电力系统自动化完整版

电力系统自动化完整版
电力系统自动化完整版

1.同步发电机组并列时遵循的原则:(1)并列断路器合闸时,冲击电流应尽可

能的小,其瞬时最大值一般不宜超过1~2倍的额定电流(2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。

2.同步发电机的并列方法:准同期并列,自同期并列。设待并发电机组G已经

加上了励磁电流,其端电压为UG,调节待并发电机组UG的状态参数使之符合并列条件并将发电机并入系统的操作,成为准同期并列。

3.发电机并列的理想条件:并列断路器两侧电源电压的三个状态量全部相等。

4.自同期并列:未加励磁电流的发电机组

5.脉动电压含有同期合闸所需要的所有信息,即电压幅值差、频率差和合闸相

角差。但是,在实际装置中却不能利用它检测并列条件,原因是它的幅值与发电机电压及系统电压有关。

6.励磁自动控制系统是由励磁调节器,励磁功率单元和发电机构成的一个反馈

控制系统。

7.同步发电机励磁控制系统的任务:(1)电压控制(2)控制无功功率的分配(3)

提高同步发电机并联运行的稳定性。

8.为了便于研究,电力系统的稳定分为静态稳定和暂态稳定两类。静态稳定是

指电力系统在正常运行状态下,经受微小扰动后恢复到原来运行状态的能力。

暂态稳定是指电力系统在某一正常运行方式下突然遭受大扰动后,能否过渡到一个新的稳定运行状态或者恢复到原来运行状态的能力。

9.对励磁系统的基本要求:(一)对励磁调节器的要求:○1具有较小的时间常

数,能迅速响应输入信息的变化;○2系统正常运行时,励磁调节器应能反应发电机电压高低,以维持发电机电压在给定水平;○3励磁调节器应能合理分配机组的无功功率;○4对远距离输电的发电机组,为了能在人工稳定区域运行,要求励磁调节器没有失灵区;○5励磁调节器应能迅速反应系统故障,具备强行励磁控制功能,以提高暂态稳定和改善系统运行条件。(二)对励磁功率单元要求:○1要求励磁功率单元有足够的可靠性并具有一定的调节容量;○2

具有足够的励磁顶值电压和电压上升速度。

10.同步发电机励磁系统分类:直流励磁机励磁系统:①自励②他励;交流励磁

机励磁系统①他励交流励磁机励磁系统②无刷励磁系统;静止励磁系统11.励磁调节器的主要功能有二:①保持发电机的端电压不变;②保持并联机组

间无功电流的合理分配。

12.励磁调节器的型式很多,但自动控制系统核心部分相似。基本控制由测量比

较、综合放大、移相触发单元组成。测量比较单元的作用是测量发电机电压并变换为直流电压,与给定的基准电压相比较,得出电压的偏差信号。综合放大单元是沟通测量比较单元及调差单元与移相触发单元的一个中间单元,来自测量比较单元及调差单元的电压信号在综合放大单元与励磁限制、稳定控制及反馈补偿等其他辅助调节信号加以综合放大,用来得到满足移相触发

单元相位控制所需的控制电压。移相触发单元是励磁调节器的输出单元,根据综合放大单元送来的综合控制信号

U的变化,产生触发脉冲,用以触发

SM

功率整流单元的晶闸管,从而改变可控整流框的输出,达到调节发电机励磁的目的。

13.发电机欠励磁运行时,发电机吸收系统的无功功率,这种运行状态称为进相

运行。

14.调频的目的是调整系统频率为额定值。

15.电力系统中实现频率和有功功率自动调节的方法有:(1)有差调频法(2)主

导发电机法(3)积差调频法(4)改进积差调频法(5)分区调频法。有差调频优缺点:①各调频机组同时参加调频,没有先后之分;②计划外负荷在调频机组间是按一定的比例分配的;③频率稳定值的偏差较大。主导发电机法优缺点:、、、积差调频法优缺点:优点是能使系统频率维持额定,计划外的负荷能在所有参加调频的机组间按一定的比例进行分配,其缺点是频率积差信号滞后于频率瞬时值的变化,因此调节过程缓慢。

16.分区调频法(重点)

当多个省级或区域电网联合成一个大的电力系统时,为了配合分区调度的管理制度,也为了避免集中调频的范围过大而产生的技术困难,在联合系统中一般均采用分区调频的方法。分区调频法的特点是区内负荷的非计划负荷变动主要由本区内的调频厂来负担,其他区的调频厂不参与调频,因此区域间联络线上的功率应该维持计划值不变。

17.电力系统电压调整的措施:①发电机控制调压,②控制变压器变比调压,③

利用无功功率补偿设备调压,④利用串联电容器控制电压

18.电力系统的无功功率电源:同步发电机、同步调相机及同步电动机、并联电

容器、静止无功功率补偿器(SVC)

19.电力系统调度的主要任务:①保证供电的质量优良;②保证系统运行的经济

性;③保证较高的安全水平(选用具有足够的承受事故冲击能力的运行方式);

④保证提供强有力的事故处理措施。

20.远动技术的主要内容是“四遥”:遥测(YC)、遥信(YX)、遥控(YK)、遥

调(YT)

21.SCADA子系统包括数据采集、数据传输及处理、计算与控制、人机界面及

告警处理等。

22.远方终端RTU的任务:(1)数据采集:(2)数据通信;(3)执行命令;(4)其他功

能:①当地功能:对有人值班的较大站点,配有CRT、打印机等,可完成显示、打印功能;越限告警功能;事件顺序记录功能;②自诊断功能:程序出现死机时自行恢复功能;自主监视主、备通信信道及切换功能;个别插件损坏诊断报告等功能。

23.数据通信系统的工作方式:单工、半双工、全双工

24.循环式规约(CDT)和问答式规约(Polling)

(一)通信规约:在通信网中为了保证通信双方能正确、有效、可靠地进行数据传输,在通信的发送和接受过程中有一系列的规定,以约束双方进行正确、协调的工作,这些规定称为数据传输控制规程,简称为通信规约。

通信规约明确规范的问题:①要有共同的语言;②要有一致的操作步骤,即控制步骤;③要规定检查错误以及出现异常情况时计算机的应付方法。

一个通信规约包括的主要内容有:代码(数据编码)、传输控制字符、传输报告格式、呼叫和应答方式、差错控制步骤、通信方式(指单工、半双工、全双工通信方式)、同步方式、传输速率。

(二)循环式通信规约:按循环方式工作时,厂、所RTU享有发送信息的主动权。每个RTU都要独占一条到调度中心的信道(称点对点方式),调度中心与各RTU皆由放射式线路相连。发送端与接收端保持严格的同步,信息按事先约定的先后次序排列,并一次次循环发送。

由调度中心发给RTU的各种遥控、遥调或其他命令,由下行通道随时传送(全双工通道上、下行通信可同时进行),不是循环的。

(三)问答式通信规约:问答通信方式由主站掌控遥测、遥信通信的主动权。主站轮流询问各RTU。各RTU只有在接到主站询问后才可以回答。平时各RTU 也与循环通信方式一样采集各项数据。不同之处在于这些数据不马上发送,而是存储起来,当主站轮询到本站时才组装发送出去。

至于遥控、遥调,无论循环方式还是问答方式,都是由主站掌握通信的主动权。

为了提高效率,通常遥信采用变位传送,遥测采用越死区传送,因此对遥测量需要规定其死区范围。遥测量配有数字滤波,因而还要规定滤波系数。

问答式规约中主站与子站的通信项目可按功能来划分。主站向子站发送的命令大致可分为如下几个方面:①初始化设置参数类,有设置扫描周期、设置死区数值及滤波系数等;②查询类,询问各种类别的远动数据情况;③管理控制类,控制RTU的投入或退出工作;④电源合闸确认,以及遥控、诊断报文。

子站对主站的响应有两类:一类是对主站命令的简短响应,即肯定性确认或否定性确认;另一类是遵照主站命令回答相应的具体数据。

应答式规约的特点:①RTU有问必答,当RTU收到主机查询命令后,必须在规定的时间内应答,否则视为本次通信失败;②RTU无问不答,当RTU 未收到主机查询命令时,绝对不允许主动上报信息。

应答式规约的优点:①应答式规约允许多台RTU以共线的方式共用一个通道;②应答式规约采用变化信息传送策略,从而大大压缩了数据块的长度,提高了数据传送速度;③应答式规约既可以采用全双工通道,也可以采用半双工通道,即可以采用点对点方式,又可以采用一点多址或环形结构,因此通道适应性强。

25. 通信信道:①电力载波通信;②光纤通信;③微波中继通信与卫星通信

26. 前置机系统担负着与厂所RTU和各分局的数据通信及通信规约解释等任

务,是SCADA/EMS系统的桥梁基础。

27. 前置主机为双机配置,一台为主机,另一台为备用机。

28. 值班前置主机担负以下任务:①与系统服务器及SCADA工作站通信;②

与各RTU通信及通信规约处理;③控制切换装置的切换动作;④设置各终端服务器的参数。

29. 备用前置机可能担负的任务:①监听前置主机的工作情况,一旦前置主机

发生故障,立即自动升格为主机,担负起主机的全部工作;②监听次要通道的信息,确定该通道的运行情况。

30. 调度中心SCADA/EMS前置机系统:前置机、终端服务器、切换装置、通道设备

31. AGC的基本功能:①使发电自动跟踪电力系统负荷变化;②响应负荷和发

电的随机变化,维持电力系统频率为额定值;③在各区域间分配系统发电功率,维持区域间净交换功率为计划值;④对周期性的负荷变化按发电计划调整发电功率;⑤监视和调整备用容量,满足电力系统安全要求。

32.发电计划是EMS中发电级的核心应用软件,它向AGC提供基点功率值,对

电力系统经济调度起着关键作用。

33.发电计划定义:也称火电系统经济调度(EDC),即在已知系统负荷、机组组

合、水电计划、交换计划、备用监视计划、机组经济特性、网络损失特性和运行限制等条件下,按照等耗微增率准则,编制火电机组发电计划,使整个系统的发点费用最低。

34.发电计划有两种:①编制次日(或周)24h(或168h)的发电计划;②编制指

定时刻的发电计划

35.交换计划可以通过以下三种不同的方式进行协调:①自协调方式;②电力交

易市场模式协商调度模式

36.检修计划即预先安排检修时间、任务、人力、资源等,使电力系统预防性检

修的效果最优。机组检修的目的,从技术方面考虑,是为了使发电设备及各种组成部件的工作特性保持在允许的极限范围内,增加设备的可靠性;从社会经济效益来看,是满足用户对供电可靠性的要求,使电能的生产成本最小,推迟新建电厂的投资。

37.电力系统负荷预测的分类:系统的负荷预测、母线的负荷预测

38.按照系统负荷预测周期来分,电力系统的负荷预测可分为:超短期负荷预测、

短期负荷预测、中期负荷预测和长期负荷预测

39.电力系统的运行状态:正常运行状态、警戒状态、紧急状态、恢复状态。

正常运行状态特点:系统满足所有的约束条件,即有功功率和无功功率都保持平衡,给所有负荷正常供电,电压、频率均在正常的范围内,各种电力设备都在规定的限额内运行,同时有足够的备用裕度,可以承受各种预计的扰动,而不产生任何有害的后果。

警戒状态:各种约束条件也能满足,但随时都有可能由于一个偶然故障或渐进性的负荷增加,使某些不等约束条件被破坏,而校正越限时会导致丢失负荷。

紧急状态:系统频率、电压和某些线路潮流都可能严重越限,若不及时采取有效控制,系统可能失去稳定,导致大量发电机组跳闸或甩掉大量负荷,使等式约束条件也遭破坏。

恢复状态:整个系统可能已分成若干个独立的部分,在失去了许多负荷的条件下,等式约束条件也得到了满足。

40.快速潮流计算方法:①直流潮流法;②P-Q分解法;③等值网络法

41.配电管理系统(DMS)的通信方案:(1)主站与子站之间,使用单模光纤。

(2)子站与FTU之间,使用多模光纤。(3)TTU与电量集抄系统的数据的转发。

42.馈线自动化(FA):馈线终端、馈线自动化的实现方式、重合器、分段器、就

地控制馈线自动化、远方控制的馈线自动化

43.配电网自动化系统远方终端有:①馈线远方终端(包括FTU和DTU);②配

电变压器远方终端(TTU);③变电所内的远方终端(RTU)

44. FTU分为户外柱上FTU、环网柜FTU和开关站FTU三类。

45.馈线自动化方案分为就地控制和远方控制两种类型。前一种依靠馈线上安

装的重合器和分段器自身的功能来消除瞬时性故障和隔离永久性故障,不需

要和控制中心通信即可完成故障隔离和恢复供电;后一种是由FTU采集到故障前后的各种信息并传送至控制中心,由分析软件分析后确定故障区域和最佳供电恢复方案,最后以遥控方式隔离故障区域,恢复正常区域供电。

46.就地控制方式优点:故障隔离和自动恢复送电由重合器自身完成,不需要

主站控制,因此在故障处理时对通信系统没有要求,投资省,见效快。缺点:只适用于配电网络相对比较简单的系统,要求配电网运行方式相对固定;这种实现方式对开关性能要求高,多次重合对设备及系统冲击大。

47. 远方控制方式优点:故障定位迅速,可快速实现非故障区段的自动恢复送

电,开关动作次数少,对配电系统的冲击小。缺点:需要高质量的通信通道及计算机主站,投资较大,工程涉及面广、复杂;尤其是对通信系统要求较高,在线路故障时,要求相应的信息能及时传送到上级站,上级站发送的控制信息也能迅速传送到FTU。

48. 远程自动抄表系统的构成:①电能表;②抄表集中器和抄表交换机;③电

能计费中心的计算机网络

49.变电所综合自动化系统的基本功能:①监控子系统;②微机保护子系统;③

电压、无功综合控制子系统;④低频减负荷及备用电源自投控制子系统;⑤通信子系统

50.数字化变电所是指变电所信息的采集、传输、处理全过程实现数字化。主

要特点包括:①采用新型电流、电压互感器代替常规电流、电压互感器,将大电流、高电压直接变换为数字信号或者低电频信号;②利用高速以太网构成变电所数据采集及状态和控制信号的传输系统;③数据和信息实现基于IEC61850标准的统一建模;④采用智能断路器等一次设备,实现一次设备控制和监视的数字化。

51.为什么在自动励磁调节器中设置最小励磁限制:当线路输送功率较小时,线

路的容性电流引起的剩余无功功率使系统电压升高,以致超过允许电压范围,为此,在自动励磁调节器中设置了最小励磁限制。

52.辅助控制与励磁调节器正常情况下的自动控制的区别是:辅助控制不参与正

常情况下的自动控制,仅在发生非正常运行工况、需要励磁调节器具有某些特有的限制功能时,通过信号综合放大电路中的竞比电路,闭锁正常的电压控制,使相应的限制器起控制作用。

53.以联合系统为例,说明负荷变动是否发生在本区之内

答:设经联络线由A端流向B端的功率为Ptie.A,由B端流向A端的功率为Ptie.B,则必有Ptie.A+Ptie.B=0,当B区内负荷突然增长,A区负荷不变时,整个系统的频率都会下降,即有△f<0。A、B两区内的调频器随即动作,增加各机组的输出功率,联络线上就会出现由A端流向B端的功率增加,即△Ptie.A>0,与△f 异号;同时在另一端必有△Ptie.B<0,与△f同号。A区的调频方程式为:K A△f+

△Ptie.A+△P A=0 其中P A为A区机组输出的调频功率,当B区负荷增加时,△f<0,△Ptie.A>0;由于有适当因子K A致K A△f+△Ptie.A≈0,于是调频器向满足调频方程式的方向进行,必有△P A约等于0,最终结果A区机组基本不向B 区输出调频功率;当A区负荷增加时,△f与△Ptie.A都为负,于是调频器向增大P A的方向进行调整。

54.大题

①两个发电单元,额定功率分别为250MW和400MW,调差系数分别为6.0%

和6.4%,两个发电单元并行向500MW负荷供电。假定调速器以各自的调差系数运行,试求各自承担的负荷。

解:将每个发电单元的调速器调差系数转化为同一基准容量下的值(基准容量为1000MV A)

1000×0.06=0.24

R1=

250

1000×0.064=0.16

R2=

400

由于两个发电单元都运行在同一频率下,得R1P1=R2P2

500

由于P1+P2=P L将P2的值代入得P1+1.5P1=

1000

0.5=0.2=200(MW)

则结果为P1=

2.5

P2=1.5P1=0.3=300(MW)

②一个区域有两个发电单元,如表所示;这两个单元为并联运行,在额定

频率下提供700MW的功率,其中单元1提供200MW,单元2提供500MW,现增加负荷130MW。系统初始频率fo=60HZ。(1)假定没有频率敏感性负荷,即δ=0。试求稳态频率偏差和每个发电单元新的发电量(2)频率变化为1%时,负荷变化率为0.804%,即δ=0.804。试求稳态频率偏差和每个发电单元新的发电量。

解 将每个发电单元的调速器调差系数转化为同一基准容量下的值(基准容量为1000MV A )

R1=4001000

×0.04=0.1 R2=8001000

×0.05=0.0625

负荷变化量为 △R L =1000130

=0.13

(1) 由于δ=0,稳态频率偏差标幺值为

△ωSS =2

11

1R R P L

+△

-=-0.00516100.13

-=+

因此。稳态频率偏差值为 △f=-0.005×60=-0.30(HZ )

新的频率为 f=fo+△f=60-0.30=59.70(HZ)

两个单元的发电变化量分别为 △P1=-)500.05

0.100.005

--1MW R (△===ω

△2P =)800.080.06250.005

---2MW R (△===ω

(2) 当δ=0.804时,稳态频率偏差为

0.004850.804

16100.13

11-2

1ss -=++-

=++=δωR R P L △△

因此,稳态频率偏差值 )(△HZ -0.29160-0.00485f =?=

新的频率为 )(△HZ f f f 59.7090.291-600==+=

每个单元的发电变化量为 )(77.60.07760.06250.00485

-48.50.04850.10.00485

---2211MW R P MW R P ==

--======ωω

△△)

(△△

③ 三个发电厂的燃料成本函数为2

3332222

21

110.0095.82000.0065.54000.0045.3500P P C P P C P P C ++=++=++= 其中P1、P2、P3单位都是MW ,总负荷D P 为800MW 。忽略线损和发电机输出效率

限制,试求最优分配和总的成本。

解: 最优分配的必要条件为:λλ

λ=+==+==+=33

3

222

11

1

018.08.5012.05.5008.03.5P dP dC P dP dC P dP dC 又因为D P P P P =++32

1,得最优分配为150250400321===P P P ,,,微增率为8.5=∧λ元/(MW . h )

④ 某系统的用户总功率为MW P he 2800f.=,系统最大的功率缺额MW P 900qe =,负荷调节效应系数2=δ,自动减负荷动作后,希望恢复频率值HZ f 48hf =,试求接入减负荷装置的负荷总功率JH

P 。 解 :减负荷动作后,残留的频率偏差相对值为

0.045048

-50*hf ==f △ 由式*

*-1-hf hf X qe JH f f P P P △△δδ= 得 )(MW P JH 7340.042-128000.042900=???-=

⑤如图所示为降压变压器,变压器参数及负荷、分接抽头已标明,高压侧最大负荷时的电压为110kv ,最小负荷时的电压为113kv ,相应负荷的低压母线允许电压上下限为6~6.6kv ,试选择变压器分接抽头。 31.5MV A

110~113KV KV 3.6/%25.22110?±

Smax=28+j14MA V

2.44+J40(归算到高压侧)

Smin=10+j6MA V

Rt+jXt

解: 首先计算最大负荷和最小负荷时变压器的电压损耗为

△U Tmax =KV 7.5110

401444.228=?+? △U Tmin =KV 34.211340

644.210=?+?

假定变压器在最大负荷和最小负荷运行时低压侧的电压分别为U 2max =6kv 和U 2min =6.6kv ,则

U 1tmax =(110—5.7)kv 4.1090

.63.6=? U 1tmin =(113—2.34)kv 6.1056.63

.6=?

取算术平均值,有U 1tav =(109.4+105.2)/2=107.5kv

可以选择最近的分接抽头U 1t =107.25kv 。然后按所选分接抽头校检是否满足低压负荷母线的实际电压。则有U 2max =(110—5.7)kv 13.625

.1073.6=?>6kv

U 2min =(113—2.34)kv 5.625.1073.6=?<6.6kv 可见所选择的高压分接抽头是能够满足电压控制要求的。

⑥ 输出系统如所示,降压变压器变比为110kv 11%5.22?±,变压器励磁支路和输电线路对地电容均被忽略,节点1归算到高压侧的电压为118kv ,且维持不变,负荷端低压母线电压要求保持为10.5KV ,试确定受端装设电容器鱼同步调相

机的无功功率补偿设备容量。

解:由于发电机首端电压已知,因此可按末端功率来计算输电线路的电压损耗: )(68.134.0)13026(1105.71022

2min MVA j j S +=+?+=? 所以

)(18.93.1068.134.05.710)(72.2134.2172.634.11520min min min 1max max max 1MAV j j j S S S MAV j j j S S S +=+++=?+=+=+++=?+= 利用首端功率求出最大负荷时降压变压器归算到高压侧的低压母线电压为kv U X Q R P U U 37.89118

13072.212634.2111811max 1max 1'max 2=?+?-=+-

= 利用首端功率求出最小负荷时降压变压器归算到高压侧的低压母线电压为 KV U X

Q R P U 61.1051min 1min 1'

min 2=+=

(1)按最小负荷时电容器全部退出运行来选择降压变压器变比,则有 KV U U U U N t 69.1102min 2'min

2==

规划后,取110+0%分接头,即K=110/11=10

按最大负荷求电容器补偿容量Qc 为

2

'm ax

2m ax 2m ax

2)(K K U U X U Q C C C -=

2)由可得54.95

.1025.1061.1055.10237.895.1022=?+??+?=K 规格化后取kv 11/%5.22110?-,即K=9.5,则确定调相机容量 2'max

2max 2max

2)(K K U U X U Q C C C -==MVA 96.75.9)5

.93.895.10(1305.102=?-

电力系统自动化实验报告

电力系统自动化报告 学院: 核技术与自动化学院 专业: 电气工程及其自动化 班级: 2011060505班 学号: 3201106050504 姓名: ~~~~~~ 指导老师: 顾民 完成时间: 2014年4月30日

电力系统自动化实验报告 实验一发电机组的启动与运转实验 一、实验目的: 1.了解微机调速装置的工作原理和掌握其操作方法。 2.熟悉发电机组中原动机(直流电动机)的基本特性。 3.掌握发电机组起励建压,并网,解列和停机的操作。 二、原理说明: 在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。 THLZD-2型电力系统综合自动化实验台输电线路的具体结构如下图所示: 调速系统的原理结构图:

励磁系统的原理结构示意图 三、 实验内容与步骤: 1.发电机组起励建压

接着依次打开控制柜的“总电源”、“三相电源”和“单相电源”的电源开关;再打开实验台的“三相电源”和“单相电源”开关。 ⑵将控制柜上的“原动机电源”开关旋到“开”的位置,此时,实验台上的“原动机启动”光字牌点亮,同时,原动机的风机开始运转,发出“呼呼”的声音。 ⑶按下THLWT-3 型微机调速装置面板上的“自动/手动”键,选定“自动”方式,开机默认方式为“自动方式”。 ⑷按下THLWT-3 型微机调速装置面板上的“启动”键,此时,装置上的增速灯闪烁,表示发电机组正在启动。当发电机组转速上升到1500rpm 时,THLWT-3 型微机调速装置面板上的增速灯熄灭,启动完成。 ⑸当发电机转速接近或略超过1500rpm 时,可手动调整使转速为1500rpm,即:按下THLWT-3 型微机调速装置面板上的“自动/手动”键,选定“手动”方式,此时“手动”指示灯会被点亮。按下THLWT-3 型微机调速装置面板上的“+”键或“-”键即可调整发电机转速。 ⑹发电机起励建压有三种方式,可根据实验要求选定。一是手动起励建压;一是常规起励建压;一是微机励磁。发电机建压后的值可由用户设置,此处设定为发电机额定电压400V,具体操作如下: ①手动起励建压 1) 选定“励磁调节方式”和“励磁电源”。将实验台上的“励磁调节方式”旋钮旋到“手动 调压”,“励磁电源”旋钮旋到“他励”。 2) 打开励磁电源。将控制柜上的“励磁电源”打到“开”。 3) 建压。调节实验台上的“手动调压”旋钮,逐渐增大,直到发电机电压(线电压)达到设定的发电机电压。

电力系统自动化技术专业介绍

电力系统自动化技术专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化automation of power systems 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装置等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装置和以离线计算为基础的经济功率分配装置,并广泛采用远动通信技术。各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装置和继电保护装置中广泛采用微型计算机。

电力系统自动化作业非常详细

电力系统自动化期末作业 题目:带励磁系统的自动发电控制(AGC)学号: P091812925 姓名:谢海波 同组人:马宁、马超、李维、谢海波、杨天曾专业班级: 09级电气工程及其自动化3班 学院:电气工程学院 指导教师:杨晶显老师

目录 目录 (1) 1 概述 (2) 1.1课题背景 (3) 1.2带励磁系统的同步发电机LFC和AVR控制示意图 (3) 2 发动机调速系统 (4) 2.1发电机模型 (4) 2.2负荷模型 (5) 2.3原动机模型 (6) 2.4调速器模型 (6) 3 发电机励磁系统 (7) 3.1励磁调节器的工作原理 (7) 3.2励磁方式 (7) 3.3励磁机的作用 (8) 4 励磁系统的自动发电控制(AGC) (8) 5 仿真结果分析 (12) 6 总结 (13) 参考文献 (13)

带励磁系统的自动发电控制(AGC) 摘要:随着电力系统自动化的高度发展,现代电网已发展成为在电力市场机制的基础上多控制区域的互联系统,自动发电控制(AGC)作为互联电网实现功率和频率控制的主要手段,其控制效果直接影响着电网品质。因此,跨大区互联电网通过什么样的标准对其控制质量进行评价,电网AGC采用什么样的控制方法是近年来调度自动化关注的一个热点问题。本论文紧紧围绕这一具有重要现实意义的课题展开了研究和讨论,介绍了带励磁系统的自动发电控制电网AGC技术的实现与发展,带励磁系统的同步发电机LFC和AVR控制方案,发电机的调速系统模型的基本组成及其设计和控制策略。最后通过一个孤立发电站的组合仿真框图及其技术参数,搭建混合SIMULINK仿真框图进行仿真,当励磁系统参数变化时求出其频率偏差和机端电压响应,通过仿真结果来分析频率控制和电压控制的关系。 关键词:励磁系统,自动发电控制,电力系统,频率,电压 1 概述 自动发电控制(Automatic Generation Control)简称AGC,作为现代电网控制的一项基本功能,它是通过控制发电机有功出力来跟踪电力系统的负荷变化,从而维持频率等于额定值,同时满足互联电力系统间按计划要求交换功率的一种控制技术。它的投入将提高电网频率质量,提高经济效益和管理水平。自动发电控制技术在“当今世界已是普遍应用的成熟技术,是一项综合技术”。自动发电控制在我国的研究和开发虽然起步较早,但真正在电网运行中发挥效能,还是在最近几年。原来我国几个主要电力系统都曾试验过自动频率调整(AFC),而直到改革开放以后,自动发电控制却还未能全部正常运行。近些年来,随着我国经济的高速发展,对安全、可靠、优质和经济运行,各大区电网都对频率的调整非常重视,并实行了严格的考核。为实现这一目标,全国各大电网均不同程度地采用了AGC技术。随着计算机技术、自动控制理论、网络通讯等技术的发展,电厂、电网自动化运行水平的不断提高,自动发电控制逐步得到广泛的应用。现代的AGC是一个闭环反馈控制系统,主要由两大部分构成,如图1-1所示:(1)负荷分配器:根据测得的发电机实际出力、频率偏差和其它有关信号,按一定的调节准则分配各机组应承担的机组有功出力设定值。该部分为传统的电网调度功能实现。 (2)机组控制器:根据负荷分配器设定的有功出力,使机组在额定频率下的实发功率与设定有功出力相一致。电厂具备AGC功能时该部分由机组协调控制系统CCS自动实现。

电力系统自动化发展趋势及新技术的应用

[摘要]现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,本文对此进行了详细的阐述。 [关键词]电力系统自动化发展应用 一、电力系统自动化总的发展趋势 1.当今电力系统的自动控制技术正趋向于: (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 (2)在设计分析上日益要求面对多机系统模型来处理问题。 (3)在理论工具上越来越多地借助于现代控制理论。 (4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (5)在研究人员的构成上益需要多“兵种”的联合作战。 2.整个电力系统自动化的发展则趋向于: (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 (2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 (3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。 (4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 (5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 (6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 (7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 二、具有变革性重要影响的三项新技术 1.电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有: (1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。 (2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。 (3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。 智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。 智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。 2.FACTS和DFACTS (1)FACTS概念的提出

电力系统自动化复习题(二)

电力系统自动化复习题(二) 一判断: 1所谓互操作是指,同一厂家或者不同厂家的两个或多个智能电子设备具有交换信息并使用这些信息进行正确协同操作的能力。() 2在IEC 61850标准中规定,只有逻辑节点不能交换数据。()3间隔层设备包括电子式电流、电压互感器、开关设备的智能单元。() 4 变压器分接头调压本质上是不改变无功功率分布,以全系统无功功率电源充足为基本条件。() 5运行规程要求电力系统的频率不能长时期的运行在49.5~49Hz以下;事故情况下不能较长时间的停留在47Hz以下,瞬时值则不能低于45Hz。() 6按各发电设备耗量微增率不相等的原则分配负荷最经济,即等耗量微增率原 则。 () 7对于由发电机直接供电的小系统,供电线路不长,可采用发电机直接控制电 压方式。 () 8配电远方终端很少安装在电线杆上、马路边的环网柜内等环境非常恶劣的户外。() 9主导发电机法调频,调频过程较快,最终不存在频率偏差。() 10 正调差系数,有利于维持稳定运行。

11传统变电所中,采用强电电缆在一次设备和二次设备之间传输控制和模拟量信号,电缆利用率高。() 12分段器可开断负荷电流、关合短路电流,不能开断短路电流,因此可以单独作为主保护开关使用。() 13配电管理系统主要针对配电和用电系统,用于10KV以上的电网;() 14 大量传输无功会导致小的功率损耗和电压损耗。() 15 正调差系数,(有利)于维持稳定运行。() 答案: 1答:正确 2答:错,改为能 3答:错,改为过程层 4 答:错,改为改变 5答:正确 6答:错改为相等 7答:正确 8答:错改为大多 9答:错改为慢 10 答:正确 11 答:错改为低 12 答:错改为不能 13 答:错改为以下 14答:错改为大 15 答:正确 二填空 1 由于并列操作为正常运行操作,冲击电流最大瞬时值限制在()倍额定电流以下为宜。 2 准同期并列并列装置分为合闸控制单元和()控制单元及压差控制单元。3当系统发生故障时,迅速增大励磁电流,可以改善电网的电压水平及()性。 4发电机空载电势决定于励磁电流,改变()电流就可影响同步发电机在电

电力系统自动化 第三版(王葵、孙莹编)的复习资料汇总

电力系统自动化复习题 一判断: 1所谓互操作是指,同一厂家或者不同厂家的两个或多个智能电子设备具有交换信息并使用这些信息进行正确协同操作的能力。() 2在IEC 61850标准中规定,只有逻辑节点不能交换数据。() 3间隔层设备包括电子式电流、电压互感器、开关设备的智能单元。() 4 变压器分接头调压本质上是不改变无功功率分布,以全系统无功功率电源充足为基本条件。() 5运行规程要求电力系统的频率不能长时期的运行在49.5~49Hz以下;事故情 况下不能较长时间的停留在47Hz以下,瞬时值则不能低于45Hz。() 6按各发电设备耗量微增率不相等的原则分配负荷最经济,即等耗量微增率原则。 () 7对于由发电机直接供电的小系统,供电线路不长,可采用发电机直接控制电 压方式。 () 8配电远方终端很少安装在电线杆上、马路边的环网柜内等环境非常恶劣的户外。() 9主导发电机法调频,调频过程较快,最终不存在频率偏差。() 10 正调差系数,有利于维持稳定运行。 11传统变电所中,采用强电电缆在一次设备和二次设备之间传输控制和模拟量信号,电缆利用率高。() 12分段器可开断负荷电流、关合短路电流,不能开断短路电流,因此可以单独作为主保护开关使用。() 13配电管理系统主要针对配电和用电系统,用于10KV以上的电网;() 14 大量传输无功会导致小的功率损耗和电压损耗。() 15 正调差系数,(有利)于维持稳定运行。()答案: 1答:正确 2答:错,改为能 3答:错,改为过程层 4 答:错,改为改变 5答:正确 6答:错改为相等 7答:正确 8答:错改为大多

9答:错改为慢 10 答:正确 11 答:错改为低 12 答:错改为不能 13 答:错改为以下 14 答:错改为大 15 答:正确 二填空 1 由于并列操作为正常运行操作,冲击电流最大瞬时值限制在()倍额定电流以下为宜。 2 准同期并列并列装置分为合闸控制单元和()控制单元及压差控制单元。 3当系统发生故障时,迅速增大励磁电流,可以改善电网的电压水平及()性。 4发电机空载电势决定于励磁电流,改变()电流就可影响同步发电机在电 力系统中的运行特性。 5对远距离输电的发电机组,为了能在人工稳定区域运行,要求励磁调节器()失灵区。 6 提高励磁系统的强励能力,即提高电压()倍数和电压上升速度,被认为是提供电力系统暂态稳定性最经济、最有效的手段之一。 7直流励磁机大多与发电机同轴,它是靠()来建立电压的;按励磁机励磁绕组供电方式的不同,又可分为()式和他励式两种。 8由于要求励磁系统响应速度很快,所以现在用作大型机组的交流励磁机系统一般都采用他励的方式;有交流主励磁机也有交流()励磁机,其频率都大于 50Hz,一般主励磁机为100Hz或更高。 9在有滑差的情况下,将机组投入电网,需要经过一段加速的过程,才能使机组与系统在频率上()。加速或减速力矩会对机组造成冲击。显然,滑差(),并列时的冲击就越大,因而应该严格限制并列时的允许滑差。 10 准同期并列并列装置分为合闸控制单元和频差控制单元及()控制单元。 11 励磁系统是与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路,励磁系统一般由()单元和励磁调节器两个部分组成。 12电力系统在正常运行时,可以通过控制励磁电流来控制电网的电压水平和并联运行机组间无功功率的()。 13励磁自动控制系统可以通过调节发电机励磁以()短路电流,使继电保护正确工作。 14励磁顶值电压是励磁功率单元在强行励磁时,可能提供的最高输出电压值,该值与额定工况下励磁电压之比称为()倍数。

电力系统自动化习题及答案..

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网 效果上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网 条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断 路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影 响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收 无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是 多少? 理想条件:实际条件(待并发电机与系统)幅值相等:电压差不能超过额定电压的510% 频率相等:ωωX 频率差不超过额定的0.20.5% 相角相等:δ0(δδX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别 有何影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产

生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2之间。这种瞬时值的幅值有规律地时大时小变 化的电压成为拍振电压。它产生的拍振电流也时大时小 变化,有功分量和转子电流作用产生的力矩也时大时小 变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得? 5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将和的正弦波转变成与其频率和相位相同的一系列 方波,其幅值与和无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电 压和的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 1:计算,如果≤转 2;否则调整G来改变

电力系统自动化-实验一 自动准同期并网实验

实验一自动准同期并网实验 1.本次实验的目的和要求 1)加深理解同步发电机准同期并列原理,掌握准同期并列条件。 2)掌握自动准同期装置的工作原理及使用方法。 3)熟悉同步发电机准同期并列过程。 2.实践内容或原理 自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。 微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。 微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小的数值,更有利于平稳地进行并列。 图1 自动准同期并列装置的原理框图 3.需用的仪器、试剂或材料等 THLZD-2型电力系统综合自动化实验平台 4.实践步骤或环节 选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。微机励磁装置设置为“恒U g”控制方式;“自动”方式。 1)发电机组起励建压,使n=1480rpm;U g=400V。(操作步骤见第一章) 2)查看微机准同期各整定项是否为附录八中表1的设置(出厂设置)。如果不符,则进行相关修改。然后,修改准同期装置中的整定项: “自动调频”:投入;“自动调压”:投入。

“自动合闸”:投入。 3)在自动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。 ⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表1,2,3修改。 注:QF0合闸时间整定继电器设置为t d-(40~60ms)。t d为微机准同期装置的导前时间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明)、实验三(压差、频差和相差闭锁与整定)等实验内容。 ⑵操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V,n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。 观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。 微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。 微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应点亮关系,以及与旋转灯光整步表灯光的位置。 注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。 4)发电机组的解列和停机。 5.教学方式 老师先进行实验原理及步骤的讲解,演示操作过程,并且提醒学生在实验过程当中的注意事项。同时,根据每个实验的不同,提出相关问题,激发学生的创新思维,提高学生解决实际问题的能力。 6.考核要求

浅谈电力系统自动化技术的现状及发展趋势

浅谈电力系统自动化技术的现状及发展趋势 【摘要】随着科学技术和经济的迅速发展,电力系统自动化技术发挥的作用越来越重要。电力系统自动化技术作为一种新技术实现了电力技术和电子信息技术的融合,对国民经济的发展发挥了巨大的促进作用,为输变电系统的发展产生了深远的影响。目前电力系统自动化技术已经深入到电力系统的各个方面,并取得了显著的效果。本文对电力系统自动化技术的发展现状进行了介绍,并对其发展趋势进行了展望。 【关键词】电力系统自动化技术现状发展趋势 一、概述 电力系统的智能化控制是我国电力系统发展的重要方向,电力系统智能控制的实现是电力系统完整控制的重要标志。电力系统的发展壮大离不开自动化技术的支持,电力系统自动化技术在电力系统运行控制中发挥着不可替代的作用。 二、电力系统自动化技术发展的现状 我国的电力系统自动化技术在建国之初就有了初步的发展,并保持了快速的发展趋势,互联网技术和计算机计技术的迅猛发展为电力系统自动化技术的发展提供了巨大的

技术支持。 2.1自动化技术在电网调度中的应用 电网调度的现代化自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测、收集和分析,并完成系统操作的高效进行。电网的调度自动化操作,通过自动控制技术的应用,实现电网运行状态的实时监测,确保了电网运行的质量和可靠性,实现了电能的充分供应,使人们的需求得到满足。[1]自动化技术应用的同时,将能源损耗达到最低,确保了供电的经济性和环保性,实现了电能的节约。 2.2自动化技术在配电网络中的应用 计算机技术在配电网络的自动化控制中发挥着重要作用,随着电网技术的不断发展,配电系统的现代化和网络化程度越来越高,实现了配电网主站、子站和光线终端组成的三层结构,配电系统网络化的发展,使通信传输的速度得到保障,自动化系统的性能得到提高。系统的继电保护控制得到加强,大面积停电现象减少,电力供应得到保障,电力系统的可靠性和安全性得到提高,电网事故快速排除机制得到优化,科学的事故紧急应对机制得以建立,故障停电时间明显缩短;电力企业对电力系统的掌控能力加强,对电力系统运行状态的了解更加便利;常规的值班方式被打破,无人职守电站得以出现,工作人员的效率大大提高。[2]

电力系统自动化第一次作业

1、分析自动调节励磁系统对发电机静态稳定的提高 答: 1. 无旋转部件,结构简单,轴系短,稳定性好; 2. 励磁变压器的二次电压和容量可以根据电力系统稳定的要求而单独设计。 3. 响应速度快,调节性能好,有利于提高电力系统的静态稳定性和暂态稳定性。 自并励静止励磁系统的主要缺点是: 它的电压调节通道容易产生负阻尼作用,导致电力系统低频振荡的发生,降低了电力系统的动态稳定性。 通过引入附加励磁控制(即采用电力系统稳定器--PSS), 完全可以克服这一缺点。电力系统稳定器的正阻尼作用完全可以超过电压调节通道的负阻尼作用,从而提高电力系统的动态稳定性。这点,已经为国内外电力系统的实践所证明。 2、分析自动调节励磁系统对发电机暂态稳定的提高。 答1、提高励磁系统强励倍数可以提高电力系统暂态稳定。 2、励磁系统顶值电压响应比越大,励磁系统输出电压达到顶值的时间越短,对提高暂态稳定越有利。 3、充分利用励磁系统强励倍数,也是发挥励磁系统改善暂态稳定作用的一个重要因素。 分析证明,励磁控制系统中的自动电压调节作用,是造成电力系

统机电振荡阻尼变弱(甚至变负)的最重要的原因之一。在一定的运行方式及励磁系统参数下,电压调节作用,在维持发电机电压恒定的同时,将产生负的阻尼作用。 许多研究表明,在正常实用的范围内,励磁电压调节器的负阻尼作用会随着开环增益的增大而加强。因此提高电压调节精度的要求和提高动态稳定的要求是不兼容的。 解决这个不兼容性的办法有: 1、放弃调压精度要求,减少励磁控制系统的开环增益。这对静态稳定性和暂态稳定性均有不利的影响,是不可取的。 2、电压调节通道中,增加一个动态增益衰减环节。这种方法可以达到既保持电压调节精度,又可减少电压调压通道的负阻尼作用的两个目的。但是,这个环节使励磁电压响应比减少,不利于暂态稳定,也是不可取的。 3、在励磁控制系统中,增加附加励磁控制通道,即电力系统稳定器PSS。 电力系统稳定器即PSS是使用最广、最简单而有效的附加励磁控制。

电力系统自动化-实验一自动准同期并网实验

1.本次实验的目的和要求 1 )加深理解同步发电机准同期并列原理,掌握准同期并列条件。 2)掌握自动准同期装置的工作原理及使用方法。 3)熟悉同步发电机准同期并列过程。 2.实践内容或原理 自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。 微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。 微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小 的数值,更有利于平稳地进行并列。 3.需用的仪器、试剂或材料等 THLZD-2型电力系统综合自动化实验平台 4.实践步骤或环节 选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置; 将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。 微机励磁装置设置为“恒U g”控制方式;“自动”方式。 1)发电机组起励建压,使n=1480rpm ;U g=400V。(操作步骤见第一章) 2 )查看微机准同期各整定项是否为附录八中表1的设置(出厂设置)。如果不符,则 进行相关修改。然后,修改准同期装置中的整定项: “自动调频”:投入;“自动调压”:投入。 实验自动准同期并网实验 图1自动准同期并列装置的原理框图

“自动合闸”:投入。 3)在自动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。 ⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表1,2,3修改。 注:QFO合闸时间整定继电器设置为t d- (40?60ms )。t d为微机准同期装置的导前时 间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明) 、实验三(压差、频差和相差闭锁与整定)等实验内容。 ⑵ 操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V , n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。 观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。 微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转 灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。 微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应 点亮关系,以及与旋转灯光整步表灯光的位置。 注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。 5.教学方式 老师先进行实验原理及步骤的讲解,演示操作过程,并且提醒学生在实验过程当中的注 意事项。同时,根据每个实验的不同,提出相关问题,激发学生的创新思维,提高学生 解决实际问题的能力。 6.考核要求学生根据实验要求和步骤完成实验任务,按照实验报告的要求和格式按成实验报

电力系统自动化技术

学习中心/函授站_ 姓名学号 西安电子科技大学网络与继续教育学院 2017学年下学期 《电力系统自动化技术》期末考试试题 (综合大作业) 考试说明: 1、大作业于2017年10月19日下发,2017年11月4日交回; 2、考试必须独立完成,如发现抄袭、雷同均按零分计; 3、答案须手写完成,要求字迹工整、卷面干净。 一、选择题(每小题2分,共20分) 1.当导前时间脉冲后于导前相角脉冲到来时,可判定()。 A.频差过大B.频差满足条件 C.发电机频率高于系统频率D.发电机频率低于系统频率 2.线性整步电压的周期与发电机和系统之间的频率差()。 A.无关 B.有时无关 C.成正比关系 D.成反比关系 3.机端直接并列运行的发电机的外特性一定不是()。 A.负调差特性 B.正调差特性 C.无差特性 D.正调差特性和无差特性 4.可控硅励磁装置,当控制电压越大时,可控硅的控制角 ( ),输出励磁电流()。 A.越大越大 B.越大越小 C.越小越大 D.越小越小 5. 构成调差单元不需要的元器件是()。 A.测量变压器B.电流互感器 C.电阻器D.电容器 6.通常要求调差单元能灵敏反应()。 A.发电机电压B.励磁电流 C.有功电流D.无功电流 7.电力系统有功负荷的静态频率特性曲线是()。

A.单调上升的B.单调下降的 C.没有单调性的D.水平直线 8.自动低频减负荷装置的动作延时一般为()。 A.0.1~0.2秒B.0.2~0.3秒 C.0.5~1.0秒D.1.0~1.5秒 9.并联运行的机组,欲保持稳定运行状态,各机组的频率需要()。 A.相同B.各不相同 C.一部分相同,一部分不同D.稳定 10.造成系统频率下降的原因是()。 A.无功功率过剩B.无功功率不足 C.有功功率过剩D.有功功率不足 二、名词解释(每小题5分,共25分) 1.远方终端 2.低频减负荷装置 3.整步电压 4.准同期 5.AGC 三、填空题(每空1分,共15分) 1.低频减负荷装置的___________应由系统所允许的最低频率下限确定。 2. 在励磁调节器中,设置____________进行发电机外特性的调差系数的调整,实际中发电机一般采用____________。 3.滑差周期的大小反映发电机与系统之间的大小,滑差周期大表示。 4.线性整步电压与时间具有关系,自动准同步装置中采用的线性整步电压通常为。 5.微机应用于发电机自动准同步并列,可以通过直接比较鉴别频差方向。 6.与同步发电机励磁回路电压建立、及必要时是其电压的有关设备和电路总称为励磁系统。 7.直流励磁机共电的励磁方式可分为和两种励磁方式。 8.可能造成AFL误动作的原因有“系统短路故障时造成频率下降,突然切成机组或、供电电源中断时。 9.积差法实现电力系统有功功率调节时,由于,造成调频过程缓慢。 四、简答题(每小题5分,共15分) 1.断路器合闸脉冲的导前时间应怎么考虑?为什么是恒定导前时间? 2.电压时间型分段器有哪两种功能? 3. 自动按频率减负荷装置为什么要分级动作? 五、综合分析题(每小题10分,共10分) 用向量图分析发电机并列不满足理想准同步条件时冲击电流的性质和产生的后果?六、计算题(共15分) 某电厂有两台发电机在公共母线上并联运行,1#机组的额定功率为30MW,2#机组的额定功率为60MW。两台机组的额定功率因数都是0.8,调差系数均为0.04。若系统无功负荷波动,使得电厂的无功增量是总无功容量的20%,试问母线上的电压波动是多少?各机组承担的无功负荷增量是多少?

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

《电力系统自动化》3参考答案

电力系统自动化(c 参考答案 一.填空 1.发电机准同期并列的实际条件为(1) 相角差在5o 以内,(2)压差在5%~10%(3) 频差在0.2~0.5%内 。如果发电机并列时满足理想准同期条件,即合闸瞬间,发电机电压和系统电压 幅值相等 、 频率相等 、 相角差为零 ,则不会产生冲击电流。 2.自动准同期装置主要由 合闸单元 、 调频单元 、 调压单元 和电源组成。 3.并联运行机组间无功负荷的合理分配取决于 发电机外特性 。可以利用自动调压器的 调 差 接线达到这一目的。 4.理想灭磁过程要求发电机转子电压 保持最大值不变 ,放电电流 直线下降 。 5.自励式励磁机比他励式励磁机时间常数 大 。 二、同步发电机并列操作可以采用哪两种方法?并简述其特点和适用场合。 答:同步发电机并列操作方法:准同期并列操作、自同期并列操作。 自动准同期并列特点:并列时冲击电流小,不会引起系统电压大幅降低;并列过程中需要对发电机电压、频率进行调整,并列时间较长且操作复杂。适用场合:适用于正常情况下发电机并列。 特点:自同期并列过程中不存在调整发电机电压、频率问题,并列时间短且操作简单,在系统频率和电压降低的情况下,仍有可能实现发电机并列;容易实现自动化;冲击电流大。适用于在电力系统故障情况下的某些发电机的紧急并列。 三、画出自动准同期并列装置组成框图。 四、画出他励交流励磁机励磁系统原理接线图。 增速减速降压合闸 升压

五、综述电力系统电压控制的意义。 答:(1)维持一定电压,是电力系统功率传输的必要条件; (2)维持电压在一定范围内,是电能质量的重要指标; (3)设备只有在额定电压下运行才能取得最佳的工作效率; (4)当电压偏离额定值较大时,会对威胁到用电设备正常运行,影响产品的质量和产量;甚至引起电力系统电压崩溃,造成大面积停电。 六、基于公式分析无功不能远距离大容量传输的原因。 (cos sin )?s r r r r r U j U S U I U jX δδ--=?=?- 受端接收到的无功功率为: (cos ) r s r r U U U Q X δ-= 上式表明,如果给受端传输无功功率,必须cos 0s r U U δ->。在电力系统运行中,远距离大容量传输功率会导致线路两侧相角差变大,相角差大到一定程度会导致cos 0s r U U δ-<,也即无法传输无 功。例如在最有利于无功传输时: 1.05,0.95s r U U ==(正常运行时通常要求母线电压在0.95~1.05p.u.之间),此时如果受端能够接收到无功,要求1.05cos 0.950δ?->,也即 U ∠s U δ∠r

电力系统自动化习题及答案word版本

1、电力系统自动化的发展经过了那几个阶段? (一)单一功能自动化阶段 (二)综合自动化阶段:特点是用一套自动化系统或装置来完成以往两套或多套分离的自动化系统或装置所完成的工作。 1.电能的生产有哪些主要特点?对电力系统运行的总体要求要求是什么? (1)1,结构复杂而庞大,2,电能不能储存,3,暂态过程非常迅速,4,特别重要 (2)安全,可靠,优质,经济,环保 2.电力系统有哪些运行状态?它们的主要特征是什么? 正常状态:满足等式和不等式约束,主要进行经济调度。 警戒状态:满足等式和不等式约束,但接近不等式约束上下限,主要进行预防性控制。 紧急状态:满足等式约束,不满足不等式约束,进行紧急控制。 系统崩溃:等式不等式约束均不满足,切机、切负荷、解列等控制,尽量挽救已经解列的各个子系统。 恢复状态:满足等式和不等式约束,采取预恢复控制措施,如并列、带负荷等控制,恢复对用户的供电。 3.电力系统自动化包括哪些主要内容? 第二章习题、思考题 1、电力系统调度自动化是如何实现的? 1,采集电力系统信息并将其传送到调度所;2,对远动装置传送的信息进行实时处理;3,做出调度决策;4,将调度决策送到电力系统区执行;5,人机联系 2、电力系统采用什么调度方式? 集中调度控制和分层调度控制 2.电网调度自动化系统的基本构成包括哪些主要的子系统?试给出其示意图。 (1)电力系统,远动系统,调度计算机和人机联系设备 (2) 3.电网调度自动化系统主要有哪些信息传输通道(信道)? 1,远动与载波通道复用电力载波通道,2,无线信道,3,光纤通信,4,架空明线或电缆传输远动通信4.电力系统常采用什么调度方式?分层调度有何主要优点?我国电网调度目前分为哪些层次? (1)分层调度控制:就是把全电力系统的监视控制任务分配给属于不同层次的调度中心,下一层调度完成本层次的调度控制任务外,还接受上一级调度组织的调度命令并向上层调度传递所需信息。 (2)优点:便于协调调度控制,提高系统可靠性,改善系统响应 (3)分为国家级,大区级,省级,地区级,县级

电力系统自动化技术习题及解答

1.同步发电机并列时脉动电压周期为20s,则滑差角频率允许值ωsy为(A )。 A、0.1% B、0.2% C、0.26% D、0.52% 2. 同步发电机机端电压与电网电压的差值的波形是(D )。A、三角波B、正弦波C、方波D、正弦脉动波 4. 同步发电机励磁系统由(A )组成。A、励磁调节器、励磁功率单元B、同步发电机、励磁调节器C、同步发电机、励磁功率单元D、同步发电机、励磁调节器、励磁系统 5. 同步发电机并列方式包括两种,即( B )。A、半自动准同期并列和手动准同期并列B、准同期并列和自同期并列C、全自动准同期并列和手动准同期并列D、全自动准同期并列和半自动准同期并列 6. 在电力系统通信中,由主站轮流询问各RTU,RTU接到询问后回答的方式属于(D )。A、主动式通信规约B、被动式通信规约C、循环式通信规约D、问答式通信规约 7. 下列同步发电机励磁系统可以实现无刷励磁的是( A )。A、交流励磁系统B、直流励磁系统C、静止励磁系统D、自并励系统 8. 某同步发电机的额定有功出力为100MW,系统频率下降0.5Hz时,其有功功率增量为20MW,那么该机组调差系数的标么值R*为( C )。A、20 B、-20 C、0.05 D、-0.05 9. 下列关于AGC和EDC的频率调整功能描述正确的是(D )。A、AGC 属于频率一次调整,EDC属于频率二次调整。B、AGC属于频率一次调整,EDC属于频率三次调整。C、AGC属于频率二次调整,EDC属于频率一次调整。D、AGC属于频率二次调整,EDC属于频率三次调整。 10. 在互联电力系统中进行频率和有功功率控制时一般均采用(D )。A、

相关文档
最新文档