Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local

Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local
Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local

Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)nanoparticles for local

delivery of paclitaxel for restenosis treatment

Ulrich Westedt a ,Marc Kalinowski b ,Matthias Wittmar a ,Thomas Merdan a ,Florian Unger a ,

Jutta Fuchs a ,Susann Sch?ller b ,Udo Bakowsky a ,Thomas Kissel a,?

a

Philipps University of Marburg,Department of Pharmaceutics and Biopharmacy,Ketzerbach 63,D-35032Marburg,Germany

b

Philipps University Hospital,Department of Diagnostic Radiology,Baldingerstrasse,35033Marburg,Germany

Received 31October 2006;accepted 17January 2007

Available online 26January 2007

Abstract

Catheter-based local delivery of biodegradable nanoparticles (NP)with sustained release characteristics represents a therapeutic approach to reduce restenosis.Paclitaxel-loaded NP consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)(PV A-g-PLGA)with varying PLGA chain length as well as poly(lactide-co-glycolide)(PLGA),were prepared by a solvent evaporation technique.NP of b 180nm in diameter characterized by photon correlation spectroscopy (PCS),scanning electron microscopy (SEM),and atomic force microscopy (AFM)are spherical and show smooth surfaces.Yields typically range from 80to 95%with encapsulation efficiencies between 77and 87%.The extent of initial in vitro paclitaxel release was affected by the PV A-g-PLGA composition.Blank nanoparticles from PVA 300-g-PLGA(30)and PVA 300-g-PLGA(15)showed excellent biocompatibility in rabbit vascular smooth muscle cells (RbVSMC)at polymer concentrations of 0.37mg/ml.Paclitaxel-loaded NP have an increased antiproliferative effect on cells in comparison to free drug.Confocal laser scanning microscopy of RbVSMC confirmed cellular uptake of nanoparticles composed of fluorescently labeled PV A 300-g-PLGA(15)loaded with Oregon Green labeled paclitaxel.Cells showed a clearly increased fluorescence activity with a co-localization of paclitaxel and polymer nanoparticles during incubation with particle suspension.To evaluate the antirestenotic effect in vivo,paclitaxel-loaded nanoparticles were administered locally to the wall of balloon-injured rabbit iliac arteries using a porous balloon catheter.As a result a 50%reduction in neointimal area in vessel segments treated with paclitaxel-loaded nanoparticles compared to control vessel segments could be observed (local paclitaxel nanoparticle treated segments 0.80±0.19mm 2,control segments 1.58±0.6mm 2;p b 0.05).?2007Elsevier B.V .All rights reserved.

Keywords:Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide);Nanoparticles;Paclitaxel;Restenosis

1.Introduction

Percutaneous transluminal angioplasty is an established method to treat peripheral arterial occlusive disease.Initially success rates up to 95%are achieved;however,these results are limited by a restenosis rate occurring in 30–50%of patients within the first 3–6months.Restenosis is a complex process involving much redundant pathology including platelet depo-sition and thrombus formation,inflammation,smooth muscle cell proliferation and vascular remodeling [1–3].Presently the

cause of restenosis is not completely understood.Numerous clinical trials with systemic application of antiproliferative or antithrombotic compounds have failed to prove efficacy for the prevention of restenosis following angioplasty although animal studies initially showed promising results [1,4–6].

To prevent restenosis drugs must be delivered at high concentrations for a prolonged period of time.Catheter-based local delivery of pharmacologic agents offers a potential approach to reduce restenosis,and minimizing undesirable systemic side effects.However,recent studies demonstrated that the delivery efficiency and intramural retention of directly infused drug solutions remains rather low [7,8].Thus,colloidal drug carriers based on biodegradable polymers have been developed to provide local drug release and sustained

retention

Journal of Controlled Release 119(2007)41–

51

https://www.360docs.net/doc/372001270.html,/locate/jconrel

?Corresponding author.Tel.:+4964212825881;fax:+4964212827016.E-mail address:kissel@staff.uni-marburg.de (T.Kissel).

0168-3659/$-see front matter ?2007Elsevier B.V .All rights reserved.doi:10.1016/j.jconrel.2007.01.009

of drug in the arterial wall.Recent studies have demonstrated that nanoparticles can be delivered more efficiently to the arterial tissue than microparticles[9–11].Numerous drugs were investigated for the inhibition of intimal thickening[6].A promising approach to inhibit restenosis is the controlled release of paclitaxel[12,13].Paclitaxel,a very potent antiproliferative drug which binds to theβ-subunits of tubulin,promotes the formation of extremely stable and non-functional microtubule bundles.As a result,cell replication is blocked in late G2and M phase of the cell cycle[14].Due to the poor solubility of paclitaxel in water,the solvent displacement technique[15], which is widely used for encapsulation of lipophilic drugs,is an attractive method to form nanoparticles.Various types of biodegradable polymers such as polylactide(PLA)[1,16],poly (lactide-co-glycolide)(PLGA)[17,18],or polycaprolactone (PCL)[19]have been used to formulate sustained release nanoparticles.In the present study,nanoparticles from biode-gradable comb polyesters[20,21]were prepared using the sol-vent displacement method.These brush-like grafted polyesters consist of a hydrophilic polymer backbone,PV A,onto which hydrophobic PLGA is grafted.This polymer structure offers various possibilities to modify drug release kinetics.Firstly, water uptake and swelling properties of the matrix can be varied by changing the hydrophilic part of the polymer.Or secondly, degradation and release behavior can be modified by grafting PLGA with different chain length onto the backbone[22].

Our study was carried out to characterize nanoparticles from PV A-g-PLGA comb polyesters with regard to their applicability as vascular paclitaxel delivery system by investigating drug release,in vitro cytotoxicity,and cellular uptake behavior,as well as in vivo efficacy in a New Zealand white rabbit stenotic iliac artery model.

2.Materials and methods

2.1.Materials

Linear PLGA50:50(RG503H,Mw28,000g/mol was supplied by Boehringer Ingelheim(Germany).Paclitaxel (Genexol?)was kindly provided by Sam Yang Corp.(Seoul, Korea).Radio-labeled paclitaxel(paclitaxel-[2-benzoyl ring-UL-14C])was obtained from Sigma(Sigma Chemicals, Germany).Oregon Green labeled Paclitaxel and7-methoxy-coumarin-3-carbonyl azide for fluorescence labelling of PVA300-g-PLGA was purchased from Molecular Probes (Leiden,Netherlands).Poloxamer188was supplied by BASF (Pluronic F68?,BASF Parsippany,NJ).The liquid scintilla-tion cocktail was obtained from Packard BioScience(Ultima Gold?LS cocktail,Groningen,Netherlands).All other chemicals of analytical grade were purchased from Sigma(St. Louis,MO).

2.2.Poly((vinyl alcohol)-g-(D,L-lactide-co-glycolide))

Synthesis and characterization were described elsewhere [22].Briefly,comb polyesters were synthesized by a stannous octoate catalyzed ring-opening polymerization of lactide and glycolide(1:1)in the presence of the backbone poly(vinyl

alcohol)(PV A;Mw15kg/mol,polymerization degree300,

hydrolysis degree88%)under anhydrous conditions.The

polymers used for nanoparticle preparation were described in

Table1.The following nomenclature will be used to specify the

polymers:PV A300-g-PLGA(XX).The number in parenthesis

refers to the mass ratio of branched PLGA,which is grafted(g)

onto hydrophilic backbone,compared to the PV A.

For cellular nanoparticle uptake studies PV A300-g-PLGA

(15)was fluorescence labeled as follows:7-methoxy-coumarin-

3-carbonyl azide was added to a solution of the polymer in N-

methyl-pyrrolidone.The reaction mixture was stirred at80°C

for4h.After cooling to room temperature,the solution was

poured into demineralized water and the precipitate was

collected by filtration.The product was washed several times

and dried in a vacuum chamber at room temperature for6days.

The theoretical degree of substitution was9.6%.Infrared and 1H NMR spectroscopy confirmed the coupling of the fluo-rescent marker to the polymer with an excitation wavelength of

340nm and an emission wavelength of430nm as determined

by fluorescence spectroscopy.

2.3.Nanoparticle preparation

Nanoparticles were formed by a modified solvent displace-

ment technique,described in detail elsewhere[23].Briefly,

polymer(20mg)and paclitaxel(0,0.5,1,2mg)were co-

dissolved in2ml acetone.The resulting solution was added at

constant flow rate of10.0ml/min to10ml of a stirred(500rpm)

aqueous phase of filtrated(0.2μm,Schleicher&Schuell,

Germany)and double-distilled water containing0.1%(m/m)

poloxamer188(Pluronic?F68)using a syringe with injection

needle(Sterican?0.6×25mm;B Braun,Melsungen,Ger-

many).For the release study,nanoparticles were directly

Table1

Characteristics of biodegradable polymers based on PV A-g-PLGA comb polyesters and PLGA

Number Polymer Polymer properties

Mw a

(kg/mol)

Mn a

(kg/mol)

Side chain

length b

(monomer units)

Ratio

lactide:

glycolide 1PV A300-g-

PLGA(10)

156.2116.412.91:1

2PV A300-g-

PLGA(15)

249.9178.717.81:1

3PV A300-g-

PLGA(30)

438.1319.131.71:1

4Coumarin-

PV A300-g-

PLGA(15)

331.1190.617.81:1

5Linear

PLGA c

28.4–––

a Determined by SEC(size exclusion chromatography)combined with MALLS(multi angle laser light scattering)using N,N dimethylacetamide containing2.5g/l LiBr as eluent.

b PLGA side chain length determined from1H NMR is given as average number of monomer units on the PV A backbone(Mw PV A=15kg/mol).

c RG503H,supplie

d by Boehringer Ingelheim,Germany.

42U.Westedt et al./Journal of Controlled Release119(2007)41–51

prepared in the release medium composed of a phosphate

buffered(0.05M,I=0.01,pH7.4)poloxamer188solution.

The resulting colloidal suspension was stirred for2h under

reduced pressure to remove residual organic solvent.The

nanoparticle suspension was stored at4°C until use.For

determination of drug loading efficiency and in vitro drug

release,14C-labeled and unlabeled paclitaxel were mixed at

mass ratio of1/250.The nanoparticle yield was determined

gravimetrically after preparation,and additionally,after the

passage through a channelled balloon delivery catheter

(SCIMED REMEDY?model RC20/2.5,lot3377794,Boston

Scientific,Natick,MA).The catheter,which was also used for

the in vivo experiments,carries18channels with1group of30-μm diameter pores per channel for infusion of drug solutions or particle suspensions[24].All measurements were performed in

triplicate.

Nanoparticles for cellular uptake studies were prepared from

a mixture of fluorescence-labeled PV A300-g-PLGA(15)and

unlabeled PV A300-g-PLGA(15)in a ratio of2to8.Nanopar-

ticles contained0.1%(w/w)Oregon Green labeled paclitaxel.

For in vivo experiments nanoparticles consisting of PV A300-g-

PLGA(30)were prepared under aseptic conditions(theoretical

drug load of2%paclitaxel(w/w)).

2.4.Nanoparticle characterization

2.4.1.Particle size measurement

For measurement of average size and size distribution of the

nanoparticle suspensions by photon correlation spectroscopy

(PCS)(Zetasizer4/AZ110;Malvern Instruments,UK),each

sample was diluted with filtrated and distilled water to a

nanoparticle concentration of0.5mg/ml to avoid multiscatter-

ing events.The photon correlation spectroscopy software V

1.26was used to calculate mean diameter and width of fitted

Gaussian distribution.Moreover,the NP size was determined

after passage through the channelled balloon catheter.Each

measurement was performed in triplicate.

2.4.2.Scanning electron microscopy(SEM)

The morphology of nanoparticles was characterized by SEM

using a Hitachi S-4100microscope(Hitachi,Germany).A drop

of the nanoparticle suspension(2mg/ml)was placed on a glass

cover slide and dried under vacuum for12h.After that,the

slides were mounted on aluminum pins using double-sided

adhesive tape.Prior to microscopic examination the samples

were coated with a gold layer under vacuum for30s(Edwards

Auto306,Edwards,Germany).

2.4.

3.Atomic force microscopy(AFM)

A drop of the nanoparticle suspension was directly placed on

a silicon chip.Atomic force microscopy was performed with a

Digital Nanoscope IV Bioscope(Veeco Instruments,Santa

Barbara,CA)as described elsewhere[25].The vibration-

damped microscope was equipped with pyramidal Si3N4tips

(NCH-W,Veeco Instruments,Santa Barbara,CA)on a

cantilever with a length of125μm,a resonance frequency of

about220kHz and a nominal force constant of36N/m.To avoid damage of the sample surface all measurements were performed in the tapping mode.The scan speed was proportional to the scan size with a scan frequency from0.5 to1.5Hz.Images were obtained by displaying amplitude, height and phase signal of the cantilever in the trace direction recorded simultaneously.

2.4.4.Determination of encapsulation efficiency

After centrifugation of1ml of the nanoparticle suspension (10min at10000rpm)the clear supernatants were removed and the sediments were dissolved in acetone before mixing with 5ml of scintillation cocktail.The activity of radio-labeled paclitaxel in supernatants and residues was quantified by liquid scintillation counting(LSC)(Tri-Carb2100TR,Packard BioScience,Germany).The encapsulation efficiency was calculated by comparing the actual and theoretical loading in consideration of the14C-paclitaxel/paclitaxel ratio.Each sample was measured in quadruplicate.

2.5.In vitro release of paclitaxel

Nanoparticles for release experiments had a theoretical drug load of2%(w/w).One milliliter of the nanoparticle suspension in1.5ml Eppendorf cups(Eppendorf,Germany)was placed in an incubator at37°C.At predetermined time intervals the buffer was withdrawn after centrifugation and replaced by fresh phosphate buffer(0.05M,pH7.4)containing0.1%(w/w) poloxamer188.The amount of drug released and the encapsulation efficiency were determined in quadruplicate as described above.

2.6.In vitro cell culture studies

2.6.1.Rabbit vascular smooth muscle cell(RbVSMC)culture

The cells were isolated from abdominal aortas of New Zealand white rabbits[26]and cultured in DMEM(Dulbecco's modified Eagle medium,Sigma-Aldrich,Germany)supple-mented with2mM glutamine(Sigma-Aldrich,Germany)and 10%fetal calf serum(Gibco,Germany)at37°C,95%rh.and 8.5%CO2.Vascular smooth muscle origin was confirmed by immunocytochemical staining with monoclonal antibodies against smooth muscle alpha actin(Progen Ind.,Australia). Assays were always performed in the exponential growth phase of the cells.Absence of mycoplasms was assured using the DAPI(4′6-diamidino-2-phenylindole)staining method(Mo-lecular Probes,Leiden,The Netherlands).

2.6.2.In vitro cytotoxicity using MTT Assay

In vitro cytotoxicity of blank,paclitaxel-loaded nanoparticles from PV A300-g-PLGA(15)and PV A300-g-PLGA(30)with a theoretical drug load of2%(w/w),and free paclitaxel were investigated using the primary RbVSMC culture.Nanoparticles were prepared under aseptic conditions.Paclitaxel was dissolved in96%ethanol.To obtain different test concentrations,several dilutions of paclitaxel stock solution and nanoparticle suspen-sions were prepared with DMEM culture medium.Ethanol amounts used for dilution showed no influence on the cell

43

U.Westedt et al./Journal of Controlled Release119(2007)41–51

viability during the experiments.RbVSMC were seeded into96-well microtiter plates(Nunclon?,Nunc,Germany)at a density of5000cells/well.After24h the culture medium was replaced with different dilutions of the stock solutions.After an incubation period of24h the culture medium was replaced with fresh,drug-,and nanoparticles-free culture medium.After an additional incubation time of48h the viability of the cells was evaluated by the MTT assay(n=7).MTT(3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl tetrazolium bromide)(Sigma-Aldrich, Germany)was dissolved in phosphate buffered saline at5mg/ml and20μl were added to each well reaching a final concentration of0.5mg MTT/ml.After an incubation time of4h unreacted dye was removed by aspiration,the purple formazan product was dissolved in200μl/well dimethyl sulfoxide and quantitated by a plate reader(Titertek Plus MS212,ICN,Germany)at wavelengths of570and690nm.

Poly(ethylene imine)750kDa(BASF,Germany)at1mg/ml in DMEM was used as a positive control and poly(ethylene)600 (Merck,Germany)at1mg/ml in DMEM as a negative control.

2.6.

3.Cellular nanoparticle uptake:living cell confocal laser scanning microscopy(CLSM)

For living cell confocal microscopy experiments a Zeiss Axiovert100M microscope coupled to a Zeiss LSM510scan module was used.Cells(10,000RbVSMC)were seeded12h before the experiment into2cm2self-made chamber dishes containing a total of500ml medium.Temperature was maintained at37°C for the duration of the experiment.A CO2atmosphere was not necessary,as the cell culture medium contained25mM HEPES(IMDM,PAA,C?lbe,Germany). Cells were incubated in fresh serum free media containing nanoparticles prepared from coumarin labelled PVA300-g-PLGA(15)and Oregon Green labelled paclitaxel(0.1%w/w). An enterprise UV laser was used to excite the fluorescent label attached to the polymer at364nm and an argon laser was used for paclitaxel fluorescence at a wavelength of488nm.Images were recorded every5min in multi tracking mode using a longpass filter of385nm for UV-laser light and a longpass filter of505nm for argon laser light.For each time point several images were recorded in different layers and subsequently overlaid using Zeiss LSM510software.With respect to a clearer illustration of the co-localized green paclitaxel fluores-cence and the blue fluorescence of the polymer,the colour of the fluorescence emitted from the polymer is displayed in red. 2.6.4.Animal experiments

All animal experiments were carried out according to the guidelines for the care of laboratory animals.The study protocol had been approved by the local animal care committee of the state government.Eight male New Zealand white rabbits(2.5–3kg bodyweight)underwent balloon dilation of both common iliac arteries to induce an arterial stenosis.Prior to intervention animals were housed individually and were allowed to acclimate to their cages for two weeks starting with a1% cholesterol diet after one week and water ad libitum.

Balloon denudation was performed under general anesthesia (ketamine,50mg/kg;xylacine,5mg/kg)administered in combination by intramuscular injection.To maintain anesthesia, additional doses of ketamine were given i.v.after cannulation of an ear vein as required.The right carotid artery was exposed and a4French arterial sheath(Terumo Corporation,Tokyo,Japan) was introduced.A standard0.018in.guide wire(Boston Scientific,Watertown,MA,USA)was advanced under fluoroscopic guidance into the common femoral artery.A calibrated intra-arterial angiography of the distal aorta and both iliac arteries was obtained.Then,a balloon catheter(2cm in length,3mm in diameter,Viper,Boston Scientific,Watertown, MA,USA)was introduced into both common iliac arteries.The balloon,which had been inflated just distal to the aortic bifurcation was pulled back1cm three times resulting in a mechanical damage of the treated common iliac arteries.After denudation,additional angiography was carried out in order to detect dissections or signs of vessel perforation.The carotid artery was ligated after removal of the sheath.To prevent thrombus formation100I.U.(international units)heparin/kg bodyweight were given intravenously prior to intervention.The animals were kept on a1%cholesterol diet and water ad libitum until the end of the study.

2.6.5.Application system for nanoparticles

The delivery device has been described in detail elsewhere [24].Briefly,it consists of a three lumen over the wire catheter with separate ports for balloon dilation and local drug delivery.

The balloon carries18channels with one group of pores (30μm)per channel,arranged in a spiral pattern along the entire balloon length.The catheter shaft is3.4French.For the purpose of this study we used a balloon length of20mm and a diameter of2.5mm.

2.6.6.Balloon angioplasty and local delivery of paclitaxel-loaded nanoparticles

Balloon dilation and local drug delivery were performed four weeks after stenosis induction under general anesthesia and sterile conditions.To prevent thrombus formation100I.U. heparin/kg bodyweight were given intravenously prior to the intervention.

The left carotid artery was exposed and a4French arterial sheath was introduced.A calibrated angiography was obtained to measure the degree of stenosis.The target vessel and the type of treatment applied were randomly selected from a computer generated randomization list prior to intervention.A0.018in. guide wire and a guiding catheter were advanced into the femoral arteries.Then a0.014guide wire(Guidant,Temecula, CA,USA)was exchanged.After insertion of the guide wire the channelled balloon catheter(Boston Scientific,Watertown,MA, USA)was advanced into the former angioplasty area and the balloon was inflated at a pressure of8atm.Angioplasty balloon inflation was controlled with a manometer(Encore,Boston Scientific,Watertown,MA,USA)to control the pressure during inflation.Simultaneously,nanoparticle administration of a total volume of4ml(corresponds to160μg Ptx)was performed at 2atm through the second port of the channelled balloon catheter. Normal saline was administrated with identical application parameters to the contralateral artery,which served as a control.

44U.Westedt et al./Journal of Controlled Release119(2007)41–51

After nanoparticle delivery the catheter was removed and a completion angiogram was performed.The sheath was removed and the carotid artery was ligated.

2.6.7.Histological preparations

Four weeks after balloon dilation and simultaneous local nanoparticle delivery a laparotomy was performed under general anesthesia.The infrarenal aorta was cannulated and a calibrated angiography of the iliac arteries was obtained.Then, the animals were sacrificed by a lethal dose of T61?(embutramide,mebezoniumjodide,tetracainhydrochloride; Hoechst,Frankfurt,Germany).The abdominal aorta and the iliac arteries were excised,perfused with normal saline and immersion fixed with4%paraformaldehyde solution.A1cm long vessel segment of both common iliac arteries starting1cm distal to the aortic bifurcation was cut into3segments.The proximal and distal margins were marked with sutures and embedded in paraffin.The segments were cut and stained using routine methods.

After hematoxyline-eosin and van Gieson staining the segments were morphometrically analyzed using a semiautomatic planimetric system.The cross sections(4μm)were projected onto a digital image analyzer(Leica Germany,Quantimed600 software).The following borders were highlighted with a trackball:external elastic lamina(EEL),internal elastic lamina (IEL)and luminal/intimal border.The luminal area,intimal area (defined as the area under the IEL)and media area(defined as the area between EEL and IEL)were measured.Neointimal area and an intima(IEL—lumen)/media(EEL–IEL)ratio were also calculated.All segments were morphometrically analyzed and in all groups only the sections with the largest neointimal area identified by morphometry were used for data evaluation.All histomorphological measurements were performed by skilled observers blinded to the treatment groups.Three cross sections of each vessel segment were measured.

2.6.8.Statistical analysis

Results are expressed as mean±SEM(standard error of mean).Statistical data analysis was conducted using SPSS for Unix,Release6.14.After confirmation of normal distribution using the Kolmogoroff–Smirnoff-Test comparison of the in vivo data was performed using Students't-test.Additionally,in vivo data were compared by a one-way analysis of variance (ANOV A)followed by Fisher's t-test for further evaluation of the difference of two means.Predictive value(p)less than0.05 was considered statistically significant.

3.Results and discussion

3.1.NP characterization

The solvent evaporation method appears to be particularly suitable for the preparation of PV A-g-PLGA nanoparticles[23]. The mechanism of particle formation thought to occur according to“diffusion-stranding”process found in spontane-ous emulsification also designated as Marangoni-effect[27]. The morphology of nanoparticles prepared by the solvent displacement technique is exemplarily shown for NP from PV A300-g-PLGA in Figs.1and2.The surface of spherical NP appeared to be smooth and without pores,similar to NP from PLA,or PLGA[18,28].The mean particle size ranged between 140and170nm as confirmed by SEM(Fig.3A).Apparently, the encapsulation of paclitaxel did not affect the nanoparticle size,or polydispersity indices(0.1to0.17)suggesting uniform, and monomodal size distributions.Particle yields were in the range of80to94%(Fig.3B)and comparable to recently published results[29].The passage of nanoparticles through the channelled balloon catheter did not influence the particle size or yield,as shown in Fig.3A and B.The encapsulation efficiency (EE)at a theoretical loading of2%ranged from77%for PV A300-g-PLGA(10)NP to87%for PV A300-g-PLGA(30)NP. In comparison PLGA NP showed an EE of80%equal to NP from PV A300-g-PLGA(15).Based on recent published data [30,31],we can assume that at a drug load of2%(w/w)the polymeric matrix does not contain any crystalline paclitaxel. Polymer and drug may form a molecular dispersion,in which paclitaxel was present in an amorphous or disordered crystalline phase.

In contrast to other researchers,who visualized cellular NP uptake with red fluorescence loaded nanoparticles[32,33],we prepared NP from labelled polymer using7-methoxy-coumarin-3-aminocarbonyl-conjugated PV A300-g-PLGA(15).The use of fluorescence labelled instead of fluorescence loaded particles avoids any unintentional dye release that would prevent the exact determination of the particle distribution by confocal laser scanning microscopy(CLSM).Fluorescence-labelled paclitaxel nanoparticles thus obtained for cellular uptake studies had a particle size of118.4nm±7.3nm with a polydispersity index of 0.1±0.024,and additionally,show the same shape and surface characteristics as unlabelled nanoparticles(Fig.2B).

3.2.In vitro drug release

The drug release from a nanoparticulate matrix system,in which the drug is uniformly embedded,generally occurs by diffusion or erosion of the matrix.Several parameters can affect the drug release rate from matrix systems[19].In addition to the particle size[34]molecular weight and lactide to glycolide ratio of the polymer used as matrix forming system have an important impact on the drug release[35].The influence of the com-position of branched polyesters on the cumulative drug release of paclitaxel-loaded NP is shown in Fig.4.An initial drug burst dominates the early release phase.In the case of PV A300-g-PLGA(10)nearly80%of the encapsulated paclitaxel was released during the first day.An increased chain length resulted in a substantial decrease of burst rates as observed for PV A300-g-PLGA(15)(56%)and PV A300-g-PLGA(30)NP(38%).PLGA NP exhibited the lowest burst release of ca.35%.The following release phase of all NP species was characterized by a slow but continuous profile over a time period of22days.Other authors observed comparable release behavior with regard to PLGA NP [28,29].The paclitaxel release exhibited a biphasic release pattern,which was characterized by an initial drug burst during the first24h,followed by a slower release phase.

45

U.Westedt et al./Journal of Controlled Release119(2007)41–51

The burst release of hydrophobic paclitaxel from the nanoparticles is possibly due to the influence of the hydrophilic backbone and the PLGA chain length of the polymers.The lower the PLGA chain length the lower the lipophilicity of the polymer and the lower the solubility of paclitaxel in the polymer [31],resulting in an increased amount of free paclitaxel and a decreased EE compared to the other comb polyesters,and especially to PLGA [21].

Another important aspect is the presence of surfactant acting as stabilizing agent for the NP suspension.While the hydrophobic drug containing organic solution was added to the poloxamer 188containing water phase,the paclitaxel might accumulate in the hydrophobic domains of the surfactant molecules.When the NP solidifies in the aqueous phase and surfactant molecules attach to the hydrophobic NP surface,the drug is not able to diffuse back into the solid core of the nanoparticles [36].Dissolution and diffusion procedures of the drug,which was adsorbed onto the NP surface,could lead to an initial drug burst,while the slower and continuous release phase may be attributed to the diffusion of the drug localized in the NP core [37].On the other hand,the addition of poloxamer 188to the aqueous medium after phase mixing potentially reduces the drug release rate due to the absence of deep-seated surfactant molecules at the nanoparticle surface,as described for a lipophilic low molecular weight tyrphostin compound [34].Ultimately,the reduction of the aqueous to organic phase ratio during nanoparticle preparation may lead to initial higher drug release rates [38].Accordingly,drug escapes from pre-formed nanoparticles due to the external medium rich of

organic

Fig. 2.Atomic force micrographs showing surface properties of polymer nanoparticles prepared from (A)PV A 300-g-PLGA(15),and (B)fluorescence-labelled PV A 300-g-PLGA(15).Each single image has an edge length of 5μ

m.

Fig.1.Scanning electron micrographs of nanoparticles prepared from (A),(B)PV A 300-g-PLGA(30),(C)PV A 300-g-PLGA(15),and (D)fluorescence-labelled PV A 300-g-PLGA(15)loaded with 0.5%paclitaxel in different magnifications.

46U.Westedt et al./Journal of Controlled Release 119(2007)41–51

solvent.After evaporation of the organic solvent drug re-adsorbs to the nanoparticle surface.

Nevertheless,the burst release is clinically desirable to achieve initial high drug concentrations in the target tissue.After release of a loading dose,the following,and substantial sustained drug release rate is to obtain a constant drug level to prevent excessive VSMC proliferation persistently.Previous results of in vitro cell culture studies showed a paclitaxel-induced decrease in cell viability of human VSMC at a drug concentration range of 0.1to 10μmol/l,which is potentially favorable for local delivery.An increase in cell apoptosis was observed at higher drug levels (50to 100μmol/l)[12].The intimal VSMC proliferation that follows vascular injury during angioplasty procedures reaches a maximum at 10to 14days and ends upon re-endothelization of the traumatized vessel segment.

But due to a relatively short residence time of paclitaxel in VSMC,the application of free drug containing solutions could be less efficient to inhibit restenosis,as demonstrated for bovine VSMC [39],which underlines the need of sustained release dosage forms of antiproliferative drugs.By specific variation of PV A-g-PLGA polymer composition we were able to adjust the initial drug dose,which is released immediately after the infusion of the nanoparticle suspension into the vessel wall,and subsequently,delayed drug liberation provides a persistent effect on VSMC proliferation.

In order to obtain both a high drug release directly after locally delivery,as well as sustained Ptx release in the target tissue,we decided to use nanoparticles consisting of PV A-g-PLGA(30)to evaluate the effect of delivered nanoparticles on neointima formation in vivo.3.3.In vitro cytotoxicity

The MTT test serves as an assay for proliferation and cell viability by measuring the mitochondrial activity of cells.Metabolically active cells are able to convert the yellow water-soluble tetrazolium salt (3-(4,5dimethylthiazol-2-yl)-2,5-diphe-nyltetrazolium bromide)to a water-insoluble dark blue formazan by reductive cleavage of the tetrazolium ring.For in vitro cytotoxicity all components,which were used for nanoparticle preparation,were tested.The suspension stabilizer poloxamer 188did not decrease the viability of RbVSMC up to concentrations of 10mg/ml (data not shown).Pistel et al.have already demonstrated the good biocompatibility of PVA-g-PLGA polymer using the extraction method [21].The non-toxic character of unloaded nanoparticles prepared from PV A 300-g-PLGA(30)and PV A 300-g-PLGA(15)was confirmed up to a NP concentration of approx.370μg/ml,as shown in (Fig.5).By contrast paclitaxel-loaded PV A-g-PLGA nanoparticles showed a concentration dependent viability of RbVSMC.An increase of nanoparticle concentration from 3to more than 300μg/ml was accompanied by a reduction in cell viability of 30%.Furthermore,and this effect highlights the rationale for the encapsulation of antiproliferative drugs for local vascular delivery,at higher

drug

Fig.4.Effect of the polymer composition on the in vitro paclitaxel (Ptx)release from nanoparticles loaded with 2%Ptx/14C-Ptx (mass ratio 250:1).Encapsu-lation efficiencies ranges from 77to 87%.The drug released was determined by liquid scintillation counting (LSC).Each sample was measured in

quadruplicate.

Fig.3.(A)Size of nanoparticles (NP)prepared from three different PV A 300-g-PLGA comb polyesters determined by photon correlation spectroscopy.PV A 300-g-PLGA(30)?=NP batch for size determination after passage through a channelled balloon delivery catheter (SCIMED REMEDY ?).All measure-ments were performed in triplicate.(B)Yield of nanoparticles prepared from three different PV A300-g-PLGA comb polyesters.It is expressed as the ratio between the polymer mass in the suspension and the theoretical amount.PV A300-g-PLGA(30)?=NP batch for yield determination after passage through a channelled balloon delivery catheter (SCIMED REMEDY ?).All measurements were performed in triplicate.

47

U.Westedt et al./Journal of Controlled Release 119(2007)41–51

levels free paclitaxel was less toxic compared to drug-loaded nanoparticles,probably due to a higher cellular uptake of nano-particles.Hence,nanoparticles formed a depot from which the paclitaxel is released continuously after the initial burst.3.4.Nanoparticle uptake into RbVSMC

Confocal laser scanning microscopy of VSMC exposed to fluorescence-labeled nanoparticles loaded with 0.1%of Oregon Green labeled paclitaxel (green fluorescence)demonstrated an increasing fluorescence activity in the cells during the incubation with NP suspension for 80min (Fig.6).As already mentioned,the blue fluorescence of the coumarin labelled polymer in the images were changed into red color in favor of a better illustration of the co-localized nanoparticles and paclitaxel.Based on results from the in vitro cytotoxicity test,fluorescently labelled paclitaxel did not affect cell viability of VSMC negatively during NP uptake experiments.The images shown are z -sections through the center of the cells and confirm that the fluorescence observed is the result of nanoparticle localization inside the cells and not on the membrane surface.The co-localization of NP and paclitaxel fluorescence appeared in yellow fluorescence as a consequence of NP internalization.Various processes,such as phagocytosis [40],receptor mediated endocytosis,or fluid phase pinocytosis [39]are hypothesized for cellular uptake of particulate drug carriers.In fact phagocytosis is generally associated with the uptake of large particles (N 500nm)and not with NP of about 100–200nm,which was confirmed by testing the phagocytic activity of human VSMC in the presence of NP in vitro [33].

As shown in Fig.6,the nanoparticle distribution is com-parable to those reported for 6-coumarin-loaded nanoparticles [41].Particles are arranged in vesicles,suggesting that they are probably located in the endosomal/lysosomal compartments surrounding the nucleus [39,42].The appearance of diffuse green and red fluorescence indicates a subsequent NP escape

into the cytoplasm,as hypothesized by Panyam et al.[42].As a result of uptake inhibition at low temperatures and satura-tion kinetics during incubation with poly(ethylene oxide)-poly (lactide-co-glycolide)NP,Suh et al.proposed that the uptake is through adsorptive pinocytosis [39].In contrast it was also demonstrated that in parts PLGA NP without any specific ligands were internalized nonspecifically through clathrin vesicles which are known to be involved in active receptor mediated endocytosis [42].

However,further investigations with regard to the mecha-nism of nanoparticle uptake and the kinetics of drug uptake and retention in the VSMC will be helpful to establish the efficiency of PV A-g-PLGA nanoparticles for the prevention of excessive proliferation of VSMC after balloon angioplasty.

3.5.Effect of locally delivered nanoparticles on neointima formation

Early pharmacological strategies to prevent post angioplasty restenosis have been focused on the systemic administration of antirestenotic drugs.Despite promising results in several animal models of restenosis [43],human trials could not fulfill the expectations.

Therefore,novel approaches for a more effective site-specific drug delivery are being directed toward local

delivery

Fig.5.Cytotoxicity of free paclitaxel (Ptx)(star symbol),blank nanoparticles (filled symbols)and Ptx-loaded nanoparticles (open symbols)(theoretical loading 2%)from PV A-g-PLGA(30)(open and filled squares)and PV A-g-PLGA(15)(open and filled circles)by means of MTT

assay.

Fig.6.CLSM images demonstrating intracellular nanoparticle distribution in RbVSMC (A)directly after incubation,(B)after 20min,(C)after 40min,(D)after 80min of incubation;Oregon Green labelled paclitaxel (green),fluorescence-labelled PV A300-g-PLGA(15)(blue coumarin fluorescent label is displayed in red,see text for explanation).The insert in (A)is a differential interference contrast image showing the outline of the cells.Overlay of (A)–(D)displays co-localization of nanoparticles and paclitaxel.Each image shown is a z -section through the center of the cells supporting location of nanoparticles inside the cells.Nanoparticles with 0.1%theoretical loading of fluorescence-labelled paclitaxel have a diameter of 118.4nm±7.3(polydispersity index 0.1±0.024).(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

48U.Westedt et al./Journal of Controlled Release 119(2007)41–51

systems rather than systemic administration[1].A combination of local delivery and controlled drug release has the potential to achieve high and sustained tissue levels of the drug at the site of balloon injury,as well as to prevent adverse side effects as a consequence of a systemic administration[1,44].

To evaluate the efficiency of paclitaxel-loaded PV A-g-PLGA nanoparticles on neointima formation after balloon injury in a New Zealand white rabbit iliac artery model,we compared nanoparticle treated with control vessel segments.Other research groups have focused on a rat carotid model of vascular injury and intraluminal delivery to study the antirestenotic potential of drug-loaded nanoparticles.Amongst others they observed a particle size-dependent effect on neointima formation due to a higher uptake of the smaller tyrphostins-loaded nanoparticles[16,45].A size-dependent nanoparticle penetration into the vessel wall was also reported by Westedt et al.While fluorescence-labelled poly-styrene nanoparticles of about100and200nm were deposited in the inner regions of the vessel wall,nanoparticles larger than 500nm accumulated primarily at the luminal surface of the aorta abdominalis in New Zealand white rabbits[46].

Based on results from Kimura et al.,it can be concluded,that vascular damage and intimal thickening is associated with the degree of infusion pressure achieved by local delivery,whereas a5atm infusion pressure may mark the critical value,beyond which severe vascular damage occurs[47].In the present study balloon dilatation at a pressure of8atm as well as the local delivery procedures at2atm were technically successful in all animals.All vessels were patent at completion angiography. Acute thrombosis or perforation of the target vessels was not observed in any animal.Although the local nanoparticle deli-very at accelerated infusion pressures of4atm lead to effective nanoparticle delivery without severe vessel wall disruptions [48],the infusion pressure was reduced to2atm to prevent

vascular damage by the relatively high suspension volume of 4ml.

Fig.7shows the morphometric results of local nanoparticle application.There was a significantly smaller neointima cross sectional area in the arteries treated with nanoparticles compared to the control group.A50%reduction in neointimal area in vessel segments treated with paclitaxel-loaded nanoparticles compared to control vessel segments was observed(local pac-litaxel nanoparticle treated segments0.80±0.19mm2,Fig.7A; control segments1.58±0.6mm2,Fig.7B;p b0.05).Although maximum concentration of placebo nanoparticles used in the in vitro VSMC model was lower than the particle concentra-tion used for the animal experiment,we assumed that the antirestenotic effect was caused by paclitaxel,which was released from the nanoparticles.Based on previously reported data,a PV A-g-PLGA concentration of up to100mg/ml led to a reduction of cell viability of ca.20%in a L929fibroblasts cell culture model,and was very similar to linear PLGAs,which underlines the non-toxic character of branched polyesters[21].

The implications of this experimental study on the clinical situation in humans are uncertain and extrapolation of these data requires caution.Although dose conversion factors for interspecies extrapolation has already been identified[49],the effective doses in animals cannot be safely extrapolated to humans due to significant differences between animal and human pharmacokinetics and metabolism[43].Furthermore,as in most experimental studies the major limitation of this study is related to the animal model being used.Although the hypercholesterolemic and/or denudated rabbit iliac artery model produces considerable smooth muscle cell proliferation and intimal hyperplasia,it is well recognized that this response may be insufficient to create obstructive atherosclerotic disease. The situation in atherosclerotic or restenotic lesions will differ vastly because of(i)worse catheter adherence to the irregular vessel wall,(ii)diffusion barriers due to calcification and scar tissue.Therefore,parts of the suspension may escape between the vessel wall and the delivery balloon,and reach the systemic circulation.Moreover,nanoparticles can leak from the vessel wall through the infusion channels back into the vessel lumen [48].For this reason,a conclusive statement with respect to the delivery efficiency was not possible.Therefore,it has to be taken into account that additionally to its antiproliferative im-pact,paclitaxel causes adverse hematopoietic effects in a dose-dependent manner when reaching the blood circulation[43,44].

Nevertheless,the drug delivery concept constitutes a com-bined mechanical and pharmacologic approach that appears as a promising preventive strategy against restenosis.Apart from catheter-based local drug delivery there are other

promising Fig.7.Photomicrographs of common iliac arteries(hematoxyline-eosin staining;microscopic magnification40×)of cholesterol fed rabbits.Neointimal area(NA)is markedly reduced in vessel segments treated with paclitaxel-loaded nanoparticles(A)compared to control segments treated with saline under similar conditions(B).

49

U.Westedt et al./Journal of Controlled Release119(2007)41–51

approaches to prevent restenosis after balloon angioplasty, especially intravascular brachytherapy[50]as well as drug coated and drug eluting stents[51].However,especially coated stents have potential disadvantages.Most of the current stent designs cover only5%to12%of the arterial surface,limiting the amount of surface area in contact with the drug.In addition,use of a prosthetic,permanent stent implant is undesirable for the purpose of a short-term drug delivery.In view of the rapidly involving field of new therapeutic approaches,local delivery devices seem to be of great interest especially in peripheral artery occlusive disease and deserve further investigation in clinical trials.

4.Conclusions

This study describes the formulation of biodegradable nanoparticles(b180nm)using solvent displacement technique for catheter-based local intraluminal drug delivery.PV A-g-PLGA comb polyesters are suitable biodegradable polymers for the nanoencapsulation of paclitaxel.By varying the composi-tion of PV A-g-PLGA polymers the release kinetics can be adapted to the clinical requirements of drug delivery for prevention of restenosis.We have further demonstrated that unloaded PVA-g-PLGA nanoparticles are non-toxic to RbVSMC and capable of sustained intracellular delivery of paclitaxel.Paclitaxel-loaded nanoparticles decrease the cell viability of RbVSMC in vitro more effective than the free drug. Confocal laser scanning microscopy confirmed the uptake of paclitaxel-loaded nanoparticles.It has to be noted that the relevance of the present results to human clinical circumstance is uncertain.Furthermore,long-term effects of studied nano-particle formulations are not known.Despite those study limitations the local administration of these particles to common iliac arteries of New Zealand white rabbits was associated with a significant decrease in neointimal formation.These findings support the rationale for the design of colloidal drug delivery systems based on biodegradable nanoparticles from poly(vinyl alcohol)-g-lactide-co-glycolide),which offer attractive features for the prevention of restenosis after angioplasty.

The composition of branched polyesters can be varied to meet the needs of almost any antirestenotic compound like lipophilic drugs as paclitaxel,as well as hydrophilic,macro-molecular drugs,such as peptides,proteins[52],or DNA[53], which have the potential for the treatment of restenosis.The modification of PLGA side chain length and PV A backbone composition lead to a more versatile polymer platform com-pared to commonly used PLA and PLGA[54].

Acknowledgements

We would like to thank Nicole Bamberger,Beate Kleb and Michael Hellwig for their valuable technical assistance.Further on,we gratefully acknowledge financial support of the project Ki592/5-1by Deutsche Forschungsgemeinschaft(DFG),Sam Yang Corporation Seoul,Korea for providing Genexol?,and Boston Scientific Natick,MA for providing SCIMED REME-DY?channelled balloon catheters.References

[1]M.Chorny,I.Fishbein,G.Golomb,Drug delivery systems for treatment of

restenosis,Crit.Rev.Ther.Drug Carr.Syst.17(3)(2000)249–284. [2]J.A.Dormandy,R.B.Rutherford,Management of peripheral arterial

disease(PAD).TASC Working Group.TransAtlantic Inter-Society Concensus(TASC),J.Vasc.Surg.31(1Pt2)(2000)S1–S296.

[3]T.Jaemsen,H.Manninen,H.Tulla,P.Matsi,The final outcome of primary

infrainguinal percutaneous transluminal angioplasty in100consecutive patients with chronic critical limb ischemia,J.V asc.Interv.Radiol.13(5) (2002)455–463.

[4]J.J.Popma,R.M.Califf,E.J.Topol,Clinical trials of restenosis after

coronary angioplasty,Circulation84(3)(1991)1426–1436.

[5]C.Bauters,J.M.Isner,The biology of restenosis,Prog.Cardiovasc.Dis.40

(2)(1997)107–116.

[6]B.Bhargava,G.Karthikeyan,A.S.Abizaid,R.Mehran,New approaches

to preventing restenosis,Br.Med.J.327(7409)(2003)274–279.

[7]D.W.Muller, E.J.Topol,G.D.Abrams,K.P.Gallagher,S.G.Ellis,

Intramural methotrexate therapy for the prevention of neointimal thickening after balloon angioplasty,J.Am.Coll.Cardiol.20(2)(1992) 460–466.

[8]J.F.Mitchel,D.B.Fram,D.F.Palme,R.Foster,J.A.Hirst,M.A.Azrin,L.M.

Bow,A.M.Eldin,D.D.Waters,R.G.McKay,Enhanced intracoronary thrombolysis with urokinase using a novel,local drug delivery system.In vitro,in vivo,and clinical studies,Circulation91(3)(1995)785–793. [9]J.Rome,V.Shayani,M.Flugelman,K.Newman,A.Farb,R.Virmani,D.

Dichek,Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall.Modeling with microscopic tracer particles and verification with a recombinant adenoviral vector,Arterioscler.

Thromb.14(1)(1994)148–161.

[10]I.Gradus-Pizlo,R.L.Wilensky,K.L.March,N.Fineberg,M.Michaels,G.E.

Sandusky,D.R.Hathaway,Local delivery of biodegradable microparticles containing colchicine or a colchicine analogue:effects on restenosis and implications for catheter-based drug delivery,J.Am.Coll.Cardiol.26(6) (1995)1549–1557.

[11]T.K.Nasser,R.L.Wilensky,K.Mehdi,K.L.March,Microparticle

deposition in periarterial microvasculature and intramural dissections after porous balloon delivery into atherosclerotic vessels:quantitation and localization by confocal scanning laser microscopy,Am.Heart J.131(5) (1996)892–898.

[12]D.I.Axel,W.Kunert,C.Goggelmann,M.Oberhoff,C.Herdeg,A.

Kuttner,D.H.Wild,B.R.Brehm,R.Riessen,G.Koveker,K.R.Karsch, Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery,Circulation96(2)(1997) 636–645.

[13]C.Herdeg,M.Oberhoff,A.Baumbach,A.Blattner,D.I.Axel,S.Schroder,

H.Heinle,K.R.Karsch,Local paclitaxel delivery for the prevention of

restenosis:biological effects and efficacy in vivo,J.Am.Coll.Cardiol.35

(7)(2000)1969–1976.

[14]E.K.Rowinsky,R.C.Donehower,Paclitaxel(Taxol),N.Engl.J.Med.332

(15)(1995)1004–1014.

[15]H.Fessi,J.P.Devissaguet,F.Puisieux,C.Thies,Process of the preparation

of dispersable colloidal systems of a substance in the form of nanoparticles formation of colloidal nanoparticles,5,118,528,1992.

[16]I.Fishbein,M.Chorny,L.Rabinovich,S.Banai,I.Gati,G.Golomb,

Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis,J.Control.Release65(1–2)(2000)221–229.

[17]C.Song,https://www.360docs.net/doc/372001270.html,bhasetwar,X.Cui,T.Underwood,R.J.Levy,Arterial uptake

of biodegradable nanoparticles for intravascular local drug delivery:results with an acute dog model,J.Control.Release54(2)(1998)201–211. [18]L.Mu,S.S.Feng,A novel controlled release formulation for the anticancer

drug paclitaxel(Taxol):PLGA nanoparticles containing vitamin E TPGS, J.Control.Release86(1)(2003)33–48.

[19]K.S.Soppimath,T.M.Aminabhavi, A.R.Kulkarni,W.E.Rudzinski,

Biodegradable polymeric nanoparticles as drug delivery devices,J.Control.

Release70(1–2)(2001)1–20.

[20]A.Breitenbach,T.Kissel,Biodegradable comb polyesters:Part1—

synthesis,characterisation and structural analysis of PLA and PLGA

50U.Westedt et al./Journal of Controlled Release119(2007)41–51

grafted onto water-soluble PV A as backbone,Polymers39(14)(1998) 3261–3271.

[21]K.F.Pistel,A.Breitenbach,R.Zange,T.Kissel,Brush-like biodegradable

polyesters,Part III,protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-co-glycolic acid),J.Control.Release73(1) (2001)7–20.

[22]A.Breitenbach,K.F.Pistel,T.Kissel,Biodegradable comb polyesters Part

II.Erosion and release properties of PV A-g-PLG,Polymers41(2000) 4781–4792.

[23]T.Jung,A.Breitenbach,T.Kissel,Sulfobutylated poly(vinyl alcohol)-

graft-poly(lactide-co-glycolide)s facilitate the preparation of small nega-tively charged biodegradable nanospheres,J.Control.Release67(2–3) (2000)157–169.

[24]S.M.Ropiak,Multiple Hole Drug Delivery Balloon,US5,860,954,1999.

[25]V.Oberle,U.Bakowsky,I.S.Zuhorn,D.Hoekstra,Lipoplex formation under

equilibrium conditions reveals a three-step mechanism,Biophys.J.79(3) (2000)1447–1454.

[26]D.I.Axel,B.R.Brehm,K.Wolburg-Buchholz,E.L.Betz,G.Koveker,K.R.

Karsch,Induction of cell-rich and lipid-rich plaques in a transfilter coculture system with human vascular cells,J.Vasc.Res.33(4)(1996) 327–339.

[27]D.Quintanar-Guerrero,E.Allémann,E.Doelker,H.Fessi,A mechanistic

study of the formation of polymer nanoparticles by the emulsification–diffusion technique,Colloid Polym.Sci.275(7)(1997)640–647. [28]S.Feng,G.Huang,Effects of emulsifiers on the controlled release of

Paclitaxel(Taxol)from nanospheres of biodegradable polymers,J.Control.

Release71(1)(2001)53–69.

[29]C.Fonseca,S.Simoes,R.Gaspar,Paclitaxel-loaded PLGA nanoparticles:

preparation,physicochemical characterization and in vitro anti-tumoral activity,J.Control.Release83(2)(2002)273–286.

[30]X.Jingwei,W.Chi-Hwa,Self-assembled biodegradable nanoparticles

developed by direct dialysis for the delivery of paclitaxel,Pharm.Res.22

(12)(2005)2079–2090.

[31]U.Westedt,M.Wittmar,M.Hellwig,P.Hanefeld,A.Greiner,A.K.

Schaper,T.Kissel,Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)and their potential as biodegrad-able stent coatings,J.Control.Release111(1–2)(2006)235–246. [32]J.S.Chawla,M.M.Amiji,Cellular uptake and concentrations of tamoxifen

upon administration in poly(epsilon–caprolactone)nanoparticles,AAPS PharmSci5(1)(2003)E3.

[33]J.Panyam,https://www.360docs.net/doc/372001270.html,bhasetwar,Dynamics of endocytosis and exocytosis of

poly(D,L-lactide-co-glycolide)nanoparticles in vascular smooth muscle cells,Pharm.Res.20(2)(2003)212–220.

[34]M.Chorny,I.Fishbein,H.D.Danenberg,G.Golomb,Study of the drug

release mechanism from tyrphostin AG-1295-loaded nanospheres by in situ and external sink methods,J.Control.Release83(3)(2002)401–414.

[35]S.S.Feng,L.Mu,K.Y.Win,G.Huang,Nanoparticles of biodegradable

polymers for clinical administration of paclitaxel,Curr.Med.Chem.11(4) (2004)413–424.

[36]R.H.Muller,K.Maeder,S.Gohla,Solid lipid nanoparticles(SLN)for

controlled drug delivery—a review of the state of the art,Eur.J.Pharm Biopharm.50(1)(2000)161–177.

[37]J.S.Chawla,M.M.Amiji,Biodegradable poly(epsilon–caprolactone)

nanoparticles for tumor-targeted delivery of tamoxifen,Int.J.Pharm.

249(1–2)(2002)127–138.

[38]I.Brigger,P.Chaminade,V.Marsaud,M.Appel,M.Besnard,R.Gurny,

M.Renoir,P.Couvreur,Tamoxifen encapsulation within polyethylene glycol-coated nanospheres.A new antiestrogen formulation,Int.J.Pharm.

214(1–2)(2001)37–42.

[39]H.Suh,B.Jeong,R.Rathi,S.W.Kim,Regulation of smooth muscle cell

proliferation using paclitaxel-loaded poly(ethylene oxide)-poly(lactide/ glycolide)nanospheres,J.Biomed.Mater.Res.42(2)(1998)331–338.[40]K.A.Foster,M.Yazdanian,K.L.Audus,Microparticulate uptake

mechanisms of in-vitro cell culture models of the respiratory epithelium, J.Pharm.Pharmacol.53(1)(2001)57–66.

[41]J.Panyam,S.K.Sahoo,S.Prabha,T.Bargar,https://www.360docs.net/doc/372001270.html,bhasetwar,Fluorescence

and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide)nanoparticles,Int.J.Pharm.262(1–2)(2003)1–11.

[42]J.Panyam,W.Z.Zhou,S.Prabha,S.K.Sahoo,https://www.360docs.net/doc/372001270.html,bhasetwar,Rapid

endo-lysosomal escape of poly(D,L-lactide-co-glycolide)nanoparticles: implications for drug and gene delivery,FASEB J.16(10)(2002) 1217–1226.

[43]D.W.Kim,J.S.Kwon,Y.G.Kim,M.S.Kim,G.S.Lee,T.J.Youn,M.C.

Cho,Novel oral formulation of paclitaxel inhibits neointimal hyperplasia in a rat carotid artery injury model,Circulation109(12)(2004) 1558–1563.

[44]S.Yasuda,T.Noguchi,M.Gohda,T.Arai,N.Tsutsui,Y.Nakayama,T.

Matsuda,H.Nonogi,Local delivery of low-dose docetaxel,a novel microtubule polymerizing agent,reduces neointimal hyperplasia in a balloon-injured rabbit iliac artery model,Cardiovasc.Res.53(2)(2002) 481–486.

[45]I.Fishbein,M.Chorny,S.Banai,A.Levitzki,H.D.Danenberg,J.Gao,X.

Chen,E.Moerman,I.Gati,V.Goldwasser,G.Golomb,Formulation and delivery mode affect disposition and activity of tyrphostin-loaded nanoparticles in the rat carotid model,Arterioscler.Thromb.Vasc.Biol.

21(9)(2001)1434–1439.

[46]U.Westedt,L.Barbu-Tudoran,A.K.Schaper,M.Kalinowski,H.Alfke,T.

Kissel,Deposition of nanoparticles in the arterial vessel by porous balloon catheters:localisation by confocal laser scanning microscopy and transmis-sion electron microscopy,AAPS PharmSci4(4)(2002)(article41). [47]T.Kimura,K.Miyauchi,S.Yamagami,H.Daida,H.Yamaguchi,Local

delivery infusion pressure is a key determinant of vascular damage and intimal thickening,Jpn.Circ.J.62(4)(1998)299–304.

[48]U.Westedt,L.Barbu-Tudoran,A.K.Schaper,M.Kalinowski,H.Alfke,T.

Kissel,Effects of different application parameters on penetration characteristics and arterial vessel wall integrity after local nanoparticle delivery using a porous balloon catheter,Eur.J.Pharm.Biopharm.58(1) (2004)161–168.

[49]E.J.Freireich, E.A.Gehan, D.P.Rall,L.H.Schmidt,H.E.Skipper,

Quantitative comparison of toxicity of anticancer agents in mouse,rat, hamster,dog,monkey,and man,Cancer Chemother.Rep.50(4)(1966) 219–244.

[50]P.S.Teirstein,R.E.Kuntz,New frontiers in interventional cardiology:

intravascular radiation to prevent restenosis,Circulation104(21)(2001) 2620–2626.

[51]J.E.Sousa,M.A.Costa,A.Abizaid,A.G.Sousa,F.Feres,L.A.Mattos,M.

Centemero,G.Maldonado,A.S.Abizaid,I.Pinto,R.Falotico,J.Jaeger,J.J.

Popma,P.W.Serruys,Sirolimus-eluting stent for the treatment of in-stent restenosis:a quantitative coronary angiography and three-dimensional intravascular ultrasound study,Circulation107(1)(2003)24–27. [52]C.P.Cruz,J.Eidt,J.Drouilhet,A.T.Brown,Y.Wang,C.S.Barnes,M.M.

Moursi,Saratin,an inhibitor of von Willebrand factor-dependent platelet adhesion,decreases platelet aggregation and intimal hyperplasia in a rat carotid endarterectomy model,J.Vasc.Surg.34(4)(2001)724–729. [53]C.G.Oster,M.Wittmar,F.Unger,L.Barbu-Tudoran,A.K.Schaper,T.

Kissel,Design of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles,Pharm.Res.21(6)(2004) 927–931.

[54]L.A.Dailey,M.Wittmar,T.Kissel,The role of branched polyesters and

their modifications in the development of modern drug delivery vehicles, J.Control.Release101(1–3)(2005)137–149.

51

U.Westedt et al./Journal of Controlled Release119(2007)41–51

1乙醇安全使用管理制度流程

乙醇储存、使用安全管理制度 乙醇的MSDS安全使用和管理规定: 原料质量规格要求(乙醇) 乙醇运输、储存、消防、安全距离 厂房内通风、防爆 产品粒度检测、吸水速率检测 外包装形式、图案、商标 产品使用说明书: 生产表单、存储表单、检验表单、合格证 乙醇储存、使用安全管理规定:无水乙醇俗称酒精,无色透明、易燃、易挥发有酒精气味和刺激性辛辣味液体。 熔点:-114℃、沸点:℃,闪点:℃,高温能自燃,其蒸气与空气能形成爆炸性混合物,在使用和储存过程中应特别注意安全。本公司乙醇储存量未达到重大危险源标准,各部门在储存和使用过程中加强管理,切实落实安全措施。 一、乙醇应存放于阴凉、通风、干燥的场所,储存于专用储罐。罐顶搭棚或在温度高于35℃降温。 二、乙醇储罐区应设立有效高度避雷针和地下避雷网,并定期进行检验。 三、乙醇储罐应设防静电措施,在法兰连接处应增设铜线连接,仓库管理人员应经常进行维护。 四、乙醇储罐顶部应安装阻火透气帽。密闭其它接口以防吸湿受潮影响乙醇质量。 五、乙醇输送泵应使用防爆电机,使用防爆按钮、照明电器使用防爆灯。 六、乙醇储罐周围应设立不燃性阻火堤预防储罐出现意外泄漏。 七、公司所使用的乙醇应委托有危险化学品运输质资的单位负责运输。运输车辆、司机、押运人员应具备危险化学品从业资质,有危险化学品从业资格证。 八、乙醇储罐区应设立安全警戒线和醒目的警示标牌。 九、储罐区严禁烟火,禁止闲杂人员进入,设立消防设施(消防栓、灭火器、消防沙等)。 十、通知化验室取样,经检验合格接到卸货通知后方可连接进料管启动打料泵将乙醇输送进入储罐。乙醇卸货过程中仓库应始终有人值守。 十一、乙醇在使用过程中,仓库每天都要进行登记核实,做到出入正常。 十二、车间在使用乙醇前,先检查管道和阀门的关闭情况,确认使用正确无误后,方可启动乙醇输送泵将乙醇输入计量槽。严禁先启动泵后开阀门。绝对禁止关闲乙醇输送泵出口阀门而长时间运转乙醇输送泵。 十三、车间使用乙醇要进行登记,每天将使用量及时上报供应部门和仓库,做到有计划库存,保证充足供应。

酒精的安全使用与管理

酒精的安全使用与管理 一、酒精的运输管理 1、用金属容器装运酒精,不能用塑料桶等易引起静电的容器装运酒精。 2、运输时单独装运,严禁与酸类、易燃物、有机物、还原剂、自燃物品、遇湿易燃物品等并车混运。 3、运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。 4、轻拿轻放,防止包装容器损坏。 二、酒精的仓储管理 1、储存于阴凉、通风的库房。 2、远离火种、热源,避免阳光直射。库温不超过30C,相对湿度不超过80%。 3、包装要求密封,不可与空气接触。 4、应与还原剂、活性金属粉末、酸类、药用化学品分开存放,切忌混储。 5、酒精库应配备足够数量的灭火器及其他消防器材。 6、建立严格的出入库制度。 三、酒精的使用管理 1、提高安全意识,严格按操作规程操作。 2、轻拿轻放,防止损坏装酒精容器。 3、使用控制:密闭操作,加强通风,远离火种,热源

4、车间内严禁烟火 5、严禁在作业现场穿、脱、拍打化纤服装;禁止穿带钉鞋进入车间。 6、严禁使用手机,对讲机,照相机等工具。 7、严禁在生产过程中使用焊机,敲击铁器等易产生火花的检修。 8、生产区域设置明显的安全警示标志,配备足够的消防器材。 9、严禁无关人员进入车间,参观人员必须做到安全须知后,方可进入。 10、生产区所有的照明用防爆灯,所有电机用防爆电机,并做好接地 11、空气中浓度较高时,应该佩戴口罩。 12、接触酒精时戴橡胶手套。 13、使用后剩余的酒精,应立即送回仓库。 四、酒精引起的事故及处理措施 1、皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 2、眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 3、吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 4、泄露:切断泄露源,关闭电源,用沙土或其他不燃材料吸附或吸收,尽量不让其流入下水道。如少量泄露,也可用大量的水冲洗之后,排入下水道。 5、起火:用干粉灭火器扑灭火场,尽可能将装酒精容器从火场移至空旷处。喷水保持容器冷却,直至灭火结束。

酒精的安全使用与管理作业指导书

1 目的 规范酒精的运输、存储及使用的安全管理,保护全公司的人身、财产安全,及避免造成

引发中毒或火灾事故。 2 范围 适用于全公司范围内酒精的运输、存储及使用的安全管理。 3 定义 无 4 职责 4.1 厂务部负责全公司的酒精的安全使用与安全方面扎口管理,规范酒精的运输、存储及使用方法。 4.2 管理部仓管负责管辖范围内酒精收发、存储保管及空酒精瓶回收,并且实行空瓶数量换取领用酒精数量。 4.3 使用酒精后产生的空酒精瓶,由管理部仓管负责收集并交由厂务统一处理,含酒精的无尘布,由制造部统一回收并交由厂务统一处理,必须按规定地点堆放以上危险废弃物,每月度进行一次集中处理。 5 内容 5.1 酒精的运输管理 5.1.1 用PE瓦楞包装箱装运酒精,使用500ml塑料瓶容器装运酒精。 5.1.2 运输时单独装运,严禁与酸类、易燃物、有机物、还原剂、自燃物品、遇湿易燃物品等并车混运。 5.1.3 运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。 5.1.4 轻拿轻放,防止包装容器损坏。 5.2 酒精的仓储管理 5.2.1 远离火种、热源,避免阳光直射。库温不超过30℃,相对湿度不超过80%。 5.2.2 包装要求密封,不可与空气接触。 5.2.3 储存于防爆柜内。 5.2.4 应与还原剂、活性金属粉末、酸类、药用化学品分开存放,切忌混储。

5.2.5 酒精库应配备足够数量的灭火器及其他消防器材。 5.2.6 建立严格的出入库制度。 5.3 酒精的使用管理 5.3.1 提高安全意识,严格按照酒精使用相关的WI操作。 5.3.2 轻拿轻放,防止损坏装酒精容器。 5.3.3 酒精的领用、暂存时量不宜过大,一般不超过500ML; 5.3.4 领用、暂存、使用的容器必须有密封可靠的封闭盖,严禁使用无盖的容器 盛装; 5.3.5 使用前请清除使用范围地周围的易燃及可燃物; 5.3.6 使用现场必须配备有合格的灭火器(车间为二氧化碳灭火器); 5.3.7 每次使用完酒精后必须立即盖上容器,严禁敞开放置; 5.3.8 严禁使用酒精擦拭高温高热机器设备及工具(包括烤箱、高温电脑主机, 高温设备零部件等); 5.3.9 擦拭过程中对物体上残留的酒精需擦拭干净; 5.3.10 未用完的酒精应立即退库,车间内每个工段(COB、MPA、焊接、测试) 暂存量不能超过500ML,严禁有超过500ML暂存量及去除密封装置的酒精,使用过 的无尘布需密封,存放通风处; 5.3.11 使用过的含酒精无尘布,严禁长时间摆放在电梯内,使用包装袋必须密 封。 5.4 酒精引起的事故及处理措施 5.4.1 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 5.4.2 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 5.4.3 吸入:迅速脱离现场至空气新鲜处,保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸,就医。 5.4.4 泄露:关掉泄露源,关闭电源,用含水无尘布吸附,尽量不让其流入下水道。如少量泄露,也可用大量的水冲洗之后,排入下水道。 5.4.5 起火:酒精引发燃烧时应用湿布或湿衣物覆盖或CO2灭火器灭火,禁止使用水泼

酒精储存安全管理规定

酒精储存安全管理规定范本 说明: 为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 酒精宜储存于阴凉、通风的库房,远离火种、热源。库温不宜超过30℃。保持容器密封,应与氧化剂、酸类、碱金属、胺类等分开存放,切忌混储。库区采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。 一、酒精的储存、使用要求 (一)领用、暂存、使用的容器必须有可靠的密封,严禁使用无盖的容器。 (二)使用前彻底清除使用范围地(酒精滴落地)周边20m内的易燃及可燃物。 (三)使用现场必须配备灭火器,使用前要检查灭火器是否有效。 (四)使用场地范围内严禁有火源及超过酒精引燃温度 (363℃)的发热物体,使 用前必须测试发热物体温度要在250℃以下,方可使用酒精。 (五)使用时每次取用后必须立即将容器上盖封闭,严禁敞开放置。 (六)擦拭过程中对物体上残留的酒精须擦净。 (七)使用过的毛巾等布料清洁工具,在使用完后应用大量清水清洗后密闭存放,或放通风处晾干。 (八)酒精燃烧灭火处置:可使用ABC、CO2、干粉灭火器进行灭火,也可用湿毛巾、湿衣物覆盖灭火,室外还可以使用沙土覆盖。严禁使用水泼或干燥的毛巾、衣物进行扑打,否则若被酒精引燃,火势将蔓延扩散,越烧越大。 (九)酒精危险特性:极易燃、气态酒精与空气可形成爆炸性混合物,遇明火、 高热能引起爆炸燃烧。气态酒精比空气重,能在较低处扩散到相当远的地方,遇火

源会着火回燃。 二、工业酒精常见的安全隐患 (一)容器隐患,存放时需要选择密闭性好能的容器,不会因外部条件腐蚀而发生泄露。 (二)存放地隐患,存放时因工业酒精为95%v/v以上的乙醇,小容器必须阴凉通风处,隔绝明火地,大型容器应该放置在外部较大空地,并在近处设置消防水阀。 (三)操作隐患,存放酒精处,杜绝明火,严禁吸烟,另外绝缘静电,所有与电和火有关的操作都需要谨慎。

酒精所致精神障碍

酒精所致精神障碍患者的护理 查房内容:酒精所致精神障碍的护理 参加人员:精神一科、精神三科全体护士 查房时间:2013年03月08日 主查人:总责任护士 查房的目的:探讨酒精所致精神障碍患者有效的护理措施,缩短患者戒断症状的痛苦时限和住院时间。 A护士:介绍患者的病史 患者,男性,51岁职业:个体户患者因“大量饮酒30年,多疑,冲动毁物20余年加重五天”首次由其妻子陪伴步行入院。患者于20岁左右开始饮白酒,每天三至四两,酒量渐增,现每日大约一斤左右白酒,酒后脾气暴躁,目前患者疑妻子与他人有染,认为他人讲话都在讲他,并觉得周围人对其不怀好意,患者常对妻子讲有人要害他,觉得有人跟踪他,时有冲动、伤人的行为。同时记忆能力明显下降,整夜不眠,饮食每餐约一两,家人觉得难以管理,在“110”协助下于x 年x月x日送来我院。患者入院后吵闹要求回家,否认有病。既往史:痛风、腔梗。个人史、家族史:无特殊。入院诊断:酒精所致精神障碍 体格检查:无异常 主要治疗:氟哌啶醇针剂10mg肌注 2次/日;欧兰宁口服药;饮白酒二两 2次/日 B护士:分析该患者出现的精神症状及判定依据? 一、认知障碍:1.妄想:关系妄想、被害妄想、嫉妒妄想 关系妄想:认为他人讲话都在讲他,并觉得周围人对其不怀好意 被害妄想:患者常对妻子讲有人要害他,觉得有人跟踪 他 嫉妒妄想:怀疑妻子与人有染 2.自知力:缺如,否认有病,患者入院后吵闹着要求回家,否认有病情感障碍:情绪不稳、易激惹 行为障碍:时有冲动、伤人的行为

C护士:该患者病情观察包括哪些方面? 一、精神症状的观察: 1.认知障碍 2.情感障碍 3.行为障碍 4.智能障碍 患者躯体症状的观察 1.脑梗塞 2.痛风 3.并发症:高热、感染或衰竭、痴呆 戒断症状的观察: 停止饮酒8~24小时后可出现戒断症状,表现为手、舌和眼险的震颤、激越、静坐不能、恶心、呕吐、心动过速、血压升高、大汗、软弱无力、心境抑郁或易激惹、焦虑、发脾气,坐立不安、感知异常、幻觉等。在一定时间内,随着停酒时间的延长,戒断症状会逐渐加重,再次饮酒后戒断症状消失。该患者出现的戒断症状有:头晕、头痛、呕吐、口眼歪斜、吞咽困难、双手震颤、焦虑。 精神药物不良反应 1.氟哌啶醇针剂肌注易出现锥体外系不良反应:震颤麻痹综合征,急性肌张力障碍,静坐不能,迟发性运动障碍, 2.欧兰宁主要不良反应:食欲增加、体重增加、高血糖、糖尿病、嗜睡、眩晕、口干和便秘等。 D护士:患者存在的、潜在的护理问题与护理措施 护理诊断: 1.潜在的冲动伤人毁物行为—与妄想有关 2.潜在的出走—与否认有病有关 3.戒断症状—与停饮酒有关 4.营养摄入低于机体需要量—与饮酒后饮食量少有关 5..睡眠型态紊乱—与精神症状有关 6.跌倒—与饮酒有关 7.知识缺乏—与知识水平有关 8.潜在并发症—与原有疾病和饮酒有关 护理措施: 安全护理 1.稳定患者情绪,提供安静无危险品的病室环境; 2.评估患者的心理需求,及时满足其合理要求; 3.鼓励、指导患者以适当的方式表达和宣泄情感,分散患者的注意力; 4.与易激惹及冲动的患者分开安置,加强病区巡视工作; 5.观察病情,了解患者冲动的相关因素,当患者发生冲动时及时制止、隔离或必要时 遵医嘱给予保护约束;

酒精中转安全管理制度示范文本

酒精中转安全管理制度示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

酒精中转安全管理制度示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、酒精的存储 1、用金属容器装运酒精,不能用塑料桶等易引起静电 的容器装运酒精。 2、存放于阴凉、通风仓间内,仓内温度不宜超过 30℃,防止阳光直射。 3、储存间内的照明、通风等设施应采用防爆型,开关 设在仓外。 4、储存仓配备相应品种和数量的消防器材。 5、桶装堆垛不可过大,应留墙距、顶距、柱距及必要 的防火检查走道。 6、罐储时要有防火防爆技术措施,露天储罐夏季要有 降温措施。

7、灌装时应注意流速(不超过3m/s),且有接地装置,防止静电积聚。 8、应与氧化剂、酸类、碱金属、胺类等分开存放,切忌混储。 二、酒精的使用管理 1、中转间负责人要经常对员工进行安全教育,详细指导监督,讲授安全操作方法,并采取必要的安全措施。 2、中转间员工必须严格按操作规程操作,戴防护口罩、手套、眼罩,严禁将酒精等危险物品随意带出室外。使用完酒精等危险物品空容器、废油布、废弃溶液残渣必须妥善处理,严禁未经处理就随便乱倒,防止火灾事故的发生和污染环境。 3、搬运酒精应做到小心谨慎,严防震动、撞击、摩擦和倾倒。 4、加强通风,远离火种和热源。

酒精所致精神障碍的临床表现

酒精伴发的精神障碍的临床表现 酒精伴发的精神障碍由饮酒引起,可在一次饮酒后发生,也可由长期饮酒成瘾后逐渐出现或突然停饮后急剧产生症状。精神障碍的表现各种各样,往往伴有躯体症状,酗酒与许多问题密切相关,如慢性酒精中毒与高离婚率、分居率;酒与暴力犯罪等等。因此,酒精所引发的问题越来越为人重视。 酒精中毒可分急性中毒和慢性中毒两大类。 (1)急性酒精中毒:急性酒精中毒又分为普通醉酒和异常醉酒。后者包括复杂性醉酒及病理性醉酒。 ①普通醉酒又称单纯性醉酒。为1 次过量饮酒后出现的中毒状态。绝大多数醉酒状态属此种情况,系酒精直接作用于中枢神经系统所致。症状的轻重与血液中酒精的含量和代谢的速度密切相关。兴奋期由饮酒开始逐渐发生,由于抑制控制功能的削弱多出现情绪兴奋,无论主观或客观几乎都无疲劳状。患者欣快,话多,对熟人更加融洽,对陌生人也无拘无束,表情满意,精力充沛和幸福感。同时伴有心率加快,面潮红,呼吸急促及各种反射亢进。此时意识无改变,某些社交饮酒者几乎到此微醉即结束。这种微醉不影响社会功能。有的学者认为只微醉状态不属于普通醉酒。典型普通醉酒是由麻痹期开始,麻痹期开始后患者意识逐渐进入混浊状态,思维进一步脱抑制,兴奋明显,欣快并联想加快。还可出现知觉、表象与情感相结合的类情感高涨。患者无忧无虑,易于激惹和情绪不稳,自我中心,有神秘的夸大体验,说话声大,态度傲慢。 ②异常醉酒(abnormal alcoholic intoxication)又称病理性醉酒(pathological drunkenness)。系酒精引起的特异质反应。多见于对酒精耐受性很低的人,往往在 1 次少量饮酒后突然醉酒,并出现严重的意识障碍(如朦胧和谵妄),同时有紧张恐惧,或惊恐、极度兴奋或有攻击行为;并可有错觉、幻觉及片段妄想(被害妄想多见)。和被害妄想以及痉挛发作,由于患者不能对现实环境中的事物正确判断,常发生暴力行为。无口齿不清、共济失调等麻痹症状。一般发作持续数十分钟至数小时,是非常强烈而持续长久的精神兴奋和高级精神活动突发的严重障碍,常以深睡结束发作,醒后对发作经过不能回忆。少数的情况下也可发生各种醉酒的不同阶段。普通醉酒和复杂性醉酒都保持程度不同的定向力,而病理性醉酒一旦发生的同时定向力丧失。因而不能通过对现实的感知来判断自己与外界的关系,其行为盲目,不现实和幻想性,出现全面的错误感知,或行为由幻觉、妄想所支配。由当时环境,客观现实及对旁观者来说都不可理解。行为无目的性,无动机的指向他周围的事或人,故认为与普通醉酒状态相比是质的异常。 病理性醉酒急剧发生,一般持续时间不长,通常数十分到数小时,最后多都陷入酣睡即所谓麻醉样的睡眠,遗留完全性遗忘或岛性记忆。发生病理性醉酒常有脑炎,脑外伤等病理基础和精神创伤等诱因。 (2)慢性酒精中毒性精神障碍: A.酒精中毒性幻觉症:是长期饮酒引起的幻觉状态。大多数病人在酒依赖状态下,习惯性持续饮酒后或突然停饮或显著减少饮酒量后24~48h 之内发生,也可在饮酒的情况下出现的以幻觉为主要症状的精神病状态。其幻觉以幻听为主,也可有幻视常为原始性或各种小动物幻视。幻听内容大多对病人不利,常表现为原始性幻听或内容充满不愉快和敌意的幻听。在幻觉的基础上可产生嫉妒妄想或被害妄想,因而有相应的情感反应和冲动行为,常伴有表现恐惧或出现攻击行为。幻觉多在晚上加重,一般持续数天、数周或数月,一般不超过6 个月。不包括醉酒状态下由于意识状态的改变所产生的错觉、幻觉或妄想。 B.痉挛发作:是指严重酒精中毒患者在急剧中断饮酒或大量饮酒等情况下出现的痉挛大发作,也称之酒精性癫痫。其发生是由于严重躯体依赖,断酒后血中酒精浓度急剧发生变化,

(完整版)酒精使用管理制度

乙醇(酒精)安全储存及使用管理制度 一、乙醇(酒精)的储存 ⑴存放区域保持通风,温度﹤30℃,远离火种、热源,严禁明火。 ⑵区域内配备二氧化碳灭火器。 ⑶区域内的电气配置必须是防爆型,包括照明插座及通风设施等。 ⑷应与氧化剂、酸类、碱金属、胺类等分开存放,切忌混储。 ⑸储存区域要有防静电设施。 二、乙醇(酒精)的罐取分装操作 ⑴酒精库房内密闭操作,全面通风。 ⑵操作人员必须经过专门培训,严格遵守操作规程。 ⑶灌装时应控制流速,且有接地装置,防止静电积聚。 ⑷禁止使用易产生火花的机械设备和工具。 ⑸罐取时注意酒精控制泄漏,如发生泄漏应尽快用布吸拭干净。 ⑹罐取完毕后,应将关紧阀门、盖好拧紧桶盖,防止酒精蒸发。 三、散装乙醇(酒精)的管理 ⑴各部门指定安全区域放置。 ⑵每班指定专人负责管理及罐装操作,其他未经培训人员不得随意罐取使用。 ⑶存放在无人员区域时,应定时巡视察看,发现问题及时报告并采取应急措施。 ⑷存放区域辐射10米内不得进行焊接、切割等明火作业。

四、应急措施 ⑴.小量泄漏:用碎步、砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。 ⑵.大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低汽化蒸发灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 ⑶.发生起火时: ①迅速疏散泄漏污染区人员至安全区,并进行隔离严格限制出入; ②切断火源,迅速移走附近可燃物品; ③应急处理人员配戴好自给正压式呼吸器,穿防静电工作服,尽可能切断泄漏源;防止流入下水道、排洪沟等限制性空间。 ④采用湿布、二氧化碳灭火器进行灭火。 ⑤酒精桶起火且泄漏量较少时可使用消防水带对铁桶表面进行降温,防止发生爆炸。 ⑥如火势无法控制,要及时报警求救。

酒精所致精神障碍的治疗

酒精所致精神障碍的治疗 酒精戒断综合症为酒精依赖患者在其未次饮酒后6-24小时内产生的一系列典型的征候群。通常发生于因为其它疾病而强行戒酒,或由于发生与酒精有关的其它疾病而自愿放弃饮酒的患者中。在西方国家中很常见。据调查:美国具有酒精滥用史或产生酒精依赖性者占14%,而且这一部分人有一半的伴有酒精戒断综合症症状。多数情况下酒精戒断症状不需要药物治疗,而且在停止饮酒后2-7天内症状会自然消失,但对于严重的患者,需要给予适当的药物治疗,并且需要在医生的监护下进行戒酒。 酒精所致精神障碍的治疗一般分为监督治疗和药物治疗。监督治疗主要包括:1.院外监督:许多中度AWS病人可以安全、成功、经济地在家中戒酒。国外,通常有一名巡回护士对病人进行监督,发放一些镇静剂,必要时可请医生指导。国内则可定期地到医院就诊。2.戒毒所内监督和医院监督戒酒:主要具有严重AWS症状者、院外病人戒酒失败者、与其它严重嗜酒者住在一起者和少数出现谵妄和癫痫发作的患者。 对于酒精所致精神障碍的治疗首先要克服来自病人的“否认”,取得病人的合作。其次,要积极治疗原发病和合并症,如人格障碍、焦虑障碍、抑郁障碍、分裂症样症状等。还要注意加强病人营养,补充机体所需的蛋白质、维生素、矿物质、脂肪酸等物质。住院戒酒治疗时,要杜绝一切酒的来源以保证戒酒成功。下面是住院治疗采用药物治疗的具体实施措施。(一)、戒断症状的治疗 1. 单纯戒断症状药物戒酒即给患者口服一种与酒精具有交叉耐药性但作用持续时间较长 的镇静药物,从而减轻AWS的症状。人们普遍认为苯二氮类药物为一线的AWS治疗药,它们与酒精具有交叉耐药性,且具有抗惊厥的特性,对控制AWS症状及防止许多并发症的发作比其它类型的镇静药物更有效。戒酒治疗一般采用负荷剂量方案给药或按递减给药方案给药。采用递减方案即首次要足量,不要缓慢加药,这样不仅可抑制戒断症状,而且还能预防可能发生的震颤谵妄、戒断性癫痫发作。以地西泮为例,剂量一般为10mg/次,3 次/日,首次剂量可更大些,口服即可,2~3日后逐渐减量,不必加用抗精神病药物。由于酒依赖者有依赖的素质,所以应特别注意,用药时间不宜太长,以免发生对苯氮二类的依赖。如果在戒断后期有焦虑、睡眠障碍,可试用三环类抗抑郁药物。 2. 震颤谵妄在断酒后48小时后出现,72~96小时达到极期,其它脑、代谢、内分泌问题也可出现谵妄,应予鉴别。 一般注意事项: 发生谵妄者,多有兴奋不安,需要有安静的环境,光线不宜太强。如有明显的意识障碍、行为紊乱、恐怖性幻觉、错觉,需要有人看护,以免发生意外。如有大汗淋漓、震颤,可能有体温调节问题,应注意保温。同时,由于机体处于应激状态、免疫功能受损,易致感染,应注意预防各种感染、特别是肺部感染。 镇静: 苯二氮类应为首选,地西泮一次10mg,2~3次/日,如果口服困难应选择注射途径。根据病人的兴奋、自主神经症状调整剂量,必要时可静脉滴注,采用负荷剂量方案即每个患者每1-2小时接受安定20mg,直到患者处于安静状态后停药。一般持续一周,直到谵妄消失为止。递减给药方案即每4-6小时给患者安定5-10mg共1-3天,然后在随后的4-7天内逐渐减少剂量。 控制精神症状: 可选用氟哌啶醇,5mg/次,1~3次/日,肌肉注射,根据病人的反应增减剂量。其它:包括纠正水、电解质和酸碱平衡紊乱、补充大剂量维生素等。 3. 酒精性幻觉症、妄想症大部分的戒断性幻觉、妄想症状持续时间不长,用抗精神病药物治疗有效,可选用氟哌啶醇或奋乃静口服或注射,剂量不宜太大,在幻觉、妄想控制后可考虑逐渐减药,不需象治疗精神分裂症那样长期维持用药。 4. 酒精性癫痫不常见,可选用丙戊酸类或苯巴比妥类药物,原有癫痫史的病人,在戒断初

酒精库安全管理制度(试行)

QB 四川烟草工业有限责任公司成都分厂企业标准 QB/CYSC G HJ104-2011 酒精库安全管理制度(试行) 2011-01-01发布 2011-01-01实施四川烟草工业有限责任公司成都分厂发布

目次 目次 (01) 前言 (02) 文件修订状态 (02) 1范围 (03) 2规范性引用文件 (03) 3术语和定义 (03) 4职责 (03) 4.1卷烟制造部 (03) 4.2安全管理科 (03) 5安全控制要求 (03) 5.1人员管理要求 (03) 5.2防火防爆要求 (04) 5.3安全作业要求 (04) 6相关记录 (05) 7附录 (05) 《酒精库进出工作登记表》 (06) 附录A(规范性资料) 附录B(规范性资料)《酒精库巡视记录》 (07)

前言 本办法依据GB/T19001-2008 idt ISO9001:2008《质量管理体系要求》,参照GB/T15496-2003《企业标准体系要求》与GB/T1.1《标准化工作导则第1部分:标准的结构和编写》,结合工厂实际运作情况编制。 本标准是第一次发布,本标准自发布之日起执行。 本程序由四川烟草工业公司成都分厂提出。 本程序由安全管理科起草。 本程序由企业管理办公室归口。 本程序起草人:张辉 本程序审核人: 孔晓龙 本程序批准人: 甘忠德 文件修订状态

酒精库安全管理制度 1 目的和适用范围 本标准规定了工厂所属酒精库日常安全管理要求。 本标准适用于工厂所属酒精库的安全管理。 2 引用文件 QB/CYSC G HJ014-2011《危险化学品管理办法》 QB/CYSC G HJ029-2011《安全标识管理办法》 QB/CYSC G HJ015-2011《危险作业管理办法》 3 术语和定义 无 4 职责 4.1卷烟制造部:负责酒精库的安全管理。 4.2安全管理科:负责对酒精库安全管理进行监督检查。 5 安全控制要求 5.1人员管理要求 a)酒精库的专职管理人员和领用人员应经企业培训方可上岗。 b)酒精库应配备经过培训的兼职或专职的志愿消防队员。 5.2防火防爆要求 a)应在库房内醒目位置张贴防火、禁烟标识;库房内严禁随意动用明火,进行动火作业应办理动火申请手续,经审批后由卷烟制造部专职安全员或安全班长对现场安全防火措施进行确认,并指定现场监护人后方可进行动火作业;卸车时周边不允许动用明火,具体执行《安全标识管理办法》、《危险作业管理办法》。 b)由安全管理科负责在库房内配备与排风扇联动的酒精浓度检测仪,并使其保持在自动检测状态。 c)库房内电气设备开关箱应在库房外单独安装,并有防潮、防雨等保护措施,库房无人时

乙醇储存使用安全管理规定

乙醇储存、使用安全管理规定 乙醇的MSDS,安全使用和管理规定 原料质量规格要求(CMC,乙醇,硝酸,氢氧化钠) 乙醇运输、储存、消防、安全距离 厂房内通风、防爆 产品粒度检测、吸水速率检测 外包装形式、图案、商标 产品使用说明书 生产表单、存储表单、检验表单、合格证、 乙醇储存、使用安全管理规定无水乙醇俗名酒精,无色透明、易燃、易挥发有酒精气味和刺激性辛辣味液体。熔点 -114℃、沸点78.3℃,闪点12.8℃。高温能自燃,其蒸气与空气能形成爆炸性混合物,在使用和储存过程中应特别注意安全。因本公司乙醇储存量已达到重大危险源标准,各部门在储存和使用过程中加强管理,切实落实安全措施。一、乙醇应存放于阴凉、通风、干燥的场所,储存于专用储罐。罐顶搭棚或在温度高于35℃**降温。二、乙醇储罐区应设立有效高度避雷针和地下避雷网,并定期进行检验。三、乙醇储罐应设防静电措施,在法兰连接处应增设铜线连接,仓库管理人员应经常进行维护。四、乙醇储罐顶部应安装阻火透气帽。密闭其它接口以防吸湿受潮影响乙醇质量。五、乙醇输送泵应使用防爆电机,使用防爆按钮、照明电器使用防爆灯。六、乙醇储罐周围应设立不燃性阻火堤预防储罐出现意外泄漏。七、公司所使用的乙醇应委托有危险化学品运输质资的单位负责运输。运输车辆、司机、押运人员应具备危险化学品从业资质,有危险化学品从业资格证。八、乙醇储罐区应设立安全警戒线和醒目的警示标牌。九、储罐区严禁烟火,禁止闲杂人员进入,设立消防设施(消防栓、灭火器、消防沙等)。十、乙醇储罐车到达卸货地点后,首先将接地线接到该车裸露无油柒部位消除该车积余静电,在卸货过程中始保持接地,直至卸完全部货物,停泵运转后方可取下接地线。十一、通知化验室取样,经检验合格接到卸货通知后方可连接进料管启动打料泵将乙醇输送进入储罐。乙醇卸货过程中仓库应始终有人值守。十二、乙醇在卸货前应先检查储罐的液位,在卸货中要不断观察液位的变化,不能让乙醇逸出储罐,引起意外事故发生。乙醇输送完成后及时清理场地。十三、乙醇在使用过程中,仓库每天都要进行登记核实,做到出入无差错,帐物相符。十四、车间在使用乙醇前,先检查管道和阀门的关闲情况,确认使用正确无误后,方可启动乙醇输送泵将乙醇输入计量槽。严禁先启动泵后开阀门。绝对禁止关闲乙醇输送泵出口阀门而长时间运转乙醇输送泵。十五、车间在使用乙醇时要控制加料速度,不能加料过快,否则会引起飞速升温而出现冲料等意外事帮发生。十六、车间使用乙醇要进行登记,每天将使用 量及时上报供应部门和仓库,做到有计划库存,保证充足供应。 乙醇【中文名】乙醇【英文名】Ethyl alcohol, ethanol 【CA登录号】64-17-5 【分子式】C2H6O 【分子量】46.07 【化学结构式】C2H5OH 【外观】无色流动性液体,具有愉快的酒香,具有灼烧感,【物化常数】熔点-114.1℃沸点:78.3℃,蒸气压59.3 mmHg/25℃,相对密

酒依赖与酒精性精神障碍

酒依赖与酒精性精神障碍 北京回龙观医院 南振国 第一节概述 一.患病率 饮酒是一种生活现象,据考古发现我国酿酒和饮酒至少有五千年历史。随着饮酒人群的不断增加及对饮酒危害性的逐渐认识,如今饮酒已成为世界各国关注的重要的公共卫生问题。 一次大量饮酒会导致急性酒中毒;长期饮酒会产生酒依赖,以至发展为慢性酒中毒。 成年人口中,终生不饮酒者不足5% ,只在特定场合饮酒者(又称为社交饮酒者)约占80% ,大量饮酒(酒精滥用)者占10% ,真正酒依赖者占5%。然而任何程度的饮酒者都有发展为酒依赖的可能。 1982 年我国12 地区流调结果显示:酒依赖的时点患病率为0.184 ‰ ;1993 年以同样的方法,在同一地区再次调查发现,时点患病率已上升到0.68 ‰。1998 年郝伟等对全国 6 个地区进行饮酒调查发现84% 的男性和30% 的女性有饮酒行为,其中16%的男性和 2.5% 的女性每日饮酒(习惯性饮酒),酒依赖的时点患病率为 3.43%

大量饮酒(酒精滥用)及酒依赖者大多有如下社会人口学特征:男性为主;开始饮酒年龄较小;重体力劳动者居多;少数民族者多。近年来,行政、企业的高层管理人员的酒精滥用及酒依赖者有所上升。此外,性别、年龄、受教育年限、个性特征的不健全、经济状况、不良生活事件、吸烟等均为酒依赖的危险因素。二.酒依赖、酒中毒的形成过程 调查发现,酒依赖、酒中毒者大多有类似的发展过程。青少年期由于各种原因如过节、结婚喜庆、同学、朋友聚会或在家人的影响下偶尔小量饮酒。开始并不认为饮酒是件好事,所体验到的是口内辛辣、胃肠烧灼感、以及话多、头晕、脸红。随饮酒机会的增加,大部分人对酒的不适反应基本消失或已能耐受,感到饮酒可使心情愉快、缓解紧张,易于社交或经济活动,此时饮酒量及饮酒频率增加。如面红耳赤等反应较为严重,部分人会认为不胜酒力或被告知不能饮酒时会自觉不自觉地控制饮酒量,减少饮酒机会,这部分人往往很少发展为习惯性饮酒者。大部分无特殊反应者渐渐形成习惯,每日小饮,称为习惯性饮酒者(habiturtion)。习惯性饮酒者如每日仅饮1-2 两白酒的话,既使喝它几十年,对身体健康也不会有多大损害。 国外学者认为,成年男性每日饮酒不超过 4 个酒单位(1 酒单位=14 克纯酒精;亦称为标准杯),女性每日饮酒不超过 2 个酒单位是正常饮酒范围,超过此界限视为酒精滥用。大部分的习惯性饮酒者超过此量,实为酒精滥用者。由于对酒的耐受性增加,酒对躯体的作用逐渐减弱,在各种社会心理因素的作用下促使部分习惯性饮酒者饮量大增,以至豪饮。此阶段常被称为无节制饮酒期,此期维持时间不长,由于长期大量饮酒,酒对大脑的损害作用日益明显,对酒的耐受性下降,演变为每日数饮,不饮则出现疲乏无力、纳差、失眠、出汗、口齿不清、手抖,及焦虑不安、注意力不集中等

酒精测试仪使用管理制度

酒精测试仪使用管理制度 一、酒精测试仪使用方法 1、按下开关键等待15秒后变为000后可以对职工进行检测。 2、对职工检测时,职工口与吹嘴间隔2-3厘米并对准吹气口连续吹气,仪器发出“叮”的声响后停止吹气。 3、检测完毕后3-5秒显示器上显示数据,表明检测成功(除0.00以外的数据显示时,不合格灯及待机灯会闪烁,并发出警报)。 4、需要连续检测时,按重置键后,按照上述2-3步骤进行检测。 二、酒精测试仪检测管理规定 1、1号门卫警员可在职工上、下班时对职工进行集体检测或抽查。 2、巡逻人员在对生产区域进行检查时可对在岗工人进行抽查。 3、我部门警员有权对公司职工进行酒精测试,测试时需要对职工礼貌用语,当遇到不配合的职工时,立即向部门领导上报,如职工无理取闹对其处以50元罚款。 4、公司职工有义务配合安全保卫部警员进行酒精测试,凡遇到警员不礼貌用语或其他伤害职工自身行为时,保卫部对该警员处以50元罚款。 三、酒后上岗、在岗工作中饮酒处罚规定 1、职工酒后上岗被1号门警员当场查获,勒令其禁止上岗工作,当天按旷工处理。

2、在岗期间疑似饮酒的职工,经检测血液中酒精浓度为:大于或等于20mg/100ml小于80mg/100ml属于酒后上岗,给予其待岗一个月处罚,待岗期间发放最低生活费。血液中酒精浓度为:大于或等于80mg/100ml属于醉酒上岗,给予解除劳动合同处罚。 3、在岗期间正在饮酒的职工,当场被抓获或被举报的查明情况属实的,给予解除劳动合同处罚。 4、岗前饮酒职工上班时规避门卫检查,在岗工作期间被巡逻队查获,视为在岗期间饮酒,处罚情况参照第2条、第3条。 5、外来人员在施工前或施工中饮酒,直接清除出厂区,并对其施工单位处罚500元罚款。 四、酒精测试日常使用管理规定 1、定期对酒精测试仪进行清理,避免因灰尘等物影响酒精测试仪的使用寿命及精密性。 2、禁止将酒精测试仪携带出厂,违者送交综合办公室待岗,安全保卫部永不录用。 3、禁止携带酒精测试仪长时间停留在环境恶略的工作场所,如有违反并造成酒精测试仪损坏,除按价赔偿外罚款50元。 4、故意损坏酒精测试仪的人员,除按价赔偿外罚款100元。 5、交接班时酒精测试仪携带人应当当面对酒精测试仪进行开关机检查,检查无误后交由下班使用。如交接不清损坏的酒精测试仪由当班持有人进行赔偿。 安全保卫部2014年9月28日

酒精使用储存管理要求

酒精管理要求 一、储存要求 1.各单位库房放置的需要在专用场地,划定区域,保持通风、遮光、温度<30℃,远离火种、热源,严禁明火,旁边放置沙箱或灭火器以便于洒落时处置。 2.酒精存放库房应符合有关安全、防火规定,设置相应的通风、防火、防雷、灭火、防晒、消除静电等安全措施,配备干粉灭火器,注意防范远离堆起的易起静电物品,远离插座、开关、灯具等电器设备,远离其他易燃易爆品。 3.酒精放置库房时应与其他危险化学品分项存放,堆垛之间的主要通道应当有安全距离,学校根据本单位工作需要,不得超量存储。 4.搬运酒精时应做到小心谨慎,严防震动、撞击、摩擦和倾倒。 5.存储酒精的仓库严禁吸烟和使用明火,严禁带火柴、打火机及穿钉子鞋和能产生静电的服装。 6.领用酒精应做好记录,内容包括领用人、单位、剂量等。 二、使用 1.对使用酒精危险品的人员,各单位应加强安全教育和安全操作方法的指导。 2.使用酒精的操作人员应掌握安全使用办法。

3.搬运酒精等危险物品应做到小心谨慎,严防震动、撞击、磨擦和倾倒。 4.存放区域辐射10米内不得进行焊接、切割等明火作业。 5.各单位购进酒精等化学危险品时,必须核对包装(或容器)上的安全标签,安全标签若脱落或损坏,检查确认后应补贴。 7.各办公区域使用酒精时按照最小量存放,放置于通风良好,遮光、温度﹤30℃,远离火种、热源,严禁明火等位置,该位置最近位置上应有醒目的防火、易燃烧标识,每次使用完后检查封闭情况。 8.工作场所禁止存放大量酒精,应随用随领。 9.分装要求:单位指定专人负责管理及罐装操作,其他人员不得随意罐取使用。工作场所使用酒精时应有专人经培训指导合格后进行分装取用,分装地点应满足存放要求(保持通风,温度﹤30℃,远离火种、热源,严禁明火,旁边放置沙箱以便于洒落时处置),先消除自身静电,取用容器应满足遮光,能耐良好封闭,盛放量不得高于整个体积30%,本身有安全标签,灌装后封闭好桶、瓶的盖子,有洒落在地的酒精时使用沙土遮盖。 10.分装后使用要求:指定安全区域放置,盛装容器应贴有醒目的“75%酒精,易燃物品,禁止喷雾使用,远离火源”

酒精使用管理制度

酒精使用管理制度 为了加强压滤浓缩车间酒精的管理,坚决杜绝火灾、爆炸等潜在事故的发生,现特制定酒精存放和使用管理规定如下: 一、酒精的储存 1、用金属容器装运酒精,不能用塑料桶等易引起静电的容器装运酒精。 2、应与氧化剂、酸类、碱金属、胺类等分开存放,切忌混储。 二、酒精的使用管理 1、车间负责人要经常对员工进行安全教育,详细指导监督,讲授安全操作方法,并采取必要的安全措施。 2、车间员工必须严格按操作规程操作,戴防护口罩、手套,严禁将酒精等危险物品随意带出室外。使用完酒精等危险物品空容器、废油布、废弃溶液残渣必须妥善处理,严禁未经处理就随便乱倒,防止火灾事故的发生和污染环境。 3、搬运酒精应做到小心谨慎,严防震动、撞击、磨擦和倾倒。 4、加强通风,远离火种和热源。 5、车间内严禁烟火。 6、严禁在作业现场穿、脱、拍打化纤服装;禁止穿带钉鞋进入车间。 7、严禁使用手机,对讲机,照相机等工具。 8、严禁在生产过程中使用焊机,敲击铁器等易产生火花的检修。 9、车间设置明显的安全警示标志,配备足够的消防器材,定期检查灭火器是否有效。

10、进入车间前要先触摸人体静电释放球,释放人体静电。 11、严禁无关人员进入车间,参观人员必须做到安全须知后,方可进入。 12、车间电气配置必须是防爆型,包括照明插座及通风设施等。禁止使用易产生火花的机械设备和工具。 三、酒精引起的事故及处理应急措施 1、皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 2、眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 3、吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 4、泄露: ⑴.小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。 ⑵.大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低汽化蒸发灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 5、起火: ①迅速疏散泄漏污染区人员至安全区,并进行隔离严格限制出入; ②切断火源,迅速移走附近可燃物品; ③应急处理人员配戴好自给正压式呼吸器,穿防静电工作服,尽可能切断泄漏源;防止流入下水道、排洪沟等限制性空间。 ④车间内可使用ABC、CO2 灭火器进行灭火,也可用湿毛巾、湿衣物

酒精所致精神障碍的临床症状及护理对策刘寰

基层医学论坛2013年1月第17卷第3期 作者简介:刘寰,女,本科,护师。E-mail:Liuhuan82918@https://www.360docs.net/doc/372001270.html, 酒精所致精神障碍的 临床症状及护理对策 刘 寰 (太原市精神病医院,山西太原030045) 酒精是亲神经物质,被吸收后广泛分布到身体的各器官系统,中枢神经是最敏感的器官,心血管系统、胃肠道、肝脏也会受到明显影响。近年来,随着我国经济的发展,酒生产量及人均消耗量有明显的增加,由于饮酒造成的各种危害、酒精依赖住院率也随之增加[1]。下面以2009年2月—2010年2月我科收治的18例因酒精所致的精神障碍患者为例,将酒精所致精神障碍的临床表现及护理对策总结如下。 1 临床资料 1.1一般资料选择2010年2月—2011年2月我科收治酒精所致精神障碍患者18例,年龄32岁 ̄58岁,平均44.2岁。其中,急性酒精中毒10例,慢性酒精中毒8例。 1.2 临床分类 急性酒精中毒分为单纯性醉酒、病理性 醉酒、复杂性醉酒。慢性酒精中毒分为酒依赖、戒断综合征、酒中毒性幻觉症、酒中毒性妄想症、酒中毒性脑病[2]。 2 临床症状 18例患者中有10例为急性酒精中毒病例,且10例也属于单纯性醉酒,即由一次大量饮酒而引起的急性中毒。由于个体差异及饮酒量的不同,他们有的表现为情绪极其不稳,言语紊乱,甚至出现嗜睡等症状,生命体征检查可伴有心率增快至130次/min,呼吸26次/min,血压98/70mmHg;有的患者则出现呕吐、意识不清等症状。其余8例均属于慢性酒精中毒中的酒依赖酒中毒性幻觉症、酒中毒性妄想症病例。酒精依赖是由于长期反复饮酒所致的对酒渴求的一种特殊心理状态,患者表现无法控制对酒精的渴求,频繁饮酒,饮酒量远远超出的本身负荷,当饮酒量减少时,即出现手、足、四肢震颤,如若再次饮酒,以上症状便消失,由此引发患者不自主反复饮酒。在入住我科初期,此类患者反复、强烈要求医护人员为其提供酒精,表现出对酒精的强烈依赖。酒中毒性幻觉症患者临床表现为凭空闻声,多听到别人辱骂自己,本病例中患者陈述:听到有人骂他“变态”,认为他无能,声称他是一个无用之人,活着是在给社会增加负担等等一系列责骂声,令患者焦虑、情绪低落,此症状最长曾持续3周。酒精中毒性妄想症,我们所收治的1例患者意识清晰,但时常出现被害妄想,如“被人监视,饭菜有毒”,将护 理人员所发放的物品扔掉或出现藏匿行为,几乎不与病友交往,认为他们是间谍。由于长时间的精神症状的出现,患者出现营养不良,极度消瘦,水电解质紊乱等身体损害。 3护理对策3.1基础护理3.1.1 关于饮食 酒精所致的精神障碍患者大多数食欲 下降或有厌食行为,因此造成了营养不良,躯体功能障碍或合并感染。作为护理人员,我们应针对个体差异为患者制订详细适宜的护理计划,如给患者提供易消化、营养丰富的饮食,注意水分的摄入;对于体弱、有躯体疾患不便进食者,应给予喂食;对于有被害妄想,疑心饭菜有毒者,可让其任意挑选饭菜,或由他人尝试,或与他人交换食物,适当满足要求,以解除疑虑,促进食欲;对于吞咽困难,不能进食者,及时给予鼻饲饮食或静脉补充营养物质,保证营养代谢的需要,在条件允许的情况下,尽量为患者创造整洁、舒适的进食环境,提供充足的进餐时间,让患者细嚼慢咽,防止噎食,护士每餐观察进食情况,保证营养物质的摄取。 3.1.2 关于睡眠 对于这一类患者往往伴有失眠、起夜, 睡眠质量差异或昼夜节律颠倒的现象,如果不及时纠正,患者的注意力就会集中在不适的躯体上,诱发患者对酒精的渴求。因此,要根据个人情况合理用药,除此之外,为患者建立规律的作息时间,白天鼓励患者参加各种工娱活动,尽量减少卧床时间;改善晚上睡眠环境,要保持安静、舒适,光线适中,及时为患者添减衣物,防止着凉。指导患者睡前不宜剧烈运动,过度兴奋,或其他刺激,可为患者放一些轻柔的音乐以助其入睡。夜间护士仔细巡视病房,观察患者睡眠情况,记录患者睡眠时间,及时反馈医生以作调整,保证有效睡眠。 3.2 安全护理 对于不同酒精所致精神障碍的患者,我 们应将其安置于不同病室,且须以平静、同情的态度对其介绍住院环境,尽量减少危险因素。例如,对于有错觉、幻觉的患者,我们要与患者建立良好的护患关系,了解患者幻听和妄想的种类及内容,耐心倾听,不与患者争辩,及时处理异常情况。对于有强烈酒精依赖的患者及时了解其心理动态,如是否有外逃行为,将此类患者安置在视线可及的范围内,定时巡视。最后,严密观察酒精中毒患者的体征、脉搏、呼吸、血压的变化以及意识状态等,如有异常情况及时报告医生,出现酒精依赖狂躁患者,可遵医嘱行保护措施,并做好生活护理。 3.3心理护理精神所致精神障碍者可出现各种心理反应,如焦虑、恐惧、易激惹、消极心理等。在心理护理的过程中应建立良好的护患关系,尊重但不迁就患者,给予心理支持,使其能配合治疗和护理,建立相互信任的治疗性人际关系。以亲切的态度告知患者酒精所致精神障碍的病因、临床表现及有效的治疗护理措施,使其解除紧张情绪。鼓励患者参加工娱活动,通过唱歌、跳舞、看电视、打球等一系列活动转移对酒精的渴求心理。还可以细心为患者讲解酒精成瘾对个人、家庭、社会的危害,利用别人戒除的成功经验鼓励患者树立信心战胜酒精的依赖心理。 3.4 健康教育 ①教会患者和家属有关酒精所致精神障 碍的基础知识,使其认识到反复饮酒的危害。宣传文明饮酒,不 经验交流 405

相关文档
最新文档