原理,压缩机从蒸发器中吸入低温低压气体制冷剂,通过做功将制冷剂压缩成高温高压气体,高温高压气体进入冷凝器与水交换热量,在冷凝器中被冷凝成低温液体而释放出大量的热量,水吸收其释放出的热量而温度不断上升。被冷凝的高压低温液体经膨胀阀节流降压后,在蒸发器中通过风扇的作用,吸收周围空气热量从而挥发成低压气体,又被吸入压缩机中压缩,这样反复循环,从而制取热水。

芬尼克兹空气能热泵热水器应用及选型

芬尼克兹(PHNIX)空气能热泵热水器的应用及选型 随着中国城乡建筑的迅速发展,人们生活水平迅速提高,家用卫生热水的需求量也越来越大。在20世纪80年代中期开始,各种家用热水器应运而生,其中有电热水器、煤气热水器、太阳能热水器等,各种热水器在家庭中的使用正日益普遍,能源浪费也越来越严重。 近几年空气源热泵热水机组的出现,在节能、环保、安全方面具有很多的优点,在家用和商用制取生活热水方面,得到了大力的发展和应用。芬尼克兹(PHNIX)作为一家综合利用空气源、水源、太阳能、风能,提供热水/空调一揽子解决方案、创新型、国际化的能源公司。近产品70%以上销往欧洲、澳洲、北美等世界发达国家,经过芬尼克兹人的努力PHNIX 已经成为消费者10大满意品牌,高科技创新型企业,创新节能型企业。为了让越来越多的用户能熟练选用PHNIX牌空气源热泵,下面的内容将详细地介绍芬尼克兹空气能的应用及选型。 一、PHNIX直热式空气源热泵热水机特点 直热供水: 1)产水速度快,开机30秒出水温可达60℃; 2)供水温度稳定,确保用水舒畅、享受; 3)冷凝效果好,确保机组安全与高效; 4)可减少储水箱容积,降低工程投资; 循环恒温: 1)当储水箱水温长时间不用,水温降低后机组会自动启动循环加热,保证水箱内水温恒定,不会造成冷水浪费。 自主控温: 1)根据进出水温度和流量计的信号,能准确控制流量; 2)气候变化、机组制热能力变化,但出水温度不变; 3)自动调节,自主控温; 新智能除霜: 先进的除霜控制模式,确保有霜除霜,无霜不误除。原来的除霜进入条件: 1)盘管温度<-7℃; 2)除霜间隔>45分钟。 改进后的除霜条件: 1)盘管温度<-7 ℃; 2)除霜间隔>45分钟。 3)制热量衰减30% 使用电阻式多段水位传感器: 确保产水量符合用水量的需求。 目标:要多少水,产多少水, 有了精确的水位传感器,这一目标有了实现的可能。 高效专利热交换器: 1)满液式蒸发设计; 2)高翅片、内螺纹高效换热管,相同管长换热面积增加,提高整机能效; 防冻能力强: 1)集板式换热器、套管换热器、壳管换热器之优点,克服之缺陷;具有高效率,防冰冻能力 2)具有较强的自动除垢能力(换热管培面图)

低温热源驱动溴化锂第二类吸收式热泵的实验研究

低温热源驱动溴化锂第二类吸收式热泵的实验研究 张伟,朱家玲,董瑞芬,李志强,刘立伟 (天津大学地热研究培训中心,天津300072) 摘要本文根据溴化锂第二类吸收式热泵系统的传热、传质平衡以及各部件的传热关系,建立了系统的稳态数学模型。利用模拟计算得出了相应的设计参数,建立了热负荷为小型LiBr-H2O第二类吸收式热泵系统实验台,对废热驱动的实验系统在不同运行工况下进行了实验研究。分析了系统主要运行参数各换热设备的进口水温和质量流量对系统性能的影响趋势和规律。 关键词第二类吸收式热泵;实验研究;地热余热;回收 0 引言 地热能是来自地球深处的可再生能源,它作为一种新型能源越来越受到人们的关注,其应用也越来越广泛。天津地区拥有200多眼地热井,供暖面积达1000多万平方米,占全国地热供热总数的77%。但其中相当数量的旧有供暖系统,存在冬季运行尾水排放温度较高的问题;同时这些老供暖系统由于受建筑等条件的限制,不能采用地板辐射,风机盘管等低温散热设备,仅能利用原有散热温度较高的铸铁散热器供暖。在这种情况下,如果要充分利用这部分地热废热,提高地热利用率,就需要将这部分低品味废热提升温度,以利于回收再投入使用。而第二类吸收式热泵技术是回收低品位热能的有效技术之一,它以中、低温的废热作为驱动热源产生较高温度的热源,而不需要消耗其他高品位能源,节能效果显著。所以对旧有地热供暖系统进行改造,需要开展低温热源驱动溴化锂第二类吸收式热泵的实验研究。 1第二类吸收式热泵循环的模拟计算 第二类吸收式热泵(Absorption Heat Transformer,简称AHT)又称吸收式热变换器,靠输入的中、低温热能(废热)驱动系统运行,将其中一部分能量供给高温热源,另外一部分释放给温度更低的低温热源。该系统的运行是不需要额外的高品位热源的。 图1为溴化锂第二类吸收式热泵循环在焓—浓度图上的表示。图中6→2是吸收过程;2→7是溴化锂稀溶液在溶液热交换器中的换热过程;7→5是稀溶液在发生器被加热至沸腾;5→4是稀溶液的发生过程;4→8是浓溶液在溶液热交换器中的换热过程;8→6是浓溶液在吸收器中的换热过程;4’点是发生器中的过热蒸汽的状态;1’点是蒸发器中冷剂蒸汽的状态。

空气源热泵的工作原理

空气源热泵的工作原理 一、空气源热泵简介 1、什么是空气源热泵 空气源热泵又叫空气源热泵热水器,顾名思义就是把空气中的热量通过冷媒搬运到水中,传统的电热水器和燃气热水器是通过消耗燃气和电能来获得热能,而空气能热水器是通过吸收空气中的热量来达到加热水的目的,在消耗相同电能的情况下可以吸收相当于三倍电能左右的热能来加热水。 热泵组成四大件:蒸发器、压缩机、冷凝器和节流装置四个部件。 2、空气源热泵工作原理 空气能热水器是按照"逆卡诺"原理工作的,具体来说,就是"室外机"作为热交换器从室外空气吸热,加热低沸点工质(冷媒)并使其蒸发,冷媒蒸汽经由压缩机压缩升温进入水箱,将热量释放至其中的水并冷凝液化,随后节流降压降温回到室外的热交换器进入下一个循环。简单来说是吸收空气中的热量来加热水。

运用热泵工作原理制热,与空调制冷相反--国家制冷标准是1000瓦,电制冷2800瓦。根据热平衡的原理,同时最少产生2800瓦的热量,加上输入的1000瓦电,实际产生的热量在3000--4000瓦,把这些热量输送到保温水箱,其耗电量只是电热水器的四分之一(电 热水器即使热效率100%,输入1000电也只有1000瓦的热)。

二、热力学定律 1、热力学第一定律 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。 在热力学中,系统发生变化时,设与环境之间交换的热为Q,与环境交换的功为W,可得热力学能(亦称内能)的变化为 ΔU = Q+ W 热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。 2、热力学第二定律 克劳修斯表述:不可能把热量从低温物体传向高温物体而不引起其它变化。

第一类溴化锂吸收式热泵的设计

毕业设计(论文)中文摘要

2012届本科毕业设计

毕业设计(论文)外文摘要

目录 1 绪论 (1) 1.1 热泵的发展简介 (1) 1.2 热泵的热源及其分类 (1) 2 第一类溴化锂热泵特点及原理 (2) 3 溴化锂吸收式热泵的理论计算 (6) 3.1 溴化锂溶液的物理化学特性 (6) 3.2 吸收式热泵的设计计算 (8) 3.2.1热力计算 (8) 3.2.1.1参数选定 (9) 3.2.1.2设备热负荷计算 (12) 3.2.1.3各个流体流量的统计 (13) 3.2.2吸收热泵各部件的传热参数计算 (14) 3.2.3各换热设备管程数、单管程管子数计算 (17) 4 第一类溴化锂吸收式热泵结构及装配示意图 (20) 4.1各换热器配管接管及其法兰设计计算 (21) 4.2发生器和冷凝器的装配示意图 (23) 4.3吸收器和蒸发器的装配示意图 (24) 4.4溶液热交换器的装配示意图 (25) 4.5溴化锂吸收式热泵总装配示意图 (26) 4.6本章小结 (26) 全文总结 (27) 参考文献 (28) 致谢............................................. 错误!未定义书签。

主要符号Cp 定压比热,kJ/(kg·K) COP 性能系数 K 传热系数,W/(m·K) H 焓,kJ/kg D 制冷工质质量流量,kg/s t 温度,℃ △t 传热温差,℃ P 压力,Pa △P 压力差,Pa Q 总的热负荷,KW a 溶液循环倍率 F 表面积,2 m L 管长,m XL 吸收器出口稀溶液浓度,% XH 发生器出口浓溶液浓度,% δ圆管壁厚,m d 管径,m 下角标: e 蒸发器 g 发生器 c 冷凝器 a 吸收器 ex 溶液换热器 i 内侧 o 外侧 l 液体 v 蒸汽

相关文档
最新文档