建筑变形监测毕业设计论文

建筑变形监测毕业设计论文
建筑变形监测毕业设计论文

建筑变形监测毕业论文

摘要

随着经济和城市化进程的不断发展,建筑越来越呈现向多层、高层和超高层发展的趋势。而多层及高层建筑在建造的过程中必然产生一定的水平或者垂直位移,严重者甚至会危及建筑的安全,造成国家和人民重大的经济损失。因此,建筑物的变形监测与预报是建筑施工中的一个不可或缺的重要环节,也是测绘工程领域研究的热点问题之一。变形监测是一种监测变形体安全性的重要手段,它通过实时获取变形体的动态位移信息来预警变形体的安危状况。在测量工作的实践和科学研究的活动中,变形监测都占有重要的位置。本文主要针对多层及高层建筑物,研究探讨建筑工程变形监测常用技术方法以及如何在保证建筑工程自身稳定的同时,有效控制建筑的变形以保证工程及周围环境安全的技术和方法。总之,建筑变形监测己经成为建筑设计、监测、施工中的一项重要内容。本文重点分析比较几种不同变形观测的方法,特别是建筑基坑变形、建筑沉降位移、水平位移、倾斜位移、沉降位移、挠度的变形监测。

关键词:建筑物、变形监测、建筑基坑变形、水平位移、倾斜位移、沉降位移、挠度

Abstract

With the continuous development of economy and city development, building more and more presents to multi-layer, high-rise and super high-rise development trend. And the multi-storey and high-rise buildings in the process of construction will have certain vertical or horizontal displacement, and even endanger the safety of buildings, caused significant economic losses to the country and the people. Therefore, deformation monitoring and prediction of building is one of the most important aspects of building construction, and is also one of the hot issues in the field of Surveying and mapping engineering. Deformation monitoring is an important means of monitoring the deformation body safety, it gets the deformation body through real-time dynamic displacement information security warning of deformable body. In the practice of and scientific research on measurement of work activities, deformation monitoring plays an important role. In this paper, multi-storey and high-rise building, research building engineering deformation monitoring technology methods and how to ensure the construction itself at the same time, the deformation of the effective control of construction to ensure that the technology and method of construction safety and surrounding environment. In short, the building deformation monitoring has become a building design, construction, monitoring is an important content in. This paper focuses on the analysis and comparison of several different deformation observation method, especially in the construction of foundation pit defo rmation, building settlement displacement, horizontal displacement, tilt displacement, displacement, deflection deformation monitoring.

Keywords: building, building deformation monitoring, deformation of foundation pit, horizontal displacement, tilt displacement, displacement, deflection

目录

1绪论 (1)

1.1引言 (1)

1.2 本文研究的主要内容 (1)

2建筑变形监测概述 (3)

2.1 建筑变形监测 (3)

2.2 建筑变形监测的必要性 (3)

2.3 建筑变形监测的目的 (3)

2.4建筑变形监测方案的设计 (4)

2.4.1 设计的原则 (4)

2.4.2 方案内容的制定 (4)

3建筑基坑变形监测内容及方法原理 (4)

3.1 工程概况 (5)

3.2 变形监测的主要内容 (5)

3.3 监测方法原理 (6)

3.3.1 监测点水平位移测量 (6)

3.3.2 围护结构侧向位移监测 (6)

3.4 监测频率与资料整理提交 (8)

3.4.1 监测初始值测定 (8)

3.4.2 施工监测频率 (8)

4 建筑沉降监测 (9)

4.1 监测方法的分析与确定 (9)

4.2 点位布设 (9)

4.3 建立高程控制网施测 (11)

4.4 观测技术要求 (11)

4.5 沉降观测的数据处理 (11)

5 建筑水平位移的变形监测 (12)

5.1 测点布置和埋设 (13)

5.2 平面控制网的建立和初始值的观测 (13)

5.3 水平位移监测方法的分析和比较 (13)

5.3.1 视准线法 (14)

5.3.2 测小角法 (14)

5.3.3 极坐标法 (14)

5.4 本章结论 (16)

6建筑变形监测新方法的研究 (17)

6.1 变形监测新方法的提出 (17)

6.2 三维坐标法基本原理 (17)

6.3 工程实例 (19)

6.4 本章结论 (19)

结论 (21)

参考文献 (22)

致谢 (23)

1绪论

1.1引言

20世纪80年代以来,我国建筑工程建设发展迅速,伴随着人民生活水平的提高以及人民群众数量的增加,建筑工程数量也在急剧增加,并向高层、超高层方向发展,技术上也有了长足的进步。上世纪70年代末以前,国内只在少数大型建筑工程。到1999年,10层以上的高层建筑累计己达1亿多平方米,多层建筑更是数不胜数。进入21世纪后出现了更多的高层建筑和超高层建筑工程,特别是北京、上海、广州等城市。建筑工程是实用性、经验性极强的学科,是随着工程实践不断提高的科学。然而由于建筑工程设计理论不尽完善、施工的不可预见性、地层性质变异性大,周边环境的错综复杂,建筑物的开裂以及建筑物的水平位移倾斜等事故屡有发生,造成了巨大的经济损失、引起了严重的社会后果。在国务院颁布的《建设工程安全生产管理条例》中,列出了建设工程七大危险性较大的分部分项工程,建筑工程就占了其中的两项,可见建筑工程安全越来越受到国家和人民的关注。有关专家教授曾对全国160余项建筑工程事故进行了细致的调查分析。从这些事故分析中得出一个重要结论:建筑工程事故大多与监测不力或险情预报不准确有关。换言之,如果建筑工程变形监测与险情预报准确而及时,并采取相应的应急措施,就可以防止重大事故的发生,或者可以将事故所造成的损失减少到最小。经过近些年的理论研究和工程实践,人们逐渐认识到建筑工程监测既是实现信息化施工、避免事故发生的有效措施,又是完善、发展设计理论、设计方法和提高施工水平的重要手段。通过对建筑工程施工进行严密监测可以为施工及时提供反馈信息;为建筑物周围环境进行及时有效的保护提供依据;将监测结果反馈设计,通过对监测结果同设计预估值的比较、分析,检验设计理论的正确性,并且可以为今后的优化设计提供依据。总之,建筑物的变形监测已经是建筑物设计、监测、施工的整个过程中不可或缺的一个重要环节。

1.2 本文研究的主要内容

本文研究的是建筑变形监测的方法,首先要了解的是建筑检测的必

要性、目的,及建筑检测的内容和有关的方法原理,通过具体的工程实例分析对建筑检测技术进行探讨。

建筑物的变形观测主要包括对建筑基坑位移、建筑沉降位移、水平位移、倾斜位移、挠度、裂缝等的监测,本文着重分析研究建筑物基坑变形监测、建筑沉降监测、建筑水平位移的变形监测。通过对变形监测方法的分析比较,提出减小变形监测误差的方法,使建筑物的变形监测的成果更真实可靠。

2建筑变形监测概述

2.1 建筑变形监测

建筑变形监测是指在施工及使用期限内,对建筑基坑及周边环境实施的检查、监控工作。建筑变形监测内容主要包括:建筑基坑变形监测、建筑沉降监测、建筑水平位移监测、建筑倾斜位移监测、裂缝、挠度、周围建(构)筑物、周围地下管线及地下设施、周围重要的道路、其他应监测的对象。

2.2 建筑变形监测的必要性

通过监测工作可及时发现不稳定因素、验证设计、指导施工、保障业主和相关社会的利益及分析区域性施工特征等。在建筑物的施工过程中,建筑物不可避免的会产生一定的水平位移、倾斜位移、沉降位移、挠度、裂缝,严重者甚至会危及建筑的安全,造成国家和人民重大的经济损失。因此,为了保证人民的生命安全以及国家和人民的经济财产,建筑物的变形监测与预报是建筑施工中的一个不可或缺的重要环节,它对建筑物安全的必要性更是不言而喻。

2.3 建筑变形监测的目的

在测量工作的实践和科学研究的活动中,变形监测占有重要的位置。从建筑物的地下工程施工开始到建筑物竣工结束,以及建筑物施工的整个过程中都要不断的对工程建筑物进行监测,以便更好的掌握工程建筑物变形的情况,及时发现问题,保证工程建筑物的安全。若不对工程进行监测,及时发现问题并采取措施,控制变形发展,就难以保证工程安全和人们的生命财产安全。建筑变形监测的目的主要有:

l)为信息化施工提供依据。通过监测可随时建筑物水平和垂直方向上的变形情况。

2)为建筑物周边环境中的建筑和各种设施的保护提供依据;

3)为优化设计提供依据;

2.4 建筑变形监测方案的设计

2.4.1 设计的原则

监测方案必须在收集各种相关资料和信息的基础上综合分析而进行设计,因为其对建筑的设计、施工及运行都有很大影响。监测方案设计的原则主要有如下几个主要的方面:

①可靠性原则:为了保证监测的可靠必需要有可靠的仪器设备且必需在监测期内保护好监测点。这是监测设计需要考虑的最重要的原则。

②多层次原则。主要包括以下几个方面:1、监测对象上在考虑监测其他物理量的基础上以位移监测为主;2、在监测方法上以仪器监测为主,并辅以目测巡视的方法;

③重点监测关键区的原则。所谓关键区是指易出问题且一旦出问题将会造成很大损失的部分。对其要进行重点监测并尽早实施。

④实用方便的原则。为了减少监测与施工之间的相互干扰,监测系统的安装和测试要尽可能的做到方便实用。

⑤经济合理的原则。为了减少监测成本费用在系统设计时应尽可能选实用又便宜的仪器。

2.4.2 方案内容的制定

应在施工前制定严密的监测方案,因为建筑监测是一个集信息采集及预测于一体的完整的系统,而不是一个简单的信息采集过程。监测方案设计一般应包括以下几个主要方面:

①确定监测目的,不同环境下的建筑监测目的应有所侧重和不同。要根据场地的水文条件、工程地质条件、周围环境来确定。

②确定并保护基准点与监测点;

③确定监测方法的精度、频率及监测周期;

3建筑基坑变形监测内容及方法原理

本章将结合相关的工程实例来了解建筑变形监测的具体内容,同时研究分析与每项监测内容相关的的方法原理。

3.1 工程概况

在建筑工程监测内容设计前, 应参照国家及当地的相关规范、标准, 熟悉建筑的设计方案和施工图纸,了解工程施工组织设计, 并进行必要的现场踏勘。确定变形监测内容及相应的监测方法。本章结合工程实例确定基坑变形监测的内容及方法原理,其工程概况如下:

本工程位于洛阳市九都路路以南、体育路以西地块。本工程总建筑面积约106519m2,其中,地上建筑面积约88440m2,地下建筑面积约18079m2。基础采用800mm、700mm的筏板基础。

本工程建筑±0.000相当于绝对标高+148.05,本工程包括西区及东区两部分,西区基坑在东区Ⅰ、Ⅱ块底板施工完毕后开挖。西区地下室底板顶相对标高-8.200m底板厚800mm,垫层100mm,坑底标高-9.100m,基坑开挖深度9.00m,电梯井等局部深坑加深1.8m;东区地下室底板顶相对标高-5.900m,底板厚700mm,垫层100mm,坑底标高-6.700m,基坑开挖深度6.60m,电梯井等局部深坑加深1.35m~1.80m。

本基坑采用钻孔灌注桩围护结构,东区基坑围护墙体主要采用φ700@900钻孔灌注桩,有效桩长12.5m,坑边局部落深处采用φ800@1000钻孔灌注桩,有效桩长16.0m;西区基坑围护墙体主要采用φ800@1000钻孔灌注桩,有效桩长17.5m,坑边局部落深处采用φ900@1100钻孔灌注桩,有效桩长21.0m。

东区南侧及西区止水帷幕采用单排三轴3φ850@1200搅拌桩,轴间距600,相互搭接250,幅与幅间搭接850,桩长14.5、17.5m;东区其余部分止水帷幕采用单排三轴3φ650@900搅拌桩,轴间距450,相互搭接200,幅与幅间搭接650,桩长14.5、17.5m;采用一喷一搅工艺。搅拌桩与灌注桩间净距100~200mm,围护桩与搅拌桩间设压密注浆;搅拌桩顶设150mm厚C20混凝土压顶。

坑底加固采用双轴水泥搅拌桩2φ700@1000,加固深度坑底以下4m;深坑采用压密注浆封底,深度自坑底至坑底下2m。

3.2 变形监测的主要内容

根据工程的要求、周围环境、基坑本身的特点及相关工程的经验,按照安全、经济、合理的原则,测点布置主要选择在2倍以上基坑开挖深度范围布点,拟设置的监测项目如下:

(一) 周边环境监测

地下综合管线垂直位移监测

周边河堤垂直位移、水平位移及裂缝监测

(二) 基坑围护监测

围护顶部垂直、水平位移监测

围护结构侧向位移监测

坑外土体侧向位移监测

支撑轴力监测

坑外潜水水位观测

3.3 监测方法原理

为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。即首先布设统一的监测控制网,再在此基础上布设监测点(孔)。

3.3.1 监测点水平位移测量

采用轴线投影法。在某条测线的两端远处各选定一个稳固基准点A、B,经纬仪架设于A点,定向B点,则A、B连线为一条基准线。观测时,在该条测线上的各监测点设置觇板,由经纬仪在觇板上读取各监测点至AB基准线的垂距E,某监测点本次E值与初始E值的差值即为该点累计水平位移,各变形监测点初始E值均为取两次平均的值。采用瑞士WILD T2经纬仪来测试。

3.3.2 围护结构侧向位移监测

在基坑围护地下钻孔灌注桩的钢筋笼上绑扎安装带导槽PVC管,测斜管管径为Φ70mm,内壁有二组互成90°的纵向导槽,导槽控制了测试方位。埋设时,应保证让一组导槽垂直于围护体,另一组平行于基坑墙体。测试时,测斜仪探头沿导槽缓缓沉至孔底,在恒温一段时间后,自下而上逐段(间隔0.5米)测出X方向上的位移。同时用光学仪器测量管顶位移作为控制值。在基坑开挖前,分二次对每一测斜孔测量各深度

点的倾斜值,取其平均值作为原始偏移值。“+”值表示向基坑内位移,“-”值表示向基坑外位移。

仪器采用美国Geokon-603测斜仪或北京航天CX-06型测斜仪进行测试,测斜精度±0.1mm/500mm ,见图3.1:

图3.1 测斜仪

测试原理见图3.2:

图 3.2 测斜仪工作原理

计算公式:

∑∑==-==i

j j j i j j i B A C L X 00)(sin α

0i i i X X X -=? 式(3.1)

式中:△X

为i深度的累计位移(计算结果精确至0.1mm )

i

为i深度的本次坐标(mm)

X

i

Xi0 为i深度的初始坐标(mm)

Aj为仪器在0方向的读数

Bj为仪器在180方向上的读数

3.4 监测频率与资料整理提交

3.4.1 监测初始值测定

为取得基准数据,各观测点在施工前,随施工进度及时设置,并及

时测得初始值,观测次数不少于2次,直至稳定后作为动态观测的初始

测值。

测量基准点在施工前埋设,经观测确定其已稳定时方才投入使用。

稳定标准为间隔一周的两次观测值不超过2倍观测点精度。基准点不少

于3个,并设在施工影响范围外。监测期间定期联测以检验其稳定性。

并采用有效保护措施,保证其在整个监测期间的正常使用。

3.4.2 施工监测频率

根据工况合理安排监测时间间隔,做到既经济又安全。根据以往同

类工程的经验,拟定监测频率为见表 3.2 (最终监测频率须与设计、总包、业主、监理及有关部门协商后确定)。

表3.2施工监测频率

监测内容监测频率

围护施工坑内降水基坑工程开挖底板浇筑后支撑拆除期间

2次/周1次/3天1次/1天1次/3天1次/1天周边地下管线

垂直位移监测

2次/周1次/3天1次/1天1次/3天1次/1天河堤垂直、

水平位移监测

/ / 1次/1天1次/3天1次/1天围护顶部垂直、

水平位移监测

/ / 1次/1天1次/3天1次/1天围护结构侧向

位移监测

坑外土体侧向

/ 1次/3天1次/1天1次/3天1次/1天位移监测

支撑轴力监测/ / 1次/1天1次/3天1次/1天立柱桩垂直位

/ / 1次/1天1次/3天/ 移监测

/ 1次/1天1次/1天1次/3天1次/1天坑外潜水水位

观测

说明

1、现场监测将采用定时观测与跟踪观察相结合的方法进行。

2、监测频率可根据监测数据变化大小进行适当调整。

3、监测数据有突变时,监测频率加密到每天二~三次。

4、各监测项目的开展、监测范围的扩展,随基坑施工进度不断推进。

4 建筑沉降监测

4.1 监测方法的分析与确定

目前,建筑沉降位移监测的主要方法是用几何水准测量法、精密三角高程测量法观测变形体的垂直方向位移。水准测量又称几何水准测量,是测定地面点高程的主要方法之一。水准测量是使用水准仪和水准尺,利用水准仪提供的水平视线测定地面两点之间的高差,再由已知点的高程推求待测点的高程。当所测两点之间距离较短时,可用水平面来代替水准面,测定地面两点间的高差。三角高程测量的基本思想是根据右测站点向照准点所观测的竖直角(或天顶距)和它们之间的水平距离,应用三角函数的计算公式,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件限制较少。在变形监测中我们一般采用水准测量,所以本章着重研究几何水准测量法在基坑沉降监测中的应用。本章结合第三章中的工程实例进行分析。

4.2 点位布设

(1)要保证稳定、可靠观测方便等诸多因素,桩墙测点一般布置在将维护桩墙连接起来的混凝土圈梁、水泥搅拌桩、土钉墙、放坡开挖时的上部压顶上,顶部应加水准专用标志,在沉降观测前应对水准基点进行联测,使其成为一个严密统一的系统,在沉降观测过程中,宜每间隔1个月应对其联测一次本次沉降观测拟设定水准基点个,采用一等水准方法施测。

立柱沉降测点应直接布置在立柱上方的支撑面上,对很多支撑交会受力复杂处的立应做重点监测,用做施工栈桥的立柱也应重点监测。

(2)沉降观测点的布设:本工程根据设计要求设置建筑物沉降观测点2个。标志的埋设位置应避开入水管窗台线暖气片暖水管电器开关等有碍标志与观测的障碍物,并应视立尺需要离开墙(柱)面和地面一定距离,本次设计要求沉降观测点设置标高为高出建筑地面0.5米. 沉降观测点的观测采用二等水准方法施测。

4.3 建立高程控制网施测

在远离施工影响范围以外布置3个以上稳固高程基准点,这些高程基准点与施工用高程控制点联测,沉降变形监测基准网以上述稳固高程基准点作为起算点,组成水准网进行联测。

本次沉降观测水准基点的联测按一级水准测量进行,采用级水准仪配合铟瓦合金标尺光学测微法往返测定高差观测时,往测奇数站的观测顺序为后-前-前-后,偶数站的观测顺序为前-后-后-前;反测时,奇偶测站的观测顺序与往测偶奇测站的观测顺序相同。

4.4 观测技术要求

基准网按照国家Ⅱ等水准测量规范和建筑变形测量规范二级水准测量要求执行,精密水准测量的主要技术参照表4.1:

表4.1精密水准测量的主要技术要求

每千米高差中误差(mm) 水准仪

等级

水准尺观测次数往返较差、附合或

环线闭合差(mm)

偶然中误差全中误差DS1铟瓦尺往返测各一次±4

L或1.0n ±1 ±2

注:L为往返测段、环线的路线长度(以km计);

观测措施:本高程监测基准网使用WILD NA2+GPM3自动安平水准仪及配套铟瓦尺,外业观测严格按规范要求的二等精密水准测量的技术要求执行。为确保观测精度,观测措施制定如下。

①作业前编制作业计划表,以确保外业观测有序开展。

②观测前对水准仪及配套因瓦尺进行全面检验。

③观测方法:往测奇数站“后—前—前—后”,偶数站“前—后—后—前”;返测奇数站“前—后—后—前”,偶数站“后—前—前—后”。往测转为返测时,两根标尺互换。

④测站视线长、视距差、视线高要求见表4.2:

表4.2测站视线长、视距差、视线高要求

标尺类

视线长度前后视

距差

前后视距

累计差

视线高度

仪器

等级

视距视线长度

20m以上

视线长度

20m以下

铟瓦DS1 ≤50m ≤1.0m ≤3.0m 0.5m 0.3m

表4.3测站观测限差

基辅分划读数

差基辅分划所测高

差之差

上下丝读数平均值与

中丝读数之差

检测间歇点高

差之差

0.4mm 0.6mm 3.0mm 1.0mm

4.5 沉降观测的数据处理

每周期观测后,应及时对观测资料进行整理,计算观测点的沉降量沉降差以及本周期平均沉降量和沉降速度。

各类观测点观测成果的计算与分析应符合以下要求:

(1)观测值中的系统误差应减小到最小程度;

(2)合理处理随机误差,正确区分测量误差与变形信息;

(3)各期观测成果的处理应建立在统一的基准上;

(4)按网点的不同要求,合理估计观测成果精度,正确评定成果质量。

5 建筑水平位移的变形监测

5.1 测点布置和埋设

水平位移监测点分为基准点、工作基点、变形监测3种基准点和工作基点均为变形监测的控制点。基准点一般距离施工场地较远,应设在影响范围以外,用于检查和恢复工作基点的可靠性;工作基点则布设在建筑周围较稳定的地方,直接在工作基点上架设仪器对水平变形监测点进行观测。监测点应按要求布设,并要反映围护体系变形特征。根据这一原则,施工单位将围护结构垂直、水平位移监测点和围护结构测斜孔布置在同一部位。

监测基准点和工作基点在有条件的情况下采用强制对中设备,以减少对中误差对观测结果的影响。

5.2 平面控制网的建立和初始值的观测

水平位移监测控制网宜按两级布设,由控制点(基准点、工作基点)组成首级网,由观测点及所联测的控制点组成扩展网。对于单个目标的位移监测,可将控制点同观测点按一级布设。

监测埋设的监测点稳定后,应在基坑开挖前进行初始值观测,初始值一般应独立观测2次,2次观测时间间隔尽可能的短,2次观测值较差满足有关限差值要求后,取2次观测值的平均值作为初始值。水平位移监测以初始值为观测值比较基准,水平位移变形监测应视基坑开挖情况即时开始实施。

5.3 水平位移监测方法的分析和比较

对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。

当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交

会法。另外还有极坐标法以及一些困难条件下的水平位移观测方法。

5.3.1 视准线法

当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。

原理:如图5.1所示,点A 、B 是视准线的两个基准点(端点),1、2、3为水平位移观测点。观测时将经纬仪置于A 点,将仪器照准B 点,将水平制动装置制动。竖直转动经纬仪,分别转至1、2、3 三个点附近,用钢尺等工具测得水准观测点至A —B 这条视准线的距离。根据前后两次的测量距离,得出这段时间内水平位移量。

d3d2d1

1A 32B

图5.1 视准线法

精度分析:

由基准线的设置过程可知,观测误差主要包括仪器测站点仪器对中误差,视准线照准误差,读数照准误差,其中,影响最大的无疑是读数照准误差。

可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。

另外此方法还受到大气折光等因素的影响。

优点:

视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。

不足:

对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。

5.3.2 测小角法

当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法

原理:如图5.2所示,如需观测某方向上的水平位移PP ′,在监测区域一定距离以外选定工作基点A ,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100-200m )选定一个控制点B ,作为零方向。在B 点安置觇牌,用测回法观测水平角∠BAP ,测定一段时间内观测点与基准点连线与零方向间角度变化值,根据δ=△β×D/ρ(式中D 为观测点P 至工作基点A 的距离,ρ=206265)计算水平位移。

△β

β2

β1

图5.2 小角法

精度分析:

由小角法的观测原理可知,距离D 和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差:

22222211D m D m m σββρρ?=+? 式(5.1)

水平位移观测中误差的公式,表明:

① 距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误差可以忽略不计,采用钢尺等一般方法量取即可满足要求;

② 影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用高精度仪器或适当增加测回数来提高观测度;

③ 经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度要求的前提下,可以使用精度较低的仪器,以降低观测成本。

优点:此方法简单易行,便于实地操作,精度较高。

不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。

5.3.3 极坐标法

极坐标法属于边角交会,是边角交会的最常见的方法。

边坡变形监测技术分析

边坡变形监测技术分析 ?简介:边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施 工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才 开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工 作。 ?关键字:边坡变形监测,技术分析,边坡监测技术 边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工作。 1 边坡变形监侧的作用 在土木工程各个建设领域中,通过边坡工程的监测,可以起到以下作用。 1. 1 评价边坡施工及其使用过程中边坡的稳定性,并作出有关预测预报,为业主、施工单位及监理提供预报数据,跟踪和控制施工过程,合理采用和调整有关施工工艺和步骤,取得最佳经济效益。 1.2 为防止滑坡及可能的滑动和蠕变提供及时支持。预测和预报滑坡的边界条件、规模滑动方向、发生时间及危害程度,并及时采取措施,以尽量避免和减轻灾害损失。 1. 3 监测已发生滑动破坏和加固处理后的滑坡,监测结果是评价滑坡处理效果的尺度。 1.4 为进行有关位移反分析及数值模拟计算提供参数。 2 边坡工程监测的方法 目前,我国边坡变形监测方法主要采用简易观测法、设站观测法、仪表观测法和远程监测法等。 2.1 简易观测法 简易观测法是通过人工观测边坡中地表裂缝、鼓胀、沉降、坍塌、建筑物变形及地下水位变化、地温变化等现象。

建筑变形监测论文

摘要 随着经济和城市化进程的不断发展,建筑越来越呈现向多层、高层和超高层发展的趋势。而多层及高层建筑在建造的过程中必然产生一定的水平或者垂直位移,严重者甚至会危及建筑的安全,造成国家和人民重大的经济损失。因此,建筑物的变形监测与预报是建筑施工中的一个不可或缺的重要环节,也是测绘工程领域研究的热点问题之一。变形监测是一种监测变形体安全性的重要手段,它通过实时获取变形体的动态位移信息来预警变形体的安危状况。在测量工作的实践和科学研究的活动中,变形监测都占有重要的位置。本文主要针对多层及高层建筑物,研究探讨建筑工程变形监测常用技术方法以及如何在保证建筑工程自身稳定的同时,有效控制建筑的变形以保证工程及周围环境安全的技术和方法。总之,建筑变形监测己经成为建筑设计、监测、施工中的一项重要内容。本文重点分析比较几种不同变形观测的方法,特别是建筑基坑变形、建筑沉降位移、水平位移、倾斜位移、沉降位移、挠度的变形监测。 关键词:建筑物、变形监测、建筑基坑变形、水平位移、倾斜位移、沉降位移、挠度

Abstract With the continuous development of economy and city development, building more and more presents to multi-layer, high-rise and super high-rise development trend. And the multi-storey and high-rise buildings in the process of construction will have certain vertical or horizontal displacement, and even endanger the safety of buildings, caused significant economic losses to the country and the people. Therefore, deformation monitoring and prediction of building is one of the most important aspects of building construction, and is also one of the hot issues in the field of Surveying and mapping engineering. Deformation monitoring is an important means of monitoring the deformation body safety, it gets the deformation body through real-time dynamic displacement information security warning of deformable body. In the practice of and scientific research on measurement of work activities, deformation monitoring plays an important role. In this paper, multi-storey and high-rise building, research building engineering deformation monitoring technology me thods and how to ensure the construction itself at the same time, the deformation of the effective control of construction to ensure that the technology and method of construction safety and surrounding environment. In short, the building deformation monitoring has become a building design, construction, monitoring is an important content in. This paper focuses on the analysis and comparison of several different deformation observation method, especially in the construction of foundation pit deformation, building settlement displacement, horizontal displacement, tilt displacement, displacement, deflection deformation monitoring. Keywords: building, building deformation monitoring, deformation of foundation pit, horizontal displacement, tilt displacement, dis placement, deflection

地表沉降监测作业指导书

沉降监测作业指导书 1 目的和适用范围及标准 测定建筑场地沉降、基坑回弹、地基土分层沉降以及基础和上部结构沉降。操作方法执行标准《工程测量规范》(GB50026-2007)、《建筑变形测量规范》(JGJ 8-2007)。 2 仪器设备 水准仪全站仪 3 沉降控制点布设 特级沉降观测的高程基准点数不应少于4个;其他级别沉降观测的高程基准点数不应少于3个。高程工作基点可根据需要设置。基准点和工作基点应形成闭合环或形成由附合路线构成的结点网。 高程基准点和工作基点位置的选择应符合下列规定: 1)高程基准点和工作基点应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器振动区以及其他可能使标石、标志易遭腐蚀和破坏的地方; 2)高程基准点应选设在变形影响范围以外且稳定、易于长期保存的地方。在建筑区内,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍,其标石埋深应大于邻近建筑基础的深度。高程基准点也可选择在基础深且稳定的建筑上; 3)高程基准点、工作基点之间宜便于进行水准测量。当使用电磁波测距三角高程测量方法进行观测时,宜使各点周围的地形条件一致。当使用静力水准测量方法进行沉降观测时,用于联测观测点的

工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。当不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助点传递高程。 沉降监测点的布设应位于建(构)筑物体上。高程基准点和工作基点标石、标志的选型及埋设应符合有关规范规定。 4 沉降观测 沉降观测分为:定期对高程控制网进行复测以确定控制网的稳定性,同时对沉降观测标进行观测。 基准点应设置在变形区域以外、位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的稳定情况确定,在建筑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。当观测点变形测量成果出现异常,或当测区受到地震、洪水、爆破等外界因素影响时,应及时进行复测,并按《建筑变形测量规范JGJ 8-2007》规定对其稳定性进行分析。 有工作基点时,每期变形观测时均应将其与基准点进行联测,然后再对观测点进行观测。 沉降观测标的精度、观测仪器、观测方式均应达到相应等级的水准测量规范要求,沉降观测标必须位于水准观测线路中,不得使用碎步点方式对沉降观测标进行测量。 5 观测周期 按照《工程测量规范GB50026-2007》、《建筑变形测量规范JGJ 8-2007》中的技术要求,确定相应等级的观测周期。

建筑变形监测毕业设计论文

建筑变形监测毕业论文 摘要 随着经济和城市化进程的不断发展,建筑越来越呈现向多层、高层和超高层发展的趋势。而多层及高层建筑在建造的过程中必然产生一定的水平或者垂直位移,严重者甚至会危及建筑的安全,造成国家和人民重大的经济损失。因此,建筑物的变形监测与预报是建筑施工中的一个不可或缺的重要环节,也是测绘工程领域研究的热点问题之一。变形监测是一种监测变形体安全性的重要手段,它通过实时获取变形体的动态位移信息来预警变形体的安危状况。在测量工作的实践和科学研究的活动中,变形监测都占有重要的位置。本文主要针对多层及高层建筑物,研究探讨建筑工程变形监测常用技术方法以及如何在保证建筑工程自身稳定的同时,有效控制建筑的变形以保证工程及周围环境安全的技术和方法。总之,建筑变形监测己经成为建筑设计、监测、施工中的一项重要内容。本文重点分析比较几种不同变形观测的方法,特别是建筑基坑变形、建筑沉降位移、水平位移、倾斜位移、沉降位移、挠度的变形监测。 关键词:建筑物、变形监测、建筑基坑变形、水平位移、倾斜位移、沉降位移、挠度

Abstract With the continuous development of economy and city development, building more and more presents to multi-layer, high-rise and super high-rise development trend. And the multi-storey and high-rise buildings in the process of construction will have certain vertical or horizontal displacement, and even endanger the safety of buildings, caused significant economic losses to the country and the people. Therefore, deformation monitoring and prediction of building is one of the most important aspects of building construction, and is also one of the hot issues in the field of Surveying and mapping engineering. Deformation monitoring is an important means of monitoring the deformation body safety, it gets the deformation body through real-time dynamic displacement information security warning of deformable body. In the practice of and scientific research on measurement of work activities, deformation monitoring plays an important role. In this paper, multi-storey and high-rise building, research building engineering deformation monitoring technology methods and how to ensure the construction itself at the same time, the deformation of the effective control of construction to ensure that the technology and method of construction safety and surrounding environment. In short, the building deformation monitoring has become a building design, construction, monitoring is an important content in. This paper focuses on the analysis and comparison of several different deformation observation method, especially in the construction of foundation pit defo rmation, building settlement displacement, horizontal displacement, tilt displacement, displacement, deflection deformation monitoring.

基坑工程监测开题报告

山东科技大学 本科毕业设计(论文)开题报告题目基坑工程的综合监测 学院名称测绘科学与工程学院 专业班级 学生 学号 指导教师 填表时间:年 5 月 6 日

填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。

设计(论文) 题目 基坑开挖监测 设计(论文)类型(划“√”)工程实际科研项目实验室建设理论研究其它√ 一、本课题的研究目的和意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。监测在取得大量测试数据同时对工程总结经验、完善基坑的支撑、提高设计水平有着重要意义。 根据我市周边地区的基坑工程事故分析可知,由于部分单位不重视基坑施工过程的监测,从而造成了较严重的工程事故,甚至造成了人员伤亡事故。如基坑围护结构的失稳,周边建筑的裂缝及地下设施的破坏。因此,当前对于我基坑开展监测工作已经变得越来越重要。

边坡变形监测方案实施及数据处理分析

边坡变形监测方案实施及数据处理分析 【摘要】边坡工程施工过程中,由于填挖面大,引起周边环境变形的可能性就高,需要对边坡进行有效的变形监测,针对变化及时采取一些方法处理,以保证设施的安全。这种项目就需要正确地采用一个合理的监测方案,对数据处理、分析。本文结合已完成项目的实例,对边坡进行水平位移和沉降监测,采用监测方法为精密二等水准、极坐标法,并对其进行分析。 【关键词】变形监测;基准网;变形点;边角网;极坐标法;闭合水准路线 1 工程概况 某变电站东南侧边坡于2011年发生滑坡,后采用42根抗滑桩进行加固处理。根据施工单位的反映,抗滑桩施工2012年3月施工完毕后至2012年5月初,抗滑桩发生位移,附近水泥地面发现裂缝,呈放大趋势。为了准确了解抗滑桩变形情况,要求对桩顶水平及垂直位移进行变形监测。 2 监测方案的实施 2.1 基准控制点和监测点的布设 2.1.1 基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍即45m外比较稳定的地方埋设四个工作基点,其中三个工作基点A1、A2、A3采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌。A2、A3为观测墩,地面高度约1.2m,埋深至基岩位置,A4为主要检核点,埋设在加固坎上,地质较为稳定。 A3、D12、SZ1为沉降基准点,D12在是4×4m的高压电塔加固水泥墩上,建成已超过一年,SZ1在另一电塔水泥墩上,墩台3.5×3.5m,建成时间超过三年,非常稳固。 2.1.2 变形点的建立 变形点应布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上布置27个变形监测点,编号分别为东侧为1-27。用膨胀螺栓垂直植入护坡混凝土中,螺栓孔深不小于100mm,露出地面30-80mm,用红色油漆在螺栓上做标记,并将螺栓顶部磨半圆。 基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2.2 监测精度及频率要求

建筑物变形监测论文

建筑物变形监测 1.工程背景 2. 坐标系统 依据收集到的现有资料及技术设计的要求,平面控制网的起算数据为SBY02,SBY05,SBY09,垂直位移监测的起算数据为SBY01,SBY05.因此变形监测利用的基准和系统为: (1).1954年北京平面坐标系 (2).高斯-克吕格投影3°带 (3).中央子午线111° (4).1956年吴淞高程系 3 建筑物变形观测与动态位移监测 3.1 变形概述 建筑物在工程建设和使用过程中,由于基础的地质结构不均匀,土壤的物理性质不同,土基的塑性变形,地下水位的变化,大气温度的变化,建筑物本身的荷重(如风力,震动等)的作用,会导致工程建筑物随时间的推移发生沉降,位移,扰曲,倾斜及裂缝等现象。这些现象统称为变形。 工程建筑物的变形,按其类型可以分为:静态变形和动态变形.静态变形通常是指变形观测的结果只表示在某一时期内的变形值,也就是说,它只是时间的函数;动态变形是指在外力影响下而产生的变形,故它是以外力为函数来表示的动态系统对于时间的变化,其观测结果是表示建筑物在某一时刻的瞬时变形.变形按时间长短可分为:长周期变形(建筑物自重引起的沉降和变形),短周期变形(温度变化引起的变形)。按研究的范围可以分为:全局性变形,区域性变形,局域性变形。按成因可以分为:人工干预变形,自然原因变形,综合原因变形。 3.2 变形观测概述 3.2.1.变形观测 所谓变形观测,是用测量仪器或者专用仪器测定建筑物及地基建筑物在荷载和外力作用下随时间变形的工作.通过变形观测,可以检查、各种工程建筑物和地质构造的稳定性,及时发现问题,确保质量和使用安全;更好的了解变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的预报变形的理论和方法;以及对某种新结构,新材料,新工艺的性能做出科学的客观的评价。 变形观测属于安全监测。变形观测有内部观测和外部观测两方面。内部观测内容由建(构)筑物的内部应力,温度变化的测量,动力特征及其速度的测定等,一般不由测量工作者完成。内部观测与外部观测之间有着密切的联系,应同时进行,以便互相验证和补充。 外部观测的内容主要有沉降观测,位移观测,倾斜观测,裂缝观测和扰度观测等. 沉降观测 它是指建筑物及其基础在垂直方向上的变形(也称垂直位移).沉降观测就是测定建筑物上所设观测点(沉降点)与基准点(水准点)之间随时间的变化的高差变化量.通常采用精密水准测量或液体静力水准测量的方法进行. 水平位移观测 它是指建筑物在水平面内的变形,其表现形式为在不同时期平面坐标或距离

急倾斜煤层水平分层开采引发的地表变形监测技术研究

一第26卷增刊1一2017年6月中一国一矿一业C H I N A M I N I N G M A G A Z I N E 一V o l .26,S u p p l J u n .一2017 急倾斜煤层水平分层开采引发的 地表变形监测技术研究 郝文杰1, 2,魏一洁3,任一涛1,史彦新1,2(1.中国地质调查局水文地质环境地质调查中心,河北保定071051;2.国土资源部地质环境监测 技术重点实验室,河北保定071051;3.甘肃省地质环境监测院,甘肃兰州730050 )一一摘一要:西北地区厚黄土覆盖层急倾斜煤层开采引发的地表沉陷二 地裂缝等地质灾害具有独特的发育特征,需要具有针对性的监测指标和方法,从而获取监测体的演变模式,本文选择甘肃省窑街三矿采煤引发的地表沉陷典型区域作为研究试验区,通过总结采煤工艺及地质条件差异引起的地表沉陷特征,结合采用传统测量技术与现代实时监测技术,实施了针对急倾斜煤层开采引发的厚黄土层变形监测工作,选取地表埋设G P S 监测桩定期监测和安装拉绳变形监测仪实时采集数据的方法, 实时监测塌陷区典型变形点的三维变形情况,并通过数据分析对垂向沉降和水平位移进行了对比,进一步对稳定区进行了划分三该研究为开展类似条件下的监测和研究工作积累了经验三 一一关键词:急倾斜煤层;地表沉陷;G P S ;动态监测;一一中图分类号:T D 325一一文献标识码:A一一文章编号:1004-4051(2017)S 1-0378-04S t u d y o n s u r f a c e d e f o r m a t i o nm o n i t o r i n g t e c h n o l o g y o f c a v i n g s t e e p -i n c l i n e d c o a l s e a m w i t hh o r i z o n t a l l y g r o u p e d t o p -c o a l d r a w i n g m i n i n g m e t h o d HA O W e n j i e 1,2,W E I J i e 3,R E N T a o 1,S H IY a n x i n 1, 2(1.C e n t e rF o rH y d r o g e o l o g y a n dE n v i r o n m e n t a lG e o l o g y ,C h i n aG e o l o g i c a l S u r v e y ,B a o d i n g 071051,C h i n a ;2.K e y L a b o r a t o r y o fG e o l o g i c a l E n v i r o n m e n tM o n i t o r i n g T e c h n o l o g y ,M i n i s t r y o fL a n da n dR e s o u r c e ,B a o d i n g 071051,C h i n a ;3.G e o -E n v i r o n m e n tM o n i t o r i n g I n s t i t u t e o fG a n s uP r o v i n c e ,L a n z h o u730050,C h i n a )一一A b s t r a c t :S t u d y s u r f a c es u b s i d e n c ea n d g r o u n df i s s u r em o n i t o r i n g t e c h n o l o g y c a u s eb y c a v i n g s t e e p -i n c l i n e d c o a l s e a mi nn o r t h w e s t a r e a o f C h i n a .A i m i n g a t t y p i c a l r e g i o n a l o f s u r f a c e s u b s i d e n c e i nY a o j i e c o a l m i n e o f L a n z h o u c i t y ;S u m m a r i z e t h e c h a r a c t e r i s t i c s o fm i n i n g t e c h n o l o g y a n d g e o l o g i c a l c o n d i t i o n s ,R e s e a r c h t h i c k l o e s s d e f o r m a t i o nm o n i t o r i n g t e c h n o l o g y ;U s e dG P S a n d d i s p l a c e m e n tm e t e rm e t h o dw h i c h r e a l i z e r e a l -t i m e d a t a a c q u i s i t i o n a n d o n -l i n em o n i t o r i n g o f g e o l o g i c a l d i s a s t e r s i n t h e t h r e e -d i m e n s i o n a l s p a c e .T h i s p a p e r i n t r o d u c e s t h ed e f o r m a t i o n m o n i t o r i n g p r o g r a m a n da n a l y s i so ft e s tr e s u l t s ,p r o v i d ee x p e r i e n c ef o rt h e r e s e a r c hw h i c h i s i n t h e s i m i l a r c o n d i t i o n .一一K e y w o r d s :s t e e p c o a l s e a m ;s u r f a c e s u b s i d e n c e ;G P S ;d y n a m i cm o n i t o r i n g 收稿日期:2017-03-05一一责任编辑:宋菲 基金项目:国土资源部公益性行业科研专项项目资助(编号: 201511056);国家自然科学基金青年基金项目资助(编号:41402322)第一作者简介:郝文杰(1984-),男,内蒙古赤峰人,工程师,主要从事矿山地质环境监测技术研发与方法研究工作,E -m a i l :h a o w e n j i e l o v e @163.c o m 三一一我国宁夏二 陕西和甘肃省等西部地区,巨厚黄土层覆盖地区占矿井开采面积的60%以上, 这些地区的煤炭开采所引起的地表沉陷及采动损害问题日益突出[1],不但使矿区建筑物受损,而且造成植被破坏二水土流失二山体滑坡二农田损毁等地质环境问题,严重制约了矿区可持续发展[ 2]三为最大限度地解放 三下 压煤,提高资源回收率,保护地表村庄 建筑物,国内外很多学者进行了大量的地表移动观 测研究三在欧洲,F e r r i e r 等人利用光谱成像技术对西班牙最大的铜矿区R o d a q u i l a r 进行长期跟踪,分析了由于铜矿的过度开采所造成地面沉降问题的发展 趋势[3]三M u l a r z 利用L a n d s a t T M 和S P O T -5卫星万方数据

基坑工程施工监测毕业论文

毕业论文基坑工程施工监测

内容摘要 文章以第三方监测单位角度,通过对基坑工程监测点的布设、监测的方法和技术要求、基坑工作控制与管理,具体基坑监测方案的介绍,一方面总结了基坑监测的主要内容,反映出进行监测的总体思路。另一方面,通过实测上海基坑监测和制定具体方案,保证基坑监测方案和实际施测达到要求,为信息化施工和优化设计提供依据,确保建筑基坑安全和保护基坑周边环境。

目录 第一章绪论......................................................... 第二章基坑监测点的布置............................................. 第一节基坑工程监测点布置的一般规定............................ 第二节围护体系监测点布置 ...................................... 第六章结束语 参考文献............................................................ 致谢............................................................

第一章绪论 基坑监测的发展: 随着城市建设的发展,大中城市市区的地价日趋昂贵。向空中求发展、向地下深层要土地便成了建筑商追求经济效益的常用手段。在建筑工程市场上,三层的地下室已是司空见惯,随之而来的基坑施工的开挖深度也从最初的5—7m发展到目前最深已达35m(成都).由于地下

边坡变形监测

边坡变形监测 滑坡监测包括施工期监测和运行期监测网,两者统筹安排,结合布置。 5.2.2.1 运行期监测 (1)运行期主要根据设计监测布置图布置的位移测点进行位移监测。同时辅以地表巡视检查(记录滑坡表面出现裂缝、渗水、塌滑等情况)。 (2)运行期监测第1 年每月观测2 次,以后每月观测1 次。(3)当位移测值出现陡增时,应加密监测,并及时进行巡视检查,发现异常情况时应及时报告有关方面,以便迅速组织人员撤离。 5.2.2.2 施工期监测 (1)施工期除运行期的测点外,边坡的桩顶均设表面水平位移测点,并于桩顶以下削坡以前起测,主要观测削坡开挖和锚固引起抗滑桩的变形。 (2)施工期观测时间和次数根据施工具体情况由监理工程师确定,但每月观测不少于2 次。 (3)施工期除采用以上各项监测设施进行定点监测外,还应特别重视对滑坡的巡视检查,及时记录滑坡表面出现裂缝、渗水、塌滑等情况。 (4)当位移测值出现陡增时,应加密监测,并及时进行巡视检查,发现异常情况时应及时报告有关方面。 5.2.2.3 水平位移监测网

(1)水平位移监测网网点应根据现场情况选定,测点墩应坐落在稳定岩或原状土基上,并保证通视要求。 (2)网点的高程由施工高程控制网并按二等水准的要求接测,固定点初始坐标由施工控制网施测。 (3)水平位移监测网按一等全测边测角网观测,观测要求按《混凝土大坝安全监测技术规范》(SDJ336-89 试行)的有关规定 执行。 (4)水平位移监测网一般每年观测1-2 次。 5.2.2.4 水平位移测点 水平位移测点的位移采用测边交会法观测,边长采用标称精度不低于±(1.0mm+1.0ppm)测距仪测量。

地表沉降观测办法

西石门铁矿 地表塌陷、断裂变形的观察办法(试行) 根据国家地质灾害防治条例的相关条例和局、矿的有关规定,以及结合我矿长期的观测经验。对我矿开采范围内各大采区因采矿出现的采空塌陷区和裂隙变形情况与马河沉降变形情况和尾矿库的监测情况。我矿地测科特制定了相关检测方法及观测结果整理的办法,以顺利有效地把灾害检测工作做好。能够准确地把观测结果上报有关部门以便采取积极有效措施,以防发生重大的灾害事件。 一、观测要求: 1、仪器:全占仪,精度±2″,钢尺。 2、观测时间:以长期固定检测与定期巡查和汛期强化检测相结合的方式进行。长期固定检测一般为每月两次,雨后加测,雨季加密为每周一次;定期巡查一般为每月进行一次。 3、观测点的设置:沉降观测点要布置在能反映沉降特征且方便观测的位置,一般采用条带型和十字型观测网,布置观测点使用钢钉和混凝土埋桩的方法。 4、沉降观测的五定:点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测时环境条件要基本一致;观测方法、路线要固定。 5、沉降观测成果的整理:作好原始记录,检查原始记录是否正确,精度是否合格,计算出变化值。然后填入沉降观测表中,绘制出沉降与时间的曲线图。

6、沉降结果的上报:要定期将观测结果上报有关部门,如出现较大的变化时应及时上报,以便及时采取措施,防止出现重大灾害事件。 二、观测位置: 1、北采区:在北大坑南布置一条近东西向的观测线,10余个观测点;间距10-20;观测点采用混凝土现场浇注设桩。每年一季度末对塌陷区的面积、深度和断裂变形的范围进行观测。变形观测线一般情况下每三个月观测一次,每月巡查一次,在雨季或地表巡查发现变化变化较大时可随时加密观测次数。 2、中采区:在塌陷坑东侧布置布置一条近东西向的观测线,10余个观测点,观测方法与北采区相同。 3、南采区:南区塌陷坑已基本用废石充填完毕,没法设置观测点,但在一些地段也存在着裂隙变形和小面积的塌陷。变形观测线一般情况下每三个月观测一次,每月巡查一次,在雨季或地表巡查发现变化变化较大时可随时加密观测次数。 4、马河沉降区:在马河的沉降变形部位,位于马河河床内及马河北岸,对我矿安全生产构成极大地危险,为指导安全渡讯和治理维护的需要,在该部位布置三条主观测线及三条辅助观测线及散点;观测点的间距为10-20米;观测点采用在混凝土面上击注钢钉和埋设混凝土桩等方法。观测时间:汛期(7~8月)每10天观测一次,汛期后的两个月(9~10)每20天一次观测一次。其他月份每30天观测一次。在马河的两岸设置径流水位标志,为有关部门提供观测的数据。 5、尾矿库的观测:沿坝体轴线方向上布置一纵一横观测线,一纵:从底部堆石坝至沙棘林带的下沿,设5个观察点。一横:在411米坝面公

高层建筑变形监测开题报告

山东建筑大学毕业论文开题报告表 专业:测绘工程班级:测绘071 姓名:陶俊辉 论文题目高层建筑物变形监测的方法研究 一.选题背景和意义 随着经济发展和城市化进程的加快,城市中出现了越来越多的高层建筑物,从几十层到上百层的楼房。根据能量守恒定律,楼房质量对所在地表的压力会使地面发生变形,直接影响楼房的受力情况。如果地表受力不均匀,就会发生楼房倾斜甚至倒塌等灾害,直接影响到居民的生命和财产安全。为了确保这些楼房的安全使用,需要对其进行长期的精密变形观测,以确定其变形状态。 高层建筑变形监测高层建筑变形监测的直接目的之一就是对高层建筑的运营 状态进行安全监控、评价和预报。从20世纪90年代以来,高层建筑变形监测手段的硬件和软件迅速发展,监测范围不断扩大,监测自动化系统、数据处理和资料分析系统、安全预报及分析评价系统也在不断的完善。工程设计采用新的可靠度设计理论与方法以来,变形监测成为提供设计依据、优化设计和可靠度评价不可缺少的手段,成为工程设计和施工质量控制的重要手段。 由于工程自身的特殊性和复杂性,在一般情况下,直接采用变形监测原始数据对高层建筑安全稳定状态进行评估和反馈是困难的。因此,为了实现高层建筑安全运营的设计目的,一般需要结合具体的工程和变形监测不同时段的不同特点和要求分别 选用不同的手段和方法,认真做好监测数据和资料的整理分析工作,对高层建筑的安全稳定状态进行评估、预测和预报,并为改进建筑工程设计、施工方法和运营管理提供科学的依据。 高层建筑变形观测简便、精度高,能直观地、及时地掌握高层建筑性态的变化,许多高层建筑在出现危险之前都常常发生较大的变形。因而,分析高层建筑变形规律、对高层建筑的变化趋势进行有效预测对高层建筑安全监控、确保高层建筑安全运营具有重要意义。

边坡变形监测方案

边坡变形监测方案 XXXX标 边坡变形监测专项方案 编制: 审核: 批准: XXXXX公司 2016年12月01日 XXX标 边坡变形监测方案 一、工程概况: 我公司承建的XXX标段,桩号范围3+400~6+950。主要建设内容包括:XXXXX.。本工程等级为II等;河道堤防级别为3级,施工临时工程为5级。防洪标准:防洪标准为50年一遇。供水标准:农业灌溉供水设计保证率为95%。 二、监测内容: 本标段边坡监测主要是指路堤边坡监测,监测内容为人工巡视、裂缝观测、坡面观测观测。 1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专职安全员坚持每天进行巡视,对图纸较差处、渗水严重处、边坡较陡处进行重点巡视、检查。当坡体表面发现裂缝时安全员立即采取措施和报告监测组。

边坡变形监测方案 2、坡面观测:边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用GPS进行测量。通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。 二、监测方案的实施 1、基准控制点和监测点的布设 1.1基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍比较稳定的地方埋设工作基点,其中工作基点采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌,埋设在加固坎上,地质较为稳定,本标段工作基点选择桩号点。 变形点布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上每100m布置变形监测点,编号分别为左1-32,右1-32。以及对南岸6+581,南岸4+390、北岸5+160、4+000-4+100段附件的建筑物等进行加密监测。 1、顶部用沉降钉垂直植入混凝土中,孔深不小于50mm,基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2、监测精度及频率要求 根据设计图纸及国家相关规范要求,边坡的变形观测如下: 水平位移监测网主要技术要求为:2.1 边坡变形监测方案

浅析边坡变形监测方法

浅析边坡变形监测方法 核心提示:边坡变形监测对边坡稳定性的判断、防灾救灾对策的制定具有重要价值。边坡地面变形监测方法有:简易观测法、设站观测法、仪表观测法以及远程观测法;边坡地下变形监测方法有:测斜法、应变测量法、重锤法、时间域反射技术以及微震监测技术。 边坡按其成因可分为自然边坡和人工边坡,按介质成份可分为土质边坡和岩质边坡。对于不同的边坡工程,其成因、组成成份各不相同,地质构造和地应力的分布更是千差万别,这样就决定了边坡监测是一个复杂的系统工程,它不仅跟监测手段的高低与仪器设备的优劣息息相关,也与监测技术人员对岩土体介质的了解程度和工程情况的掌握程度密不可分[1]。因而对边坡进行监测时,应在充分了解工程地质背景的基础上,选择相应的方法和手段。 1边坡变形规律 从边坡变形的角度来划分,边坡的状态可分为初始蠕变、稳定蠕变和加速蠕变三个阶段。初始变形阶段,变形速率小,变形趋势不明显,一般在该阶段不一定发生破坏的征兆,监测系统的设计要求精度较高,侧重于长期监测。稳定蠕变阶段,边坡变形发展加快,有时变形宏观可见,坡面或坡顶可能出现张裂缝,坡脚也有可能出现剪切裂缝。此阶段位移量开始增大,监测系统设计要求测试敏感部位,量程和精度均要考虑[2]。加速蠕变阶段,边坡变形速率大,变形趋势明显,监测系统设计对监测仪器的要求可适当降低,侧重于短期监测。 边坡变形的监测内容包括:地面大地变形、地表裂缝、地下深部变形及支护结构的变形,具体的内容选择应根据边坡的等级、地质条件、加固结构特点等综合考虑。 2边坡地表变形监测方法 2.1简易观测法 简易观测法是通过人工观测边坡中坍塌、沉降、地面鼓胀、地表裂缝等现象,适用于监测发生病害的边坡,定期对崩坍、滑坡等宏观变形迹象进行观测,能够从宏观上掌握变形动态及其发展趋势。简易观测法结合其它方法的监测结果,可以大致判定边坡所处的变形阶段并预测短时期内坡体的滑动趋势。简易观测法虽然操作简单,但对于变形速率较大的边坡仍然是十分有效的监测方法。 2.2设站观测法 设站观测法是在边坡上设立变形观测点,在变形区影响范围之外稳定地点设置固定观测站,使用测量仪器定期测量变形区内网点的三维位移变化的一种监测方法。设站观测法包括近景摄影测量、大地测量及GPS测量等。 2.3仪表观测法

高层建筑变形监测

高层建筑变形监测 高层建筑从施工准备起,到全部工程竣工后的一段时间内,应按施工与设计的要求,进行沉降、位移和倾斜等变形观测。一般分两部分:一部分是观测高层建筑施工造成周围邻近建(构)筑物和护坡桩的变形以及日照等对建筑物施工影响的变形,以保证安全和正确指导施工,这是直接为施工服务的变形观测;另一部分是在整个施工过程中和竣工后,观测高层建筑各部位的变形,以检查施工质量和工程设计的正确性,并为有关地基基础与结构设计反馈信息。 沉降观测 1施工对邻近建(构)筑物影响的观测 打桩和采用井点降低水位等,均会使邻近建(构)筑物产生不均匀的沉降、裂缝和位移等变形。为此,应在打桩、井点降水影响范围以外设基准点,对距基坑一定范围的建(构)筑物上设置沉降观测点,并进行沉降观测。并针对其变形情况,采取安全防护措施。 2施工塔吊基座的沉降观测 高层建筑施工使用的塔吊,吨位和臂长均较大。随着施工的进展,塔吊可能会因塔基下沉、倾斜而发生事故。因此,要根据情况及时对塔基四角进行沉降观测,检查塔基下沉和倾斜状况,以确保塔吊运转安全。3地基回弹观测 一般基坑越深,挖土后基坑底面的原土向上回弹的越多,建筑物施工后其下沉也越大。为了测定地基的回弹值,基坑开挖前,在拟建高层建筑的纵、横主轴线上,用钻机打直径100mm的钻孔至基础底面以下300~500mm处,在钻孔套管内压设特制的测量标志,测定其标高。当套管提出后,测量标志即留在原处。待基坑挖至底面时,测出其标高,然后,在浇筑混凝土基础前,再测一次标高,从而得到各点的地基回弹值。地基回弹值是研究地基土体结构和高层建筑物地基下沉的重要资料。 4地基分层和邻近地面的沉降观测 这项观测是了解地基下不同深度、不同土层受力的变形情况与受压层的深度,以及了解建筑物沉降对邻近地面由近及远的不同影响。这项观测的目的和方法基本与地基回弹观测相同。 5建筑物自身的沉降观测 这是高层建筑沉降观测的主要内容。当浇筑基础垫层时,就在垫层上

相关文档
最新文档