黄冈2013高考数学【不等式】复习讲义

黄冈2013高考数学【不等式】复习讲义
黄冈2013高考数学【不等式】复习讲义

不等式

【知识图解】

【方法点拨】

不等式是高中数学的重要内容之一,不等式的性质是解、证不等式的基础,两个正数的算术平均数不小于它们的几何平均数的定理及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用.解不等式是研究方程和函数的重要工具,不等式的概念和性质涉及到求最大(小)值,比较大小,求参数的取值范围等,不等式的解法包括解不等式和求参数,不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点.

1. 掌握用基本不等式求解最值问题,能用基本不等式证明简单的不等式,利用基本不等式

求最值时一定要紧扣“一正、二定、三相等”这三个条件。

2. 一元二次不等式是一类重要的不等式,要掌握一元二次不等式的解法,了解一元二次不

等式与相应函数、方程的联系和相互转化。

3. 线性规划问题有着丰富的实际背景,且作为最优化方法之一又与人们日常生活密切相

关,对于这部分内容应能用平面区域表示二元一次不等式组,能解决简单的线性规划问题。同时注意数形结合的思想在线性规划中的运用。

等式

一元二次不等式

基本不等式

二元一次不等式组

应用 解法

应用 几何意义

应用 证明

第1课 基本不等式

【考点导读】

1. 能用基本不等式证明其他的不等式,能用基本不等式求解简单的最值问题。

2. 能用基本不等式解决综合形较强的问题。 【基础练习】

1.“a >b >0”是“ab <22

2

a b +”的充分而不必要条件(填写充分而不必要条件、必要而不充分

条件、充分必要条件、既不充分也不必要条件)

2.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为

1

32

- 3.已知,x y R +∈,且41x y +=,则x y ?的最大值为

16

1 4.已知lg lg 1x y +=,则52

x y

+的最小值是2 【范例导析】 例1.已知54x <

,求函数14245

y x x =-+-的最大值. 分析:由于450x -<,所以首先要调整符号. 解:∵5

4

x <∴540x -> ∴y=4x-2+

145x -=154354x x ?

?--++ ?-?

?≤-2+3=1 当且仅当1

5454x x

-=

-,即x=1时,上式成立,故当x=1时,max 1y =. 例2.(1)已知a ,b 为正常数,x 、y 为正实数,且

1a b

+=x y

,求x+y 的最小值。 (2) 已知00>>y x ,,且302=++xy y x ,求xy 的最大值.

分析:问题(1)可以采用常数代换的方法也可以进行变量代换从而转化为一元函数再利用基本不等式求解;问题(2)既可以直接利用基本不等式将题目中的等式转化为关于xy 的不等式,也可以采用变量代换转换为一元函数再求解. 解:(1)法一:直接利用基本不等式:a b bx ay x +y =(x +y)(

+)=a +b++x y y x

a+b+2ab 当且仅当ay bx =x y a b +=1x y

???

?

???,即x =a +ab y =b+ab ?????时等号成立 法二: 由

a b +=1x y 得ay x =

y -b

ay a(y b )ab

x y y y y b y b

ab ab a y (y b )a b

y b y b -++=

+=+--=++=+-++--∴

∵ x>0,y>0,a>0 ∴ 由

ay

y -b

>0得y-b>0 ∴ x+y≥2ab +a+b 当且仅当ab

=y -b y -b a b +=1x y

???

????,即y =b+ab x =a +ab

?????时,等号成立

(2)法一:由302=++xy y x ,可得,)300(230<<+-=

x x

x

y . x x x x x x xy +-+++-=+-=264)2(34)2(23022 ??

????+++-=264)2(34x x 注意到162

64

)2(2264)2(=+?+≥+++x x x x .可得,18≤xy . 当且仅当2

64

2+=+x x ,即6=x 时等号成立,代入302=++xy y x 中得3=y ,故xy 的最大值为18.

法二:+

∈R y x , ,xy xy y x ?=≥+∴22222, 代入302=++xy y x 中得:3022≤+?xy xy 解此不等式得180≤≤xy .下面解法见解法一,下略.

点拨:求条件最值的问题,基本思想是借助条件化二元函数为一元函数,代入法是最基本的方法,也可考虑通过变形直接利用基本不等式解决.

【反馈练习】

1.设a >1,且2log (1),log (1),log (2)a a a m a n a p a =+=-=,则p n m ,,的大小关系为m >p

>n

2.已知下列四个结论:

①若,,R b a ∈则22=?≥+b

a a

b b

a a

b ; ②若+∈R y x ,,则y x y x lg lg 2lg lg ≥+;

③若,-∈R x 则4424-=?-≥+x

x x

x ; ④若,-∈R x 则222222=?≥+--x x x x 。

其中正确的是④ 3.已知不等式1()()9a

x y x y

++

≥对任意正实数,x y 恒成立,则正实数a 的最小值为6 4.(1)已知:0>>x y ,且:1=xy ,求证:222

2≥-+y

x y x ,并且求等号成立的条件.

(2)设实数x ,y 满足y +x 2=0,0

x y

a log a +a ≤1log 28

+

a 。 解: (1)分析:由已知条件+∈R y x ,,可以考虑使用均值不等式,但所求证的式子中有

y x -,无法利用xy y x 2≥+,故猜想先将所求证的式子进行变形,看能否出现

)

(1

)(y x y x -+

-型,再行论证.

证明:,1.0,0=>-∴>>xy y x y x 又

y x xy y x y x y x -+-=-+∴2)(222y x y x -+-=2)(.22)

(2

)(2=-?-≥y x y x 等号成立

当且仅当)

(2

)(y x y x -=

-时..4,2,2)(222=+=-=-∴y x y x y x

,6)(,12=+∴=y x xy .6=+∴y x 由以上得2

2

6,226-=

+=

y x 即当2

2

6,226-=

+=

y x 时等号成立. 说明:本题是基本题型的变形题.在基本题型中,大量的是整式中直接使用的均值不等式,

这容易形成思维定式.本题中是利用条件将所求证的式子化成分式后再使用均值不等式.要注意灵活运用均值不等式. (2)∵ y

x

a a +≥81)21x (212

x x y

x 22

a

2a 2a

2+---+=

=

81)21x (212+--≤8

1

,0

8

1

)21x (212a 2+--≥8

1

a 2 ∴ y

x a a +≥8

1a 2

∴ )a a (log y

x a +≤8

12log )a 2(log a 8

1a +

=

第2课 一元二次不等式

【考点导读】

1. 会解一元二次不等式,了解一元二次不等式与相应函数、方程之间的联系和转化。

2. 能运用一元二次不等式解决综合性较强的问题. 【基础练习】 1.解不等式:

(1)2

3440x x -++> (2)

213

022

x x ++> (3)()()21322x x x x +->-- (4)22

3

2142-<---<-x x

解:(1)原不等式化为2

3440x x --<,解集为223

x -<<

(2)原不等式化为2

230x x ++>,解集为R (3)原不等式化为2

10x x ++<,解集为?

(4)由2

22221342101322

24,,1322250222

x x x x x x x x x x ?++??<++??得得

得2121,6161

x x x ?>-<--??

--<<-??或 (61,21)(21,61)x ∴∈------

点拨:解一元二次不等式要注意二次项系数的符号、对应方程?的判断、以及对应方程两根大小的比较. 2. 函数)1(log 22

1-=

x y 的定义域为 )(

2,11,2??--??

3..二次函数y=ax 2+bx+c (x ∈R )的部分对应值如下表:

则不等式ax 2+bx+c>0的解集是),3()2,(+∞--∞

4.若不等式02

>++c bx x 的解集是}13{-<>x x x 或,则b =__-2____ c =__-3____. 【范例导析】 例.解关于x的不等式

)1(12

)

1(≠>--a x x a

分析:本题可以转化为含参的一元二次不等式,要注意分类讨论.

解:原不等式等价于

02

)

2()1(>----x a x a ∵1≠a ∴等价于:

()02

121>-?

??

??----x a a x a (*)

a>1时,(*)式等价于

2

12

----

x a a x >0∵11112--=--a a a <1∴x <12--a a 或x >2 a<1时,(*)式等价于

2

12----

x a a x <0由2-12--a a =1-a a 知: 当02,∴2

--a a ;

当a<0时,12--a a <2,∴12

--a a

当a =0时,当1

2

--a a =2,∴x ∈φ

综上所述可知:当a<0时,原不等式的解集为(12

--a a ,2);当a =0时,原不等式的解集

为φ;当0

2

--a a );当a>1时,原不等式的解集为(-

∞,1

2--a a )∪(2,+∞)。

思维点拨:含参数不等式,应选择恰当的讨论标准对所含字母分类讨论,要做到不重不漏.

【反馈练习】

1.若关于x 的不等式2

10,ax ax a ++-<的解集为R ,则a 的取值范围是(],0-∞

2.不等式2

20ax bx ++>解集为11

23

x -<<,则ab 值分别为-12,-2 3.若函数f(x) =

222

1x ax a

---的定义域为R ,则a 的取值范围为[]10-,

x -3 -2 -1 0 1 2 3 4 y

6

-4

-6

-6

-4

6

4.已知M 是关于x 的不等式2x 2+(3a -7)x +3+a -2a 2<0解集,且M 中的一个元素是0,求实数a 的取值范围,并用a 表示出该不等式的解集. 解:原不等式即(2x -a -1)(x +2a -3)<0,

由0=x 适合不等式故得0)32)(1(>-+a a ,所以1-

3>a . 若1-

5

2132>+-=+-

+-a a a ,∴2123+>-a a ,

此时不等式的解集是}232

1

|{a x a x -<<+; 若23>a ,由4

5

)1(252132-<+-=+-+-a a a ,∴2123+<-a a ,

此时不等式的解集是}2

1

23|{+<<-a x a x 。

第3课 线性规划

【考点导读】

1. 会在直角坐标系中表示二元一次不等式、二元一次不等式组对应的区域,能由给定的平

面区域确定所对应的二元一次不等式、二元一次不等式组.

2. 能利用图解法解决简单的线性规划问题,并从中体会线性规划所体现的用几何图形研究

代数问题的思想. 【基础练习】

1.原点(0,0)和点P (1,1)在直线0x y a +-=的两侧,则a 的取值范围是0

2. 设集合{}

(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( A )

12

111

2

o

y

x 12

1

1

12

o

y

x

12

1112

o

y

x

1

21

1

12

o

y

x

A B C D

3.下面给出四个点中,位于1010x y x y +-?

表示的平面区域内的点是( C )

A.(02),

B.(20)-, C.(02)-, D.(20),

4.由直线x+y+2=0,x+2y+1=0,2x+y+1=0围成的三角形区域(不含边界)用不等式表示

为 20

210210x y x y x y ++>??

++

5.在坐标平面上,不等式组???+-≤-≥1

31x y x y 所表示的平面区域的面积为23

【范例导析】

例1.设x,y 满足约束条件??

?

??≥≤+-≤-125533

4x y x y x ,求目标函数z =6x+10y 的最大值,最小值。

分析:求目标函数的最值,必须先画出准确的可行域,然后把线性目标函数转化为一族平行

直线,这样就把线性规划问题转化为一族平行直线与一平面区域有交点,直线在y 轴上截距的最大值与最小值问题.

解:先作出可行域,如图所示中ABC ?的区域,

且求得A(5,2),B(1,1),C(1,

5

22)

作出直线L 0:6x+10y=0,再将直线L 0平移

当L 0的平行线过B 点时,可使z =6x+10y 达到最小值 当L 0的平行线过A 点时,可使z =6x+10y 达到最大值 所以z min =16;z max =50

点拨:几个结论:(1)、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。 (2)、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义——在y 轴上的截距或其相反数。

例2.已知??

?

??≤--≥-+≥+-0520402y x y x y x ,

(1) 求y x z 2+=的最大和最小值。 (2) 求x

y

z =

的取值范围。 (3) 求2

2

y x z +=的最大和最小值。 解析:注意目标函数是代表的几何意义. 解:作出可行域。 (1)1222

z z x y y x =+?=-

+,作一组平行线l :122z y x =-+,解方程组0

40

52{=-+=--y x y x 例1图

得最优解B (3,1),3215

m i

n z

∴=+?=。解0

2052{=+-=--y x y x 得最优解C (7,9),

m a x 72925z ∴=+

?=

(2)0

0--==x y x y z 表示可行域内的点(x,y )与(0,0)的连线的斜率。从图中可得,

k z k OB OA ≤≤,又13,3k k OA OB ==,133

z ∴≤≤。

(3)2222(0)(0)z x y x y =+=-+-表示可行域内的点(x,y )到(0,0)的距离的平

方。从图中易得,2min z

OF =,(OF 为O 到直线AB 的距离),2max

z OC =。

004

222

OF +-=

=,228,130OF

OC ==,130max

z

∴=,8min

z

=。

点拨:关键要明确每一目标函数的几何意义,从而将目标函数的最值问题转化为某几何量的取值范围.

例3.本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费

用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?

分析:本例是线性规划的实际应用题,其解题步骤是:(1)设出变量,列出约束条件及目标函数;(2)画出可行域(3)观察平行直线系30002000z x y =+的运动,求出目标函数的最值.

解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由

题意得3005002009000000.x y x y x y +??

+???

≤,≤,≥,≥

目标函数为30002000z x y =+.

二元一次不等式组等价于3005290000.x y x y x y +??

+???

≤,≤,≥,≥

作出二元一次不等式组所表示的平面区域,即可行域. 如图:

作直线:300020000l x y +=,

即320x y +=.

平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.

0 100 200 300

100

200 300 400

500

y

x

l

M

例3

联立30052900.

x y x y +=??

+=?,

解得100200x y ==,.

∴点M 的坐标为(100200),

. max 30002000700000z x y ∴=+=(元)

答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最

大收益是70万元.

【反馈练习】

1.不等式组502x y y a x -+0??

???≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是57a <≤

2.已知点P (x ,y )在不等式组??

?

??≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值

范围是[-1,2]

3.设x 、y 满足约束条件5,3212,03,0

4.

x y x y x y +≤??+≤?

?≤≤??≤≤?则使得目标函数65z x y =+的最大的点(,)x y 是

(2,3).

4.已知实数x y ,满足2203x y x y y +??

-???

≥,≤,≤≤,则2z x y =-的取值范围是[]57-,

5.画出以A (3,-1)、B (-1,1)、C (1,3)为顶点的△ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z =3x -2y 的最大值和最小值.

分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组;③求以所写不等式组为约束条件的给定目标函数的最值

解:如图,连结点A 、B 、C ,则直线AB 、BC 、CA 所围成的区域为所求△ABC 区域 直线AB 的方程为x +2y -1=0,BC 及CA 的直线方程分别为x -y +2=0,2x +y -5=0 在△ABC 内取一点P (1,1),

分别代入x +2y -1,x -y +2,2x +y -5 得x +2y -1>0,x -y +2>0,2x +y -5<0 因此所求区域的不等式组为

x +2y -1≥0,x -y +2≥0,2x +y -5≤0

作平行于直线3x -2y =0的直线系3x -2y =t (t 为参数),即平移直线y =

23

x ,观察图形可知:第10题

当直线y =

23x -21t 过A (3,-1)时,纵截距-2

1

t 最小此时t 最大,t max =3×3-2×(-1)=11;当直线y =23x -21t 经过点B (-1,1)时,纵截距-2

1

t 最大,此时t 有最小值为t min =

3×(-1)-2×1=-5

因此,函数z =3x -2y 在约束条件x +2y -1≥0,x -y +2≥0,2x +y -5≤0下的最大值为11,最小值为-5 。

第4课 不等式综合

【考点导读】

能利用不等式性质、定理、不等式解法及证明解决有关数学问题和实际问题,如最值问题、恒成立问题、最优化问题等. 【基础练习】 1.若函数()()()()22

112,022x f x x x g x x x -??=+>=≠ ?-??

,则()f x 与()g x 的大小关系

是()()f x g x >

2.函数()()

2

2f x a x a =-+在区间[]0,1上恒为正,则a 的取值范围是0<a <2

3.当点(),x y 在直线320x y +-=上移动时,3271x

y

z =++的最小值是7

4.对于0≤m ≤4的m ,不等式x 2+mx >4x +m -3恒成立,则x 的取值范围是x >3或x <-1

【范例导析】

例1、已知集合??

?

???=2,21P ,函数(

)

22log 2

2+-=x ax y 的定义域为Q

(1)若φ≠Q P ,求实数a 的取值范围。

(2)若方程()

222log 22=+-x ax 在??

?

???2,2

1内有解,求实数a 的取值范围。

分析:问题(1)可转化为2

220ax x -+>在??

?

???2,21内有有解;从而和问题(2)是同一类

型的问题,既可以直接构造函数角度分析,亦可以采用分离参数.

解:(1)若φ≠Q P ,0222

>+-∴x ax 在??

?

???2,21内有有解x x a 2

22+->∴

令212112222

2+??

?

??--=+-=x x x u 当??????∈2,21x 时,??????-∈21,4u

所以a>-4,所以a 的取值范围是{}

4->a a

(2)方程()

222log 2

2=+-x ax 在??

????2,21内有解, 则0222

=--x ax 在??

?

???2,2

1内有解。

2

1

2112222

2-??? ??+=+=∴x x x a

当???

???∈2,21x 时,??

????∈12,2

3a 所以??

???

?∈12,23a 时,(

)

222log 2

2=+-x ax 在??

????2,21内有解

点拨:本题用的是参数分离的思想.

例2.甲、乙两地相距km s ,汽车从甲地匀速行驶到乙地,速度不超过km/h c ,已知汽车每小时的运输成本........

(以元为单位)由可变部分和固定部分组成:可变部分与速度km/h v 的平方成正比,且比例系数为b ;固定部分为a 元.

(1)把全程运输成本y 元表示为速度km/h v 的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶? 分析:需由实际问题构造函数模型,转化为函数问题求解 解:(1)依题意知汽车从甲地匀速行驶到乙地所用的时间为

h v

s

,全程运输成本为 )(2bv v

a

s v s bv v s a y +=?+?=.故所求函数为)(bv b a s y +=,定义域为)0(c v ,∈.

(2)由于v b a s 、、、都为正数,

故有bv b

a

s bv v a s ??≥+2

)(,即ab s bv v a s 2)(≥+.

当且仅当

bv v a =,即b

a

v =时上式中等号成立. 若

c b a ≤时,则b

a

v =

时,全程运输成本y 最小; 当

c b

a

≤,易证c v <<0,函数)()(bv v a s v f y +==单调递减,即c v =时,

)(m i n bc c

a

s y +=.

综上可知,为使全程运输成本y 最小, 在

c b a ≤时,行驶速度应为b a v =; 在

c b

a

≤时,行驶速度应为c v =. 点拨:本题主要考查建立函数关系式、不等式性质(公式)的应用.也是综合应用数学知识、思想和方法解决实际问题的一道优秀试题.

【反馈练习】

1.设10<

2.如果函数213

log (23)y x x =--的单调递增区间是(-∞,a ],那么实数a 的取值范围是____

a <-1____

3.若关于x 的不等式m x x ≥-42

对任意]1,0[∈x 恒成立,则实数m 的取值范围为(,3]-∞-

4已知二次函数f (x)=()0,,12

>∈++a R b a bx ax 且,设方程f (x )=x 的两个实根为x 1和x 2.如

果x 1<2<x 2<4,且函数f (x )的对称轴为x =x 0,求证:x 0>—1.

证明:设g(x)= f (x)—x=()()0242.011212

<<<<>+-+g x x a x b ax 得,由,且,且

g(4)>0,即,81

,221443,22144

3,03416,0124>-<--<<-∴???<-+<-+a a a a b a b a b a 得由

∴.18

14112,4112832-=?->-=->->-

a

b x a a b a 故

2013届高考数学第一轮专题复习测试卷 第一讲 坐标系

第一讲 坐标系 一?选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.) 1.点M 的直角坐标为 ),则它的球坐标为( ) 5.2,,.2,,444453.2,,.2,,4444A B C D ππππππππ???? ? ????? ???? ? ????? 解析 :2,1,tan 0,tan 02,x 0. 4 11,,1 5.4 r y x ??θ?θπθππ θ=== === <-=-= <= =由≤≤得又≤所以 答案:B 2.在平面直角坐标系中,以(1,1)为圆心 为半径的圆在以直角坐标系的原点为极点,以Ox 为极轴的极坐标系中对应的极坐标方程为 ( ) () B.. C. D.44A ρθρθππρθρθ? ?=- ? ? ?? ?- ?? =- =?=- 解析:由题意知圆的直角坐标方程为 (x-1)2 +(y-1)2 =2. 化为极坐标方程为(ρcos θ-1)2 +(ρsin θ-1)2 =2.

∴0.40 4,04044 . . ρρθρθρρππππθρθρπθ? ? ??-- = ???? ?? ? ? ?-= ?? ??? ? -∴-∴?-- = ???? ??? ? ?-= ?? ?? ?- ?? ?= 也过极点与等价对应的极坐标方程为 答案:A 3.在极坐标系中,点(ρ,θ)与(-ρ,π-θ)的位置关系为( ) A.关于极轴所在直线对称 B.关于极点对称 C.重合 D.关于直线θ= 2 π (ρ∈R)对称 解析:点(ρ,θ)也可以表示为(-ρ,π+θ),而(-ρ,π+θ)与(-ρ,π-θ)关于极轴所在直线对称,故选A. 答案:A 4.在柱坐标系中,两点24,,04,,333M N π π???? ? ?? ??? 与的距离为( ) A.3 B.4 C.5 D.8 解析:解法一:由柱坐标可知M 在Oxy 平面上,N 在Oxy 平面上的射影坐标为 N |MN |4,24,,0MN 5.3. , C π'∴'===?? ??? 再由勾股定理得故选 解法二:可将M ?N 化为直角坐标 ,N(MN 5.. C =-∴=故选 答案:C

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

艺考生高考数学总复习讲义

2015艺考生高考数学总复习讲义 第一章、集合基本运算 一、基础知识: 1.元素与集合的关系:用∈或?表示; 2.集合中元素具有确定性、无序性、互异性. 3.集合的分类: ①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。如数集{y |y =x 2},表示非负实数集,点集{(x ,y )|y =x 2}表示开口向上,以y 轴为对称轴的抛物线; 4.集合的表示法: ①列举法:用来表示有限集或具有显着规律的无限集,如N +={0,1,2,3,…}; ②描述法:一般格式:{}()x A p x ∈,如:{x|x-3>2},{(x,y)|y=x 2+1},…; 描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}是不同的两个集合 ③字母表示法:常用数集的符号:自然数集N ;正整数集*N N +或;整数集Z ;有理数集Q 、实数集R; 5.集合与集合的关系:用?,≠?,=表示;A 是B 的子集记为A ?B ;A 是B 的真子集记为A ≠?B 。 常用结论:①任何一个集合是它本身的子集,记为A A ?;②空集是任何集合的子集,记为A ?φ;空集是任何非空集合的真子集; ③如果B A ?,同时A B ?,那么A = B ;如果A B ?,B C ?, A C ?那么. ④n 个元素的子集有2n 个;n 个元素的真子集有2n -1个;n 个元素的非空真子集有2n -2个. 6.交集A ∩B={x |x ∈A 且x ∈B};并集A ∪B={x |x ∈A ,或x ∈B};补集C U A={x |x ∈U ,且x ?A },集合U 表示全集. 7.集合运算中常用结论: 注:本章节五个定义 1.子集 定义:一般地,对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合

2013高考数学一轮复习试题 10-3 理

2013高考数学一轮复习试题 10-3 理 A级基础达标演练 (时间:40分钟满分:60分) 一、选择题(每小题5分,共25分) 1.下列两个变量之间的关系是相关关系的是( ). A.正方体的棱长与体积 B.单位面积的产量为常数时,土地面积与总产量 C.日照时间与水稻的亩产量 D.电压一定时,电流与电阻 解析A、B、D中两个变量间的关系都是确定的,所以是函数关系;C中的两个变量间是相关关系,对于日照时间一定的水稻,仍可以有不同的亩产量,故选C. 答案 C 2.(2012·石家庄调研)下列结论正确的是( ). ①函数关系是一种确定性关系; ②相关关系是一种非确定性关系; ③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A.①② B.①②③ C.①②④ D.①②③④ 解析由回归分析的方法及概念判断. 答案 C 3.(2011·莱芜二模)在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( ). A.100个吸烟者中至少有99人患有肺癌 B.1个人吸烟,那么这人有99%的概率患有肺癌 C.在100个吸烟者中一定有患肺癌的人 D.在100个吸烟者中可能一个患肺癌的人也没有 解析统计的结果只是说明事件发生可能性的大小,具体到一个个体不一定发生. 答案 D 4.(2011·陕西)设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( ).

2018年高考数学总复习 基本不等式及其应用

第二节基本不等式及其应用 考纲解读 1. 了解基本不等式错误!未找到引用源。的证明过程. 2. 会用基本不等式解决简单的最大(小)值问题. 3. 利用基本不等式证明不等式. 命题趋势探究 基本不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一,其应用范围涉及高中数学的很多章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围等问题. 预测2019年本专题在高考中主要考查基本不等式求最值、大小判断,求取值范围问题. 本专题知识的考查综合性较强,解答题一般为较难题目,每年分值为58分. 知识点精讲 1. 几个重要的不等式 (1)错误!未找到引用源。 (2)基本不等式:如果错误!未找到引用源。,则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“”). 特例:错误!未找到引用源。同号. (3)其他变形: ①错误!未找到引用源。(沟通两和错误!未找到引用源。与两平方和错误!未找到引用源。的不等关系式) ②错误!未找到引用源。(沟通两积错误!未找到引用源。与两平方和错误!未找到引用源。的不等关系式) ③错误!未找到引用源。(沟通两积错误!未找到引用源。与两和错误!未找到引用源。的不等关系式) ④重要不等式串:错误!未找到引用源。即 调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件). 2. 均值定理 已知错误!未找到引用源。. (1)如果错误!未找到引用源。(定值),则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“=”).即“和为定值,积有最大值”. (2)如果错误!未找到引用源。(定值),则错误!未找到引用源。(当且仅当“错误!未找到引用源。”时取“=”).即积为定值,和有最小值”. 题型归纳及思路提示 题型91 基本不等式及其应用 思路提示 熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证. 例7.5“错误!未找到引用源。”是“错误!未找到引用源。”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

2013届高考数学第一轮专项复习教案设计22.doc

9.4两个平面平行 ●知识梳理 1.两个平面平行的判定定理:如果一个平面的两条相交直线都与另一个平面平行,那么这两个平面平行. 2.两个平面平行的性质定理:如果两个平行平面都与第三个平面相交,那么交线平行. ●点击双基 1.(2005年春季,3)下列命题中,正确的是 A.经过不同的三点有且只有一个平面 B.分别在两个平面的两条直线一定是异面直线 C.垂直于同一个平面的两条直线是平行直线 D.垂直于同一个平面的两个平面平行 答案:C 2.设a、b是两条互不垂直的异面直线,过a、b分别作平面α、β,对于下面四种情况:①b∥α,②b⊥α,③α∥β,④α⊥β.其中可能的情况有 A.1种 B.2种 C.3种 D.4种 解析:①③④都有可能,②不可能,否则有b⊥a与已知矛盾. 答案:C 3.α、β是两个不重合的平面,a、b是两条不同直线,在下列条件下,可判定α∥β的是 A.α、β都平行于直线a、b

B.α有三个不共线点到β的距离相等 C.a 、b 是α两条直线,且a ∥β,b ∥β D.a 、b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β 解析:A 错,若a ∥b ,则不能断定α∥β; B 错,若A 、B 、 C 三点不在β的同一侧,则不能断定α∥β; C 错,若a ∥b ,则不能断定α∥β; D 正确. 答案:D 4.a 、b 、c为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面,给出六个命题: .????;????????????????????αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥① a a a c a c c c b a b a b a c b c a ;;;; 其中正确的命题是________________.(将正确的序号都填上) 答案:①④⑤⑥ ●典例剖析 【例1】设平面α∥平面β,AB 、CD 是两条异面直线,M 、N 分别是AB 、CD 的中点,且A 、C ∈α,B 、D ∈β,求证:MN ∥平面α. 剖析:因为AB 与CD 是异面直线,故MN 与AC 、BD 不平行.在平面α、β中不易找到与MN 平行的直线,所以试图通过证线线平行达到线面平行这一思路受阻,于是转而考虑通过证面面平行达到线面平行,即需找一个过MN 且与α平行的平面.根据M 、N 是异面直

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2013届高考数学第一轮复习教案9.

2013年普通高考数学科一轮复习精品学案 第36讲空间向量及其应用 一.课标要求: (1)空间向量及其运算 ①经历向量及其运算由平面向空间推广的过程; ②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③掌握空间向量的线性运算及其坐标表示; ④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ①理解直线的方向向量与平面的法向量; ②能用向量语言表述线线、线面、面面的垂直、平行关系; ③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 二.命题走向 本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测2013年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 三.要点精讲 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、

速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 加法交换率: 加法结合率: 数乘分配率: 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。平行于记作∥。 注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量(≠)、,∥的

2014届高考数学知识点总复习教案一元二次不等式及其解法

第2讲 一元二次不等式及其解法 A 级 基础演练 (时间:30分钟 满分:55分) 一、选择题(每小题5分,共20分) 1.(2012·南通二模)已知f (x )=????? x 2 ,x ≥0, -x 2+3x ,x <0, 则不等式f (x )2,因此x <0. 综上,x <4.故f (x )

3.设a >0,不等式-c 0,∴-b +c a 0的解集是 ( ). A .(0,1)∪(2,+∞) B .(-2,1)∪(2,+∞) C .(2,+∞) D .(-2,2) 解析 原不等式等价于??? x 2-2>0,log 2x >0或??? x 2 -2<0, log 2x <0. ∴x >2或00的解集为? ???? -13,12,则不 等式-cx 2+2x -a >0的解集为________. 解析 由ax 2+2x +c >0的解集为? ???? -13,12知a <0,且-13,12为方程ax 2+2x +c =0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=c a ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3) 6.在实数集上定义运算?:x ?y =x (1-y ),若不等式(x -a )?(x +a )<1对任意实数x 恒成立,则实数a 的取值范围是________.

高考数学复习资料精选推荐

高考数学复习资料精选推荐 复习是高考数学教学的关键部分,它不仅是对数学知识系统全面的整合与巩固,下面是查字典数学网编辑的高考数学复习资料,供参考,祝大家高考大捷~ 高考数学复习资料精选推荐: (一) 任一x∈A x∈B,记作A B A B, B A A=B A B={x|x∈A,且x∈B} A B={x|x∈A,或x∈B} card(A B)=card(A)+card(B)-card(A B) (1)命题 原命题若p则q 逆命题若q则p 否命题若p则q 逆否命题若q,则p (2)四种命题的关系 (3)A B,A是B成立的充分条件 B A,A是B成立的必要条件 A B,A是B成立的充要条件 1.集合元素具有①确定性②互异性③无序性 2.集合表示方法①列举法②描述法

③韦恩图④数轴法 3.集合的运算 ⑴ A∩(B∪C)=(A∩B)∪(A∩C) ⑵ Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 4.集合的性质 ⑴n元集合的子集数:2n 真子集数:2n-1;非空真子集数:2n-2 (二) 圆的切线方程 (1)已知圆. ①若已知切点在圆上,则切线只有一条,利用垂直关系求斜率 ②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线. ③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线. 线线平行常用方法总结: (1)定义:在同一平面内没有公共点的两条直线是平行直线。 (2)公理:在空间中平行于同一条直线的两只直线互相平行。 (3)初中所学平面几何中判断直线平行的方法 (4)线面平行的性质:如果一条直线和一个平面平行,经过这

2019高考数学不等式真题汇总

(2019?上海7)若x ,y R +∈,且 123y x +=,则y x 的最大值为 . 【解答】 解:132y x = +… ∴298 y x =?; 故答案为:98 (2019?上海5)已知x ,y 满足002x y x y ????+? ……?,则23z x y =-的最小值为 . 【解答】解:作出不等式组002x y x y ????+? ……?表示的平面区域,由23z x y =-即23x z y -=,表示直线在y 轴上的截距的相反数的13 倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-,故答案为:6-. (2019?浙江3)若实数x ,y 满足约束条件340,340,0,x y x y x y -+??--??+? …?…则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+??--??+? …?…作出可行域如图,联立340340x y x y -+=??--=?,解得(2,2)A ,化目标函数32z x y =+为3122y x z =-+,由图可知,当直线3122 y x z =-+过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10. 故选:C .

(2019?天津文10)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03 x x +-<; 由一元二次不等式的解法“小于取中间,大于取两边” 可得:213 x -<<; 即:2{|1}3x x -<<;或2(1,)3 -; 故答案为:2(1,)3 -; (2019?天津文理13)设0x >,0y >,25x y += 的最小值为 . 【解答】解:0x >,0 y >,25x y +=, 则===; 由基本不等式有: = 当且仅当=时,即:3xy =,25x y +=时,即:31x y =??=?或232x y =???=??时;等号成立, 故答案为:

2013高考数学二轮复习精品资料专题 集合与常用逻辑用语名校组合测试题

2013高考数学二轮复习精品资料专题集合与常用逻辑用语名 校组合测试题 1.设集合M={m∈Z|m≤-3或m≥2},N={n∈Z|-1≤n≤3},则(?Z M)∩N=() A.{0,1}B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 2.已知向量a=(2,1),b=(-1,2),且m=ta+b,n=a-kb(t、k∈R),则m⊥n的充要条件是() A.t+k=1 B.t-k=1 C.t·k=1 D.t-k=0 【试题出处】2012·银川一中模拟 【解析】∵a=(2,1),b=(-1,2),∴a·b=0,|a|=|b|=5,∴m⊥n?m·n=0?(ta+b)(a -kb)=0?ta2-kta·b+a·b-kb2=0?5t-5k=0,即t-k=0. 【答案】D 【考点定位】充要条件 3.设集合M={y|y=|cos2x-sin2x|,x∈R},N={x||x-1 i |<2,i为虚数单位,x∈R}, 则M∩N为() A.(0,1) B.(0,1] C.[0,1) D.[0,1] 4.设集合I是全集,A?I,B?I,则“A∪B=I”是“B=?I A”的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 【试题出处】2012·厦门一中模拟 【解析】由B=?I A?A∪B=I,而A∪B=I?/B=?I A,故“A∪B=I”是“B=?I A”的必要不充分条件.

【答案】B 【考点定位】充要条件 5.已知命题p :?x ∈R,9x 2-6x +1>0;命题q :?x ∈R ,sin x +cos x =2,则( ) A .綈p 是假命题 B .綈q 是真命题 C .p ∨q 是真命题 D .綈p ∧綈q 是真命题 6.已知全集U ,集合A ,B 如图所示,则(?U A )∩B =( ) A .{5,6} B .{3,5,6} C .{3} D .{0,4,5,6,7,8} 【试题出处】2012·邯郸一中模拟 【解析】由图可知,U ={0,1,2,3,4,5,6,7,8},A ={1,2,3},B ={3,5,6},∴?U A ={0,4,5,6,7,8),(?U A )∩B ={5,6}. 【答案】A 【考点定位】集合 7.下列命题中是假命题的是( ) A .?x ∈????0,π2,x >sin x B .?x 0∈R ,sin x 0+cos x 0=2 C .?x ∈R,3x >0 D .?x 0∈R ,lg x 0=0 8.已知全集U =R ,若函数f (x )=x 2-3x +2,集合M ={x |f (x )≤0},N ={x |f ′(x )<0},则M ∩?U N

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

高考数学总复习全套讲义(学生)

第一章 集合与简易逻辑 第1课时 集合的概念及运算 【考点导读】 1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用. 2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义. 3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想. 【基础知识部分】 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表 示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?).

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集. B {x A A = ?=? B A ? B B ? B {x A A = A ?= B A ? B B ? ()U A =e 2()U A A U =e 【范例解析】 例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ?=, {01R B C A x x ?=<<或23}x <<,求集合B . 【基础练习】 1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示 . 2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ?= . 3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ?=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为_______. 【反馈演练】 1.设集合{ }2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ?=_________. 2.设P ,Q 为两个非空实数集合,定义集合 P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是_______个. )()()U U B A B =?)()() U U B A B =?

2013届高考理科数学第一轮复习测试题08

A 级 基础达标演练 (时间:40分钟 满分:60分) 一、选择题(每小题5分,共25分) 1.(2011·陕西)(4x -2-x )6(x ∈R )展开式中的常数项是( ). A .-20 B .-15 C .15 D .20 解析 T r +1=C r 6(22x )6-r (-2-x )r =(-1)r C r 6· (2x )12-3r ,r =4时,12-3r =0,故第5项是常数项,T 5=(-1)4C 46=15. 答案 C 2.(2012·泰安月考)若二项式? ?? ??x -2x n 的展开式中第5项是常数项,则正整数n 的值可能为( ). A .6 B .10 C .12 D .15 解析 T r +1=C r n (x )n -r ? ?? ??-2x r =(-2)r C r n x n -3r 2,当r =4时,n -3r 2=0,又n ∈N *,∴n =12. 答案 C 3.(2011·天津)在? ????x 2-2x 6的二项展开式中,x 2的系数为( ). A .-154 B.154 C .-38 D.38 解析 在? ????x 2-2x 6的展开式中,第r +1项为 T r +1=C r 6? ????x 26-r ? ????-2x r =C r 6? ????126-r x 3-r (-2)r ,当r =1时,为含x 2的项,其系数是C 16? ?? ??125(-2)=-38. 答案 C 4.(2012·临沂模拟)已知? ?? ??x -a x 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( ). A .28 B .38 C .1或38 D .1或28 解析 由题意知C 48· (-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

2013年高考理科数学全国新课标卷2试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类 (全国新课标卷II) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2 <4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i 3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ). A .13 B .13- C .19 D .1 9- 4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α, l β,则( ). A .α∥β且l ∥α B .α⊥β且l ⊥β C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2 的系数为5,则a =( ). A .-4 B .-3 C .-2 D .-1 6.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ). A .1111+23 10+++ B .1111+2!3! 10!+++ C .1111+23 11+++ D .1111+2!3! 11!+++ 7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0), (0,1,1),(0,0,0),画该四面体三视图中的正视图时, 以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ). A .c >b >a B .b >c >a C .a >c >b D .a >b >c 9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥?? +≤??≥(-)? 若z =2x +y 的最小值为1,则 a =( ). A .14 B .1 2 C .1 D .2

2020届江苏高考数学(理)总复习讲义: 基本不等式及其应用

第三节基本不等式及其应用 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥ 2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述 为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). [小题体验] 1.(2019·南京调研)已知m ,n 均为正实数,且m +2n =1,则mn 的最大值为________. 解析:∵m +2n =1,∴m ·2n ≤????m +2n 22=14,即mn ≤18,当且仅当m =2n =12时,mn 取得最大值1 8 . 答案:1 8 2.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. 解析:x 2+2y 2=x 2+(2y )2≥2x (2y )=22, 所以x 2+2y 2的最小值为2 2. 答案:2 2 3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2.

相关文档
最新文档