动网格的离心泵内部流场数值模拟

动网格的离心泵内部流场数值模拟
动网格的离心泵内部流场数值模拟

动网格流沙版完美整理.

动网格 让网格动起来(1)—闲谈动网格 在固体有限元计算中,网格运动实非什么稀奇事儿。而且在绝多数固体计算的基本物理量是网格的节点位移,所以,固体计算中,网格节点运动是对的,没有运动反而不正常了。也可以这么说:正因为计算域内部节点间的相对运动,才导致了内应力的产生。 流体计算与固体完全不同。其根源在于它们使用的网格类型不同。当前固体有限元计算采用的是拉格朗日网格,而流体计算则大多数采用的欧拉网格。如果说把拉格朗日网格中的节点点看作是真实世界的物质原子的话,那么欧拉网格的节点则好比是真实世界中的一个个传感器,它们总是呆在相同的位置,真实的记录着各自位置上的物理量。正常情况下,欧拉网格系统是这样的:计算域和节点保持位置不变,发生变化的是物理量,网格节点就像一个个布置在计算域中的传感器,记录该位置上的物理量。这其实是由流体力学研究方法所决定的。宏观与微观的差异决定了固体力学计算采用拉格朗日网格,流体计算采用欧拉网格。关于这部分的详细解说,可以参阅任何一本计算流体动力学书籍。 世界是公平的。有利必有弊。朗格朗日网格适合计算节点位移,然而对于过大的网格变形却难以处理。欧拉网格生来可以处理大变形(因为节点不动),然而对于对于节点运动的处理,则是其直接软肋。然而很不幸的是,现实生活中有太多网格边界运动的实例。如汽车发动机中的气缸运动、阀门开启与关闭、机翼的运动、飞机投弹等等等等举不胜举。 计算流体动力学计算的基本物理量通常为:速度、温度、压力、组分。并不计算网格节点位移。因此要让网格产生运动,通常给节点施加的物理约束是速度。CFD中的动网格大体分为两类:(1)显式规定的网格节点速度。配合瞬态时间,即可很方便的得出位移。当然一些求解器(如FLUENT)也支持稳态动网格,这时候可以直接指定节点位移。(2)网格节点速度是通过求解得到的。如6DOF模型基本上都属于此类。用户将力换算成加速度,然后将其积分成速度。 对于第一类动网格问题,在fluent中通常可以使用profile与UDF进行网格设置,通过规定节点或区域的速度、角速度或位移等方式来显式确定网格的运动,通常大部分的动网格问题都归于此类。而对于第二类问题,通常涉及到力的计算,力在流体中通常是对压力进行积分而来。将力转换为速度或位移,一般涉及到加速度、转动惯量等物理量的计算。在fluent 中,可以使用6DOF模型进行处理,在CFX中,可以使用刚体模型(13.0以上版本才有)。在FLUENT中,动网格涉及的内容包括: (1)运动的定义。主要是PROFILE文件与UDF中的动网格宏。 (2)网格更新。FLUENT中关于网格更新方法有三种:网格光顺、动态层、网格重构。 需要详细了解这些网格更新方法的运作机理,每个参数所代表的具体含义及设置方法,每种方法的适用范围。 动网格的最在挑战来自于网格更新后的质量,避免负体积是动网格调试的主要目标。在避免负网格的同时,努力提高运动更新后的网格质量。

第三章 离心泵习题与作业

第三章离心泵习题与作业 单选题: 题1:离心泵叶轮的作用是________。(1分) A. 传递能量 B. 汇集液流 C. 吸收热量 D. 使液体旋转 题2:离心泵采用后弯叶瓣,可使泵获得较高的______。(1分) A. 效率 B. 总压头 C. 流量 D. 动压头 题3:离心泵的吸入滤器清洗后________。(1分) A. 流量增加 B. 轴功率降低 C. 轴功率增加 D. A十C 题4:离心泵采用后弯叶片与前弯、径向叶片相比,它________。(1分) A. 产生的动压头相对较小 B. 产生的动压头相对较大 C. 产生的总压头相对较大 D. 产生静压头相对较大 题5:离心泵叶轮一般采用________叶片。(1分) A. 径向 B. 后弯 C. 先前弯再后弯 D. 前弯 题6: 用节流阀改变泵的流量一般应改变______阀的开度。(1分) A. 吸入 B. 排出 C. 旁通 D. 调压 题7:离心泵关排出阀起动时________。(1分) A. 扬程最低 B. 起动功率最小 C. 效率最高 D. 工作噪音最低 题8:表征离心泵叶轮特点的参数是________。(1分) A. 压头 B. 流量 C. 比转数 D. 外径 题9:离心泵用改变排出阀开度来调节流量可以_______。(1分) A. 改变泵的性能

B. 改变泵的比转数 C. 改变泵的运行工作点 D. 改善泵的运行经济性 题10:下列泵中适合关排出阀起动的是________。(1分) A. 旋涡泵 B. 离心泵 C. 齿轮泵 D. 水环泵 题11:正常情况下,离心泵动能转换为静压能的过程主要是在_________中进行。(1分) A. 蜗室 B. 扩压管 C. 叶轮 D. 排出管 题12: 泵管路特性表明了流过管路所需的压头与流量的关系,曲线的陡斜程度取决于________。(1分) A. 吸排液面间的高度差 B. 吸排液面间的压力差 C. 管路的阻力大小 D. 液体的密度 题13:离心泵叶轮的平衡孔开在________。(1分) A. 前盖板上 B. 后盖板上 C. 平衡盘上 D. A或B 题14: 离心泵有的叶轮作成双吸式主要是为了________。(1分) A. 平衡轴向推力 B. 便于安装轴承 C. 改变泵轴的悬臂状态 D. 限制进口流速 题15:提高离心泵的压头,采用______的方式较为适宜。(1分) A. 增大叶轮直径 B. 提高泵的转速 C. 串联多个叶轮 D. 降低液体温度 题16:在一般情况下,离心泵工作________后应检查阻漏环的径向间隙。(1分) A. 8000h B. 4000h C. 1000h D. 2000h 题17:能完全平衡离心泵轴向推力的方法是________。(1分) A. 双吸叶轮法 B. 平衡管法 C. 平衡孔法 D. 液力自动平衡装置

动网格的入门专题

题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Mesh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢! 该专题主要包括以下的主要内容: ##1. 动网格的相关知识介绍; ##2. 以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; ##3. 与动网格应用有关的参考文献; ##4. 使用动网格进行计算的一些例子。 ##1. 动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUENT 根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF 定义边界的运动方式。FLUENT 要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。 注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C语言编程基础。 2、动网格更新方法 动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)。 弹簧近似光滑模型 在弹簧近似光滑模型中,网格的边被理想化为节点间相互连接的弹簧。移动前的网格间距相当于边界移动前由弹簧组成的系统处于平衡状态。在网格边界节点发生位移后,会产生与位移成比例的力,力量的大小根据胡克定律计算。边界节点位移形成的力虽然破坏了弹簧系统原有的平衡,但是在外力作用下,弹簧系统经过调整将达到新的平衡,也就是说由弹簧连接在一起的节点,将在新的位置上重新获得力的平衡。从网格划分的角度说,从边界节点的位移出发,采用虎克定律,经过迭代计算,最终可以得到使各节点上的合力等于零的、新的网格节点位置,这就是弹簧光顺法的核心思想。 原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法: (1)移动为单方向。 (2)移动方向垂直于边界。 如果两个条件不满足,可能使网格畸变率增大。另外,在系统缺省设置中,只有四面体网格(三维)和三角形网格(二维)可以使用弹簧光顺法,如果想在其他网格类型中激活该模型,

离心泵的气缚与气蚀现象

离心泵的气缚与气蚀现象 为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。 离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。离心泵在开泵前,泵内必须充满液体。启动电机后,电机通过轴带动叶轮高速旋转。高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。在压差的作用下,液体被吸入泵内。通俗地说离心泵的工作过程是吸进来压出去。 “气缚”现象 离心泵运转时,如果泵内没有充满液体。或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。 可见“气缚”现象是由于泵内存有气体而不能吸液的现象。没有液体的吸入,当然就没有液体的排出。如果泵安装在液面以上时,在

吸入管底部必须安装一个单向底阀。目的是为了不使泵内液体漏掉,以防“气缚”产生。 对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。 “汽蚀”现象 “汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。 简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。 可见“气缚”与“汽蚀”直接导因是不同的。“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。因此在使用中,应严禁“汽蚀”现象的发生。

离心泵维护检修规程

离心泵维护检修规程 编制: 张金海 审核: 吴诗发 审定: 官仁先 批准: 王勇明

1范围 本规程规定了精细化工白炭黑普通离心泵的基本要求,设备完好标准、维护检修方法和质量标准、检验、检修周期及内容、试车及验收、安全注意事项。 本规程是普通离心泵的机械检修,不包括电气的维护检修。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 3总则 3.1设备结构简介 IJ泵系单级离心泵,其主要零部件有:泵体、泵盖、叶轮、悬架部件、中间支架、轴、联轴器等,结构为后开门式,即泵体不动,叶轮从后泵盖处取出,设置中间联轴器。详细见结构简图。 3.2设备的技术性能(见表一) 4设备完好的标准 4.1零部件完整、齐全、质量符合技术要求。 4.1.1设备零件的材料、几何尺寸、加工精度及动平衡精度符合要求。 4.1.2轴、叶轮、锁紧螺母、密封、轴套、轴承等主要零件没有影响运行的缺陷,各部件装配要求,符合设备要求和检修质量标准。 4.1.3泵的基础稳固、阀门、管道、支架等安装合理且无异常振动。 4.2设备运转正常,性能良好,能达到名牌设计能力,符合使用要求。 4.2.1泵的流量、杨程达到名牌要求能满足生产需要。 4.2.2轴承润滑良好,油温、油质正常。

4.2.3设备性能良好,运行平衡且无杂音。 4.3设备技术资料齐全、准确符合要求。 4.3.1设备的使用说明书、合格证、装箱单、安装等技术文件及档案资料齐全。 4.3.2设备的检修记录、事故、故障修理记录、调试、润滑记录等资料齐全。 4.3.3设备的结构图、主零部件及易损件图纸齐全。 4.4设备及环境整齐清洁,无跑、冒、滴、漏,符合工作要求。 4.4.1设备、管道及其周围环境整洁,无油污、灰尘、垃圾和积水,必要的标志、编号齐全,照明良好。 4.4.2设备外观无龟裂、无红袍。 4.4.3设备无跑、冒、滴、漏现象。 4.4.4设备维护所需的专用工器具、防护器材、安全设施摆放位置适当整齐。 5设备的维护 5.1日常维护 5.1.1严格执行巡回检查制度,按时填写运行、巡检记录,做到准确、齐全、整洁。 5.1.2巡回检查中发现的问题,应按化、机、电、仪各自的职责和有关维护规定及时进行处理,对有运行隐患的部位要加强检查,不能立即处理的应及时向有关负责人汇报,未处理完的缺陷应记在运行记录本上,并向下一班交待清楚。 5.1.3检查设备运行的声音、振动、运行电流、出口压力等是否正常。 5.1.4检查轴承温度、油位及密封泄漏状况等。 5.2定期维护 5.2.1定期检查轴承箱内的油质,新泵运行3000小时后应换油,以后每运转1500小时换油,换油时,应遵守三级过滤。 5.2.2定期对电气进行绝缘性能测定,发现问题及时修复。 5.2.3定期对设备的运行状况进行诊断和分析。 5.3常见故障及处理方法 一般泵的常见故障及处理方法(见表二)

动网格

FLUENT6.1全攻略 图10-16 转子定子模型的静压等值线图 在显示速度矢量时,同样有绝对速度和相对速度两种形式。另外需要注意的是,后处理过程不能在交界区中的壁面、内部、周期等类型的边界上建立数据显示面(surface),但是可以在交界面上建立数据显示面,但结果将是单边的,就是只显示交界面一侧的结果。而且在跨越交接面时,等值线中可能会有细微的不连续。在画三维填充等值线时,图形中可能会出现一些小缝,但是这些缝只是图形显示问题,与解的连续性无关。 10.6 动网格模型 10.6.1 简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUENT根据每个迭代步中边界的变化情况自动完成。在使用移动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF定义边界的运动方式。 FLUENT要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则 21

FLUENT6.1全攻略 22 的,可以在模型设置中用FLUENT 软件提供的非正则或者滑动界面功能将各区域连接起来。 10.6.2 动网格守恒方程 在任意一个控制体中,广义标量Φ的积分守恒方程为: ()∫∫∫∫??+??=??+V V Φg V V dV S A d ΦΓA d u u ρΦV ρΦd dt d G G G G (10-7) 式中ρ为流体密度,u G 为速度向量,g u G 移动网格的网格速度,Γ为扩散系数,ΦS 为 源项,V ?代表控制体V 的边界。 方程(10-7)中的时间导数项,可以用一阶后向差分格式写成: ()()t V V dV dt d n n V ΔΦ?Φ=Φ+∫ρρρ1 (10-8) 式中n 和n+1代表不同的时间层。n+1层上的V n+1由下式计算: t dt dV V V n n Δ+=+1 (10-9) 式中dV/dt 是控制体的时间导数。为了满足网格守恒定律,控制体的时间导数由下式计算: ∫∑??=?=V n j j j g g f A u A d u dt dV G G G G , (10-10) 式中n f 是控制体积的面网格数,j A G 为面j 的面积向量。点乘j j g A u G G ?,由下式计算: t V A u j j j g Δ=?δG G , (10-11) 式中j δV 为控制体积面j 在时间间隔Δt 中扫过的空间体积。 10.6.3 动网格更新方法 动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧光滑模型、动态层模型和局部重划模型。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

离心泵二维数值模拟分析

离心泵二维数值模拟分析 题目:离心泵二维数值模拟分析 院系:工学院 姓名:吕远 指导教师: 学号: 二〇一七年五月

[摘要] 泵是一种生产中常用的设备,其作用在于提高液态流体的全压。作为一种常见但能耗大效率低的工具。对泵的研究一直是一个热点问题。随着计算机技术的快速发展,使用CFD软件对泵的内部流场进行分析已经成为一种成熟手段。 本文在ProE软件建模的基础上,使用CFD类软件对模型进行计算迭代,从而得出泵运行时的流场。本文意在对泵在不同种工况调节特性下,对泵的运行进行性能模拟。各种工况条件包括:不同流量条件下。求解的主要目的为借助数值模拟内软件对实际化工程问题进行分析,为实际的工作提供一定的指导作用。 本文主要包括: (1)对模型网格的处理 (2)边界参数的指定 (3)对模拟结果的分析 (4)对计算流体力学理论的简介 [关键词] 数值模拟离心泵计算流体力学 CFD软件网格

目录: 摘要 第一章:流场分析的理论基础 1.1流体动力学基本方程 1.2离散格式 1.3湍流流动数值模型 第二章:离心泵内部流场的数值模拟2.1几何模型的网格划分 2.2旋转涡轮及静止蜗壳的耦合模型 2.3边界条件 2.4计算结果分析 第三章:不同工况对离心泵性能影响3.1泵的理论基础 3.2不同工况条件下对离心泵的数值模拟3.3数值模拟结果分析 总结

第一章:离心泵内部流场分析的理论基础 1.1流体动力学基本方程 对于流体流动,用控制方程来描述,描述泵中流体为不可压缩流体,且将流场简化为二维;则描述流场的方程—— 1.1.1质量方程: 表征质量守恒的方程 ()()++=0t u v x y ρρρ?????? 对于泵的内部条件而言,方程简化为: +=0u v x y ???? 1.1.2动量方程: 动量地理,动量变化率等于流体所受的合力 ()+div()=-0t yx xx x u p u u F x x y ττ ρρ-????+++=???? ()+div()=-0t xy yy y v p vu F x x y τ τρρ-????+++=???? (1) 其中对于牛顿流体,切应力符合: =( ) xy yx u v y x ττμ??=+?? (2a ) =2() xx u div u x τμλ-?+? (2b ) =2() yy v div u y τμλ-?+? (2c )

离心泵操作要点

离心泵的操作规程 1 主题内容和适用范围 本规程规定了离心泵操作、检查维护的内容和要求。 本规程适用于公司各单位离心泵岗位。 2 岗位职责 2.1 负责离心泵的启停操作工作。 2.2 负责离心泵正确使用及日常维护保养工作。 2.3 负责离心泵的巡回检查及故障处理工作。 2.4 负责离心泵运行记录的填写工作。 3 操作、检查、维护保养内容及要求 3.1 操作 3.1.1 启动前的准备工作 a)检查离心泵和电机是否完好备用。 b)检查轴承润滑油脂是否合乎要求,油盒油位是否合适。 c)检查各部位的螺丝是否有松动、缺少现象。 d)检查电机、泵周围有无杂物。 e)盘泵3—5圈,看转动是否灵活自如,细听泵内有无杂音。 f)检查联轴器有无偏磨,是否紧固。 g)检查各阀门: 1)泵进口阀门是否全部打开。 2)平衡管阀门、平衡管压力表阀门是否打开。 3)将泵轴承、盘根盒的冷却水阀门打开,并控制好流量。 4)泵出口阀门是否关闭。 5)泵回流阀门是否关闭。 6)打开泵出口压力表阀门。 7)打开泵出口放空阀门、将泵内空气放净,随后立即关闭。 h)向有关单位(变电所、水井、调度)联系汇报情况。 i)检查大罐水位。

j)供电电压在340V—420V之间,供电设备完好。 3.1.2 启动操作 a)启动前泵工、电工(高压离心泵)必须联系配合好,并让其他人员注意安全,以免发生危险。 b)按启动按钮,注意电流变化情况。 c)观察泵压升至泵最大压力时,将出口阀门慢慢打开,保持泵压平稳。 d)泵启动后必须按照听、看、摸、想、闻的方法,对机泵进行全面检查,如发现异常情况,立即停泵检查并排除。 3.1.3 倒泵操作 a)按启动前的检查和启动操作步骤启动备用泵。 b)待备用泵启动后,慢关应停泵阀门,同时慢开备用泵出口阀门,使干线压力波动控制在规定范围以内,按要求停应停泵。 c)做好倒泵原因及时间记录。 3.1.4 停泵操作 a)向上级调度汇报,由调度统一协调处理。 b)将泵出口阀门慢慢关闭。 c)注意干线压力,并保持干压稳定。 d)按停止按钮停泵。 e)记录停泵时间。 3.2 巡回检查 3.2.1 检查泵供液。 3.2.2 检查润滑,看润滑油液面是否合适。 3.2.3 检查冷却水情况,水压要求在规定范围内。 3.2.4 检查调整盘根漏失、漏失量在规定范围内,盘根盒的温度不得超过70℃。 3.2.5 各仪表指示(泵压、干压、电流、电压等)是否正常。 3.2.6 检查各部管路阀门是否有漏失现象,特别要注意吸入管路不准进气,以免影响泵正常工作。 3.2.7 各轴承温度,滑动轴承不得超过70℃,滚动轴承不得超过80℃。 3.2.8 检查机泵振动不超标准。

FLUENT 动网格教程

FLUENT动网格教程 摘自https://www.360docs.net/doc/2212116335.html,/dvbbs/dispbbs.asp?boardid=61&id=1396题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Me sh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢!。 该专题主要包括以下的主要内容: §一、动网格的相关知识介绍; §二、以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; §三、与动网格应用有关的参考文献; §四、使用动网格进行计算的一些例子。 §一、动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUE NT 根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF定义边界的运动方式。FLUENT 要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。 注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C语言编程基础。

离心泵内部湍流流场的数值模拟

离心泵内部湍流流场的数值模拟 * 刘威 袁寿其 陈士星 吴涛涛 潘中永 (江苏大学流体机械工程技术研究中心 镇江 212013; 国家水泵及系统工程技术研究中心 镇江 212013) 摘要:针对离心泵在非设计工况下出现的内部流动不稳定性,同时为了研究泵内部湍流流动机理,运用Fluent 软件采用标准 ε ?k 方程对离心泵内部流场区域的速度分布、压力分布进行了数值模拟计算,对离心泵中进口段、叶轮进口及叶轮流道中 的流体速度分布进行了分析,得出了相应流动规律。计算了该离心泵在设计工况以及比流量在0.9至0.2时各小流量工况下流道内的流动情况并进行了分析和对比,得出在小流量工况下流道内出现漩涡并且随着流量的减小漩涡出现的流道随之增多,进口处出现漩涡位置提前,同时其内部流动更加复杂。结果表明小流量时叶轮流道内产生严重地回流,且部分流体回流至进口,破坏了进口处入流的均匀性,叶轮流道内产生了很大的漩涡区,各个流道的流动极其不均匀。最后结合文献,本文提供了减少漩涡及抑制漩涡的方法。 关键词:离心泵 漩涡 内部流动结构 数值模拟 中图分类号:TH311 Numerical Simulation on Internal Turbulent Flow Field in Centrifugal Pump LIU Wei YUAN Shouqi CHEN Shixing WU Taotao PAN Zhongyong (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China National Research Center of Pumps and Hydraulic System Engineering and Technology, Zhenjiang 212013, China) Abstract :Due to the unsteady inner flow at off-design conditions and for research the mechanism of inner turbulent flow within centrifugal pumps ,The velocity and pressure distribution of inner flow region in centrifugal pumps were investigated by Fluent and Realizable ε ?k turbulent model, the fluid velocity distribution of inlet pipe , impeller eye and the passage was analyzed, then the flow principles were obtained. The flow principles at the flow rate of d Q 、9.0/=d Q Q and 2.0/=d Q Q were calculated and analyzed , Swirls were found in the passage at low flow rate ,with the lower flow rate, the more swirls and the inlet swirls positions push ahead, also more complex inner flow were obtained. The results show that there exists severe back flow in the passage at low flow rate and part of back flow turn back to inlet leads to non-uniformity of the inlet flow, tremendous swirls region in the impeller passage was found and the flow of each passage extremely un-uniform. Finally, Based on other literatures, it suggests one possible way to suppress the rotating stall in the pumps. Key words: Centrifugal pumps ;Swirls ;Inner flow structure ;Numerical simulation 0 前言 近年来,作为旋转机械的离心泵已经广泛地应用于核工业、农业、石油化工以及低温输送等领域。但其运行会消耗大量电能,因此,对其深入研究,改善离心泵的流动进而提高其运行效率,一直是泵领域研究的热门问题。 离心泵叶轮内部的流动是复杂的三维湍流运动,流动规律受到叶片曲率、叶轮旋转及其边界条件的影响。目前在研究其内部流动时多采用试验测量和数值模拟两种主要手段。特别在装置条件和变 * 国家自然科学基金资助项目(50825902) 工况的影响下,会出现湍流、流动分离、空化、旋转失速、二次流等很多设计工况下所没有的流动现象[1,2]。这些流动不稳定现象给离心泵的运行造成了很多危害,严重时甚至会影响泵的正常运行。因此,分析叶轮内部流动状态,对于设计以及改进泵在非设计工况点的性能,有着十分重要的意义。近年来,随着计算机技术的日益发展,其运算速度和存储能力迅速提高,数值计算方法的研究也逐步深入,使人们有可能利用微型计算机,采用数值模拟的办法来分析泵内部流动[3,4]。到目前为止,已经有很多学者采用数值计算的方法对泵内部流动进行了研究[5-7],取得了一定的成果。在研究中发现,

数学物理书目完美整理版

数学物理书目 这个书目是我从网上收集起来的,应该算比较全面了,以前在这里发过一次,但现在找不到了,再次发在这里大家参考.。 目录: 1数学书目 1.1《数学分析--高等数学》 1.2《高等代数--线性代数》 1.3《空间解析几何》 1.4《常微分方程》 1.5《单复变函数》 1.6《关于自学数学》 1.7《实变函数论与泛函分析》 1.8《抽象代数》 1.9《组合基础》 1.10《数学物理方程》 1.11《拓扑学》 1.12《微分几何》 1.13《微分流形》 2数学参考书目 2.1说明 2.2逻辑 2.3组合,形式计算 2.4数论 2.5代数,同调代数,范畴,层 2.6K-理论,C^*-代数 2.7代数几何 2.8群,李群和李代数 2.9代数拓扑,微分拓扑 2.10微分几何 2.11动力系统 2.12实分析,调和分析 2.13泛函分析 2.14复分析,解析几何,奇性 2.15线性偏微分方程,D-模 2.16非线性偏微分方程 2.17数学物理 2.18数值分析 2.19概率 2.20统计

2.21博弈论,经济数学,最优化 2.22数学史 3物理学书单 3.1量子力学 3.2理论力学 3.3电动力学 3.4固体物理 3.5数理方法 3.6统计力学 3.7一些补充 4理论物理 5物理经典教材 6A Physics Booklist:Recommendations from the Net 6.1Subject Index 6.2General Physics(so even mathematicians can understand it!) 6.3Classical Mechanics 6.4Classical Electromagnetism 6.5Quantum Mechanics 6.6Statistical Mechanics and Entropy 6.7Condensed Matter 6.8Special Relativity 6.9Particle Physics 6.10General Relativity 6.11Mathematical Methods(so that even physicists can understand it!) 6.12Nuclear Physics 6.13Cosmology 6.14Astronomy 6.15Plasma Physics 6.16Numerical Methods/Simulations 6.17Fluid Dynamics 6.18Nonlinear Dynamics,Complexity,and Chaos 6.19Optics(Classical and Quantum),Lasers 6.20Mathematical Physics 6.21Atomic Physics 6.22Low Temperature Physics,Superconductivity 7习题 8推荐给大家的优秀数学参考书

离心泵检修与质量标准

离心泵检修与质量标准 0.目的 为了加强离心式机泵检修拆装作业的安全管理,减少和避免拆装作业对人员伤害和设备损害,保证拆装作业顺利完成,减少对环境污染,制定本操作程序。 1.适用范围 本操作程序适用于本公司所维护装置的Y型、AY型相关机泵的检修拆装作业。 2.技能要求 掌握本专业理论实践知识,了解相关工种的一般操作;具备实际操作和处理故障的作业能力;熟悉所用的设备机具状况并会使用。 3.操作程序 3.1 作业前准备 3.1.1 掌握泵的运行情况,并备齐必要的图纸和资料。 3.1.2 作业人员必须按所拆装设备的需要准备工、量、卡具、起重机具、配件及材料,仔细检查工具有无破损和缺陷,并正确使用之。避免作业中造成对作业人员的伤害。3.1.3 作业人员必须按照《劳保着装》规定进行着装(有必要时必须着隔热服或防毒面具),穿防滑耐油胶鞋,佩戴安全帽并系好帽带。严禁赤臂进入作业现场,避免造成对作业人员的烫伤、划伤。 3.2 作业环境勘察 3.2.1 作业人员进入现场必须与生产车间取得联系,现场开据《设备拆卸作业票》。作业票对介质的性质、温度、压力及电机是否断电、防护措施等内容必须填写清楚。 3.2.2 作业人员必须与生产车间、电工一起对作业票的内容进行认真检查确认无误,由生产车间负责人、施工负责人、电工负责人签字。 3.2.3 作业人员必须对设备内的介质压力进行检查确认,确认压力(表值)为零方可作业。避免造成对作业人员的伤害。 3.2.4 作业人员必须对设备内的介质温度、介质危害进行检查确认,确认介质温度低于100℃以下方可作业,避免造成火灾和对作业人员的伤害。 3.2.5 作业人员必须对设备电机的断电进行检查确认,确认已断电方可作业,避免造成电机误启动和对作业人员的伤害。 4.实施拆卸顺序 4.1 拆卸联轴器防护罩、检查联轴器对中,设定联轴器的定位标记。 4.2 拆卸附属管线,并检查清扫。 4.3拆卸泵体大盖螺栓应对角留有两条螺栓,作业人员相互配合、站位正确,避免泵内残留介质喷出造成人员烫伤、挤伤,设备损坏。 4.4 将泵体置放平稳,使用专用扳手拆卸叶轮轴头螺母,严禁使用手锤、扁铲敲打。造成铁削飞出伤人。 4.5 拆卸引导轮、叶轮、机械密封,检查磨损及冲刷情况,必要时予以更换。 4.6 拆卸轴承箱,检查轴承;同时测量转子的轴向窜动量。 4.7 拆卸主轴,测量主轴的径向原跳动;测量转子各部圆跳动和间隙。 4.8 检查各零(部)件及泵体。 5.设备组装 5.1 组装可按拆卸相反的顺序进行。 5.2 组装机泵零(部)件时应对各部配合尺寸认真测量,符合中国石化《离心泵维护检修规程》SHS 01013—92的标准,部分技术参数如下: 5.2.1 联轴器 5.2.1.1 半联轴器与轴配合为H7/js6。 5.2.1.2 联轴器两端面轴向间隙一般为2~6mm。 5.2.1.3 安装齿式联轴器应保证外齿在内齿宽的中间部位。 5.2.1.4 安装弹性圈柱销联轴器时,其弹性圈与柱销应为过盈配合,并有一定紧力。弹性圈

离心泵汽蚀产生危害分析及防范措施

离心泵汽蚀产生危害分析及防范措施 摘要:离心泵是一种应用广泛的流体机械设备,然而在实际应用中,往往会发生汽蚀现象,对离心泵的性能和使用寿命造成威胁。本文简要分析了离心泵气蚀产生的原因及其危害,从设计、制造、使用管理等方面提出了防范离心泵气蚀的措施,从而提高了离心泵的运行效率和使用寿命。 关键词:离心泵汽蚀危害分析性能判定防范措施 离心泵是靠叶轮以一定转速旋转产生离心力将流体介质输送出去的一种流体机械。离心泵的用途十分广泛,如在石油化工、火力发电、建筑消防、给排水等领域都有着较为广泛的应用。但是,在实际应用中,离心泵经常会因操作或使用不当而使离心泵产生气蚀现象,产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。由此可见,离心泵汽蚀的危害是严重的,我们应该分析汽蚀发生的原因,进而采取相应的防范汽蚀发生的措施。 一、离心泵汽蚀的危害分析 汽蚀会影响离心泵的正常运行,引发许多严重后果。 1.损坏过流部件 由于汽蚀过程中伴随着机械点蚀和电化学腐蚀,在离心泵的过流部件如叶轮、蜗壳等的金属材料表面逐渐产生许多小麻点,继而麻点不断发展扩大呈沟槽状或蜂窝状,严重时就会形成空洞,甚至造成叶轮的断裂,如图1所示为某离心泵产生汽蚀一段时间后的照片,可以看出汽蚀造成叶片表面的金属材料产生了剥落。因此,汽蚀会损坏离心泵的过流部件,甚至影响泵的使用寿命。 图1汽蚀造成离心泵叶片材料的损坏 2.降低离心泵的性能 离心泵是通过叶轮的旋转将能量传递给介质,转化为介质的压力能,但汽蚀会对叶轮和液体之间的能量传递造成严重干扰。由于汽蚀发生,时会在介质中产生大量的气泡,使得介质的通流面积大为减少,并在局部产生旋涡,这些会破坏泵内介质的连续流动,增大流动损失,使泵的流量、扬程和效率均有所下降。由于离心泵叶轮的形状通常长且窄,汽蚀严重时,大量气泡很快就会堵塞整个流道,造成断流,使离心泵无法正常工作。从图2离心泵的性能曲线上来看,在汽蚀比较严重时,性能曲线发生陡降。 图2离心泵的性能曲线

基于CFD的离心泵内部流场数值模拟

基于CFD的离心泵内部流场数值模拟 为研究CFD技术在离心泵内部流场分析方面的应用,通过三维软件Pro/E 对核主泵内部流道进行三维造型,基于雷诺时均N-S方程和k-ε湍流模型两方程及SIMPLEC算法,应用计算流体力学软件CFX对泵进行了定常数值模拟和分析。结果表明:由于蜗壳的扩压作用,在0.6Q~1.3Q泵的内部压力变化梯度明显,从叶轮进口向蜗壳出口方向,压力逐渐增加。在0.9Q~1.1Q工况,泵内的压力变化更加均匀,这表明在设计点附近,泵的流动更加稳定。而在1.2Q和1.3Q 工况,在第八断面附近,出现高压流体和低压流体交汇,流场分布不均匀,这表明泵在大流量区域流动不稳定。应用CFD技术能很好的分析离心泵的内部流场。 标签:CFD;离心泵;数值模拟 随着工业和城市化的进一步发展,我国面临着水污染严重,污水治理起步晚、基础差、要求高的形势,因此开发高效节能的排污泵能够降低能耗,达到节能的效果,可以为国家带来巨大的经济效益[1]。 施卫东[2]为实现低比转速潜水排污泵高扬程、高效率、无过载性能的统一,对WQS150-48-37型低比转速潜水排污泵采用不同设计方法,经优化得出3种方案,应用Pro/E软件建模,结合Fluent软件对3种方案进行了多工况内部流场分析和性能预测,并与外特性试验结果对比。丛小青[3]针对低比速排污泵轴功率曲线随流量增大而增大这一特点,从理论上推导了排污泵产生无过载轴功率的条件,分析了主要几何参数对扬程曲线斜率的影响,给出了无过载排污泵水力设计中主要几何参数的选择原则和范围,同时通过设计实例,阐述了无过载排污泵的设计方法。刘厚林[4]通过对双流道泵叶轮和蜗壳里的水力损失、容积损失、机械损失的分析,提出了双流道泵扬程曲线、效率曲线的性能预测方法,分别给出了双流道泵叶轮和蜗壳内各种摩擦损失、扩散损失,及主要局部损失的计算方法。张德胜[5]为了研究低比转速离心泵内部流动特性,对10种不同设计方案的低比转速离心泵进行了数值模拟和性能预测,讨论了叶轮和蜗壳的关键几何参数对内部流场和外特性的影响,分析了不同设计方案下泵内的静压、流线、速度和湍动能等分布,并针对复合式叶轮短叶片的分布位置和蜗壳喉部面积进行了对比试验。 文章通过三维软件Pro/E对核主泵内部流道进行三维造型,基于雷诺时均N-S方程和k-ε湍流模型两方程及SIMPLEC算法,应用计算流体力学软件CFX 对泵内部流动进行定常数值模拟,旨在为泵的水力优化设计提供参考。 1 数值计算方法 1.1 泵的基本参数 额定流量Q=1400m3/h,额定扬程H=15m,转速n=990r/min,比转速ns=295,叶轮进口直径D1=330mm,叶轮外径D2=430mm,进行叶轮、泵体等水力部件

超声波清洗机设计及制造(完美整理版)

目录 引言 (3) 第一章超声波清洗机原理与结构 (4) 第一节超声波清洗的原理和特点....................................... .4第二节超声波清洗机的结构和参数设定.. (5) 第二章超声波发生器设计............................................... .. (6) 第一节超声波发生器的选择 (6) 第二节超声波振荡器设计 (7) 第三节超声波放大器设计 (8) 第四节高频驱动和匹配电路 (10) 第三章超声波换能器计 (11) 第一节换能器的选择 (11) 第二节换能器设计计算(此处删除500字) (12) 第四章清洗槽计 (16) 参考献 (17) 附录一:工艺规程制订与并行工程 附录二:Process Planning and Concurrent Engineering

超声波清洗机 摘要:超声波清洗始于20世纪50年代初,随着技术的进步应用日益扩大。目前已广泛地用于电子电器工业、清洗半导体器件、电子管零件、印刷电路、继电器、开关和滤波器等;机械工业中用于清洗齿轮、轴承、油泵油嘴偶件、燃油过滤器、阀门及其他机械零件,大如发动机及导弹部件,小如手表零件;再如光学和医疗器械方面用于清洗各种透镜、眼镜及框、医用玻璃器皿、针管和手术器具等;此次设计的超声波清洗机主要应用于家庭中厨具和一些难洗的生活用具。该产品是一种机电产品,通过压电陶瓷材料做成的超声波换能器将超声频电振荡转变成机械振动,在液体中产生超声波振动进行清洗。利用超声波可以穿透固体物质而使整个清洗介质振动并产生空化气泡,该清洗方式对任何生活用具不存在清洗不到的死角,且清洗洁净度非常高。这种新一代时尚家电,能够使人们从繁琐的家务劳动中解脱出来。 关键词:超声波;清洗机;换能器

相关文档
最新文档