选修第3课空间向量的共线与共面

选修第3课空间向量的共线与共面
选修第3课空间向量的共线与共面

高考直通车·2014届高考数学一轮复习备课手册

选修第3讲 空间向量的共线与共面

一、教学目标

1.理解共线向量、共面向量等概念;理解空间向量共线、共面的充要条件及坐标表示。 2.了解空间向量的基本定理及其意义;熟练使用空间向量垂直的充要条件及坐标表示。

二、基础知识回顾与梳理

1.下列说明正确的是 .

(1).在平面内共线的向量在空间不一定共线;(2).在空间共线的向量在平面内不一定共线; (3).在平面内共线的向量在空间一定不共线;(4).在空间共线的向量在平面内一定共线.

【教学建议】本题主要是帮助学生复习、理解向量共线与直线共线的区别,在平面内共线的向量在空间一定共线,根据向量的平移性,在空间共线的向量在平面上一定共线.

教学时,教师要向学生讲清共线向量不一定在一条线上,平行向量不一定就是真平行,也可以是在一条线

上。因此若证明两条直线平行时先有:a b λ=

时还需要说明直线a 与b 还不在一条直线上.

2.下列说法正确的是 . (1).平面内的任意两个向量都共线;(2).空间的任意三个向量都不共面; (3).空间的任意两个向量都共面;(4).空间的任意三个向量都共面

【教学建议】本题主要是帮助学生复习、理解向量共面与直线共面的区别,空间任两个向量可以通过平移的方式使它们共面,但任意三个向量不一定共面.

3.对于空间任意一点O ,下列命题正确的是 .

(1).若OP OA t AB =+ ,则P 、A 、B 共线;(2).若3OP OA AB =+

,则P 是AB 的中点;

(3).若OP OA t AB =- ,则P 、A 、B 不共线;(4).若OP OA AB =-+

,则P 、A 、B 共线. 【教学建议】对于三点共线的处理,要求能够根据条件找出.

4、已知,,A B C 三点不共线,对平面外任一点,满足条件122555

OP OA OB OC =++

试判断:点P 与,,A B C 是否一定共面?

分析:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.

证明ABCD 四点共面(注:要有公共点)形式为:存在实数,x y ,使得:AD xAB y AC =+

(公共点A );

或者存在实数,x y ,对空间任一点O ,有OA OB xBC yBD =++

;或存在实数,,x y z ,对空间任一点O ,(1)OA xOB yOC zOD x y z =++++=

变式:在下列条件中,使M 与A ,B ,C 一定共面的是 (填序号)

①2DM OA OB OC =-- ; ②111532DM OA OB OC =++ ③0MA MB MC ++= ; ④0OM OA OB OC +++=

三、诊断练习

1、教学处理:诊断练习由学生课前完成,教师根据学生完成情况进行诊断分析,帮助学生进行知识点梳理,然后进行方法归纳,总结出空间向量平行和线面平行的向量法证明的有关理论知识和基本的证明步骤。

2、诊断练习点评 题1.给出下列命题

(1)、若a

与b 共线,a 与b

所在直线平行;

(2)、若向量a ,b

所在直线为异面直线,则向量a,b 一定不共面;

(3)、若三个向量a,b,c 两两共面,则向量a,b,c 共面; (4)、已知a,b,c 是空间的三个不共面的向量,则对于空间的任意一个向量p

,总存在实数x,y,z ,使得

p =xa+yb+zx .

【分析与点评】向量共线并不代表向量所在的直线就一定平行,直线异面并不代表对应的向量就异面,向

三个向量两两共面,但三个向量不一定共面,向量与平面平行,并不一定向量所在的直线就与平面平行.

题2.已知向量(1,0,2),(6,21,2)a b λλμ=+=-

,若//a b ,则λ与μ的值分别是 和 .

高考直通车·2014届高考数学一轮复习备课手册

B

【分析与点评】两个向量共线,可以利用共线的基本公式加以运算,//a b ,则a b λ=

,列出符合条件的

三个基本等式去求解λ和μ的值。当111222(,,),(,,)a x y z b x y z ==

(三个坐标中均无零值时)可以利用比

值进行简化计算.

题3.已知(2,1,3

),(1,4,2),(7a b c λ=-=--=

若,,a b c

三向量共面,则实数λ 等于

______________.

【分析与点评】只要c 能用,a b 线性表示,则共面.由c xa yb =+ 可解得65

7

λ=.

题4.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是

BD 上一点,3BE ED =,以{}

,,AB AC AD 为基底,则______.GE = 【分析与点评】GE 可用AG 和AE 表示,而AG 可用{},AB AC 为基底表示,AE

可用{}

,AB AD 为基底

表示。这实则是将空间向量转化为平面向量去处理。 答案:1131234

GE AB AC AD =--+

.

3、要点归纳

(1)强化平面向量共线与共面的基本定理的应用;

(2)注意用坐标法表示向量共线的应用,关键是公式的理解与应用; (3)注意向量的共线、共面与直线的共线、共面的区别. 四、范例导析

例1:已知非零向量12,e e 不共线,如果121212,28,33,AB e e AC e e AD e e =+=+=-

求证:A 、B 、C 、D 四点共面

【教学处理】本题先要引导学生复习平面向量的共面基本定理,关键是如何得处理三个已知向量 【引导分析与精讲建议】

本题先提问:如何去证明点共面?向量上如何处理?

再问:能否通过已知条件寻找到AB AC 与和AD

的等量关系?,能否直接看出它们的等量关系?不行,怎

么办?也就是AB xAC y AD =+

中x,y 如何确定?引导学生求解出其中的系数x,y 的值。

本题结束教师引导共同归纳:1、若存在不为零实数x,y ,使得AB xAC y AD =+

,则有A 、B 、C 、

D 四点共面

2、如果存在不为零的实数x ,y ,z ,使得0xa yb zc ++= ,则向量,,a b c

共面.

变式:下列命题中正确的有 .

(1)p xa yb =+? p 与a b 、共面;(2)p 与a b 、共面p xa yb ?=+

 ;

(3)MP xMA yMB P M A B =+? 、、、共面;(4)P M A B 、、、共面MP xMA yMB ?=+

例2:设(1,5,1),(2,3,5)a b =-=-

(1)、当

3)a b a b λ+-

()//(时,求λ的值; (2)当3a b a b λ-⊥+ ()()时,求λ的值.

【教学处理】本题是向量的坐标化运算,通过向量的坐标化去确定空间直角坐标系下向亘的关系:平行与

垂直,

【引导分析与精讲建议】

本题先让学生确定出两边向量的坐标表示,提问学生结果,当两向量表示出来后如何利用平行或垂直的关

系式?设c a b λ=+ ,3d a b =- ,先表示出:(2,53,5)c λλλ=-+-+ (7,4,16)d =--

,法1:c d ? //存在实数k R ∈,使得c kd = ,列出方程组:27534516k

k k

λλλ-=??

+=-??-+=-?

得13λ=- 法2:利用c d //即有:

(2,53,5)λλλ-+-+//(7,4,16)--,坐标中无0值时则有对应系数成比例,即有:

2

5357

416λλλ-+-+=

=

--,得1

3

λ=-. 对于第2小问直接用向量的数量积的坐标化公式即可,当然首先求出3a b -

和a b λ+ 坐标,本小题可让学

生板书完成,要求学生准确记忆公式和熟练运用公式!

例3:已知平行四边形ABCD ,从平面AC 外一点O 引向量

OE =kOA, ,OF =kOB OH =kOD

(1)求证:四点,,,E F G H 共面; (2)平面EG//平面.AC

【教学处理】本题是一个点共面和向量共线的证明问题,关键是 得用好平面向量的基本定理及相关的变形式子,找出基本关系式。 【引导分析与精讲建议】

本题第1小问是一个四点共面问题,教学中先提问能否通过条件 找到一个向中量用其它两个向量表示的关系式?如何表示?平行

四边形这一条件又如何使用?引导学生思考其中的某一个向量比如EG

它的表示式?它通过怎样的桥梁

和EF 与EH

建立关系?EG = OG OE - kOC kOA =- k AC = ()k AB AD =+

()k OB OA OD OA =-+-

EH EF OE OH OE OF +=-+-=,所以,,,E F G H 共面。当然也可以利用

,,,A B C D 四点共面作为条件,存在不全为零的实数,,x y z 使得:OA xOB yOC zOD =++ 而OE

kOA = ()

k xOB yOC zOD =++ xkOB ykOC zkOD =++ xOF xOG zOH =++ ,所以,,,E F G H

四点共面

注:以上两种证法就是证明三向量共面与证明四点共面的常用方法. (2)()EF OF OE k OB OA k AB =-=-=

,由(1)知AC k EG =,于是:AC EG AB EF //,//, 所以AC EG 平面平面//.

【备用题】已知在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,16AA =,Q 为1BB 的中点,M 在11A B 上,N 在11C D 上,且1,3,N ==11AM D 试问在1DD 上是否存在一点P ,使得//DQ 平面

PMN ?若存在,求出PD 的长,若不存在,说明理由。

【教学处理】本题是一个探究题,是否存在问题,可以假设存在,然后通过线与面平行转化成向量的关系利用待定系数的方法求解出PD 的长 【引导分析与精讲建议】

本题可以提问如何处存在性问题?如果存在符合条件的P 点使//DQ 平面PMN ,条件如何转化?设

PD t =,

即线面平行转化向量如何表示?即存非零实数,m n ,便得DQ mPM nPN =+ ,将1,,DA DC DD

看成一个基准向量(即一组基底)能否将上面DQ mPM nPN =+

等式两边均用基底向量表示?从而通过等式建立关系去求解待定系数,,t m n 值,从而确定出PD 的长度。本题也可以引导学生建立以D 为直角坐

标原点的空间直角坐标系,分别表示出DQ 和PM 及PN

,通过DQ mPM nPN =+ 利用坐标化进行运算去求解,,t m n 值,从而确定出PD 的长度

五、解题反思

1、向量的共线与共面要注意区别于直线的共线与共面,向量的共线不一定在一条直线上,向量的平行不一定两条直线平行。要突出空间向量与平面向量的转化和联系。

2、平面向量的基本定理及其相关推论的使用,要利用基本定理去证明四点共面(实质是三个向量共面问题)

3、直线与平面平行的证明方法主要是去求解直线对应的向量与平面中的两个向量能够建立一个线性关系

A

B

C

D O

E

F G

H

式,通过关系说明直线与平面平行

(宝应县范水高级中学盛兆兵曾东殷金俊)

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

向量法求空间角(高二数学-立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形, DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26 . (1)求侧面与底面所成的二面角的大小; D B A

(2)若E是的中点,求异面直线与所成角的正切值; (3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面 角的大小.

4.(本小题满分12分)如图,在四棱锥ABCD P-中,PD⊥底面ABCD,且底面ABCD为正方形,G , = =分别为 ,2 AD, F E PD ,的中点. PC, PD CB (1)求证:// AP平面EFG; (2)求平面GEF和平面DEF的夹角.

5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小.

(完整版)选修21空间向量知识点归纳总结

第三章空间向量与立体几何 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的 向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 空间向量的运算。 定义:与平面向量运算一 样,空间向量的加法、减法与数乘运算如下(如图)。 ⑵加法结合律:(a b ) c ⑶数乘分配律:(a b ) 3. 共线向量。 (1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作a 〃b 。 当我们说向量a 、b 共线(或a// b )时,表示a 、b 的有向线段所在的直线 可能是同一直线,也可能是平行直线。 (2) 共线向量定理:空间任意两个向量a 、b ( b 工0 ),a// b 存在实数入, 使a =入b 。 4. 共面向量 (1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。r r (2) 共面向量定理:如果两个向量a,b 不共线,P 与向量a,b 共面的条件是 存在实数x, y 使p xa yb 。 5. 空间向量基本定理:如果三个向量a,b,c 不共面,那么对空间任一向量P , 存在一个唯一的有序实数组x, y,z ,使p xa yb zc 。 若三向量ab,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向 2. uuu r OB a b a (b c) b a

量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设O,代B,C是不共面的四点,则对空间任一点P,都存在唯一的三个 uuu uuu uuu uuur 有序实数x, y,z,使OP xOA yOB zOC。

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳 一、基础知识 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b | ? , 其中a ,b 分别是直线a ,b 的方向 向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量, φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | ? . 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ? ,如图(2)(3). 两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值. 直线与平面所成角的范围为????0,π 2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值. 利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互

补,需要结合图形进行判断. 二、常用结论 解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2. 如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角 [典例精析] 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为7 21 ,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→ 方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0). (1)证明:DE ―→=(0,2,0),DB ―→ =(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则????? n ·DE ―→=0,n ·DB ―→=0, 即????? 2y =0,2x -2z =0. 不妨取z =1,可得n =(1,0,1).

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课 程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2?使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:[0,])

2、 法向量的方向: 一进一出,二面角等于法向量夹角;同进同出,二面 角等于法向量夹角的补角 . 3、 用空间向量解决立体几何问题的“三步曲” : (1) 建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2) 通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (进行 向量运算) (3) 把向量的运算结果“翻译”成相应的几何意义。 (回到图形) n 、典例分析与练习 例1、如图,ABCD 是一直角梯形, ABC 90 , SA 求面SCD 与面SBA 所成二面角的余弦值? 分析 分别以BA, AD,AS 所在直线为x,y,z 轴, 建立空间直角坐标系,求出平面 SCD 的法向量 仁, 平面SBA 法向量n 2,利用n i , n 2夹角 cos cos n 1, n 2 结论: 或 ——■ cos cos 门1,门2 cos cos n j , n 2 统一为: n 1 n 2 |n 1 n 2 1 面 ABCD , SA AB BC 1, AD -, 2

选修2-1第三章空间向量与立体几何教案

第三章空间向量与立体几何 空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量向量是怎样表示的呢 [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向

量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢 [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P26~P27. Ⅱ.新课讲授 [师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢相等的向量又是怎样表示的呢[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量. [师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.

考点二 用空间向量求线面角

考点二 用空间向量求线面角 【例2】 (2018·全国Ⅱ卷)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. (1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2, 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12 AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB . 由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC . (2)解 如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O -xyz . 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB →=(2,0,0). 设M (a ,2-a ,0)(0

设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得 ? ??2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2 . 由已知可得|cos 〈OB →,n 〉|=32 , 所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去),a =43, 所以n =? ????-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34 . 所以PC 与平面P AM 所成角的正弦值为34. 规律方法 利用向量法求线面角的方法: (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角. 【训练2】 (2019·郑州测试)在如图所示的多面体中,四边形ABCD 是平行四边 形,四边形BDEF 是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ; (2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.

创新设计高中数学苏教选修21习题:第3章 空间向量与立体几何

3.1.5 空间向量的数量积 课时目标 1.掌握空间向量的夹角及空间向量数量积的概念.2.掌握空间向量的运算律及其坐标运算.3.掌握空间向量数量积的应用. 1.两向量的夹角 如图所示,a,b 是空间两个非零向量,过空间任意一点O ,作OA →=a ,OB →=b ,则__________ 叫做向量a 与向量b 的夹角,记作__________. 如果〈a ,b 〉=π2 ,那么向量a ,b ______________,记作__________. 2.数量积的定义 已知两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作a·b . 即a·b =__________. 零向量与任一向量的数量积为0. 特别地,a·a =|a|·|a|cos 〈a ,a 〉=________. 3.数量积的运算律 空间向量的数量积满足如下的运算律: (λa )·b =λ(a·b ) (λ∈R ); a·b =b·a ; a·(b +c )=a·b +a·c . 4.数量积的坐标运算 若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 (1)a·b =________________; (2)a ⊥b ?__________?____________________________; (3)|a |=a·a =______________; (4)cos 〈a ,b 〉=____________=_________________________________________. 一、填空题 1.若a ,b 均为非零向量,则a·b =|a||b |是a 与b 共线的____________条件. 2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=________. 3.已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29且λ>0,则λ=________. 4.若a 、b 、c 为任意向量,下列命题是真命题的是____.(写出所有符合要求的序号) ①若|a |=|b |,则a =b ; ②若a·b =a·c ,则b =c ; ③(a·b )·c =(b·c )·a =(c·a )·b ; ④若|a |=2|b |,且a 与b 夹角为45°,则(a -b )⊥b . 5.已知向量a =(2,-3,0),b =(k,0,3),若a 与b 成120°角,则k =________. 6.设O 为坐标原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运 动,则当QA →·QB →取得最小值时,点Q 的坐标为________. 7.向量(a +3b )⊥(7a -5b ),(a -4b )⊥(7a -2b ),则a 和b 的夹角为____________. 8.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为π3 ,则|a +b |=________. 二、解答题

高二数学选修2-1空间向量试卷与答案

高二数学(选修2-1 )空间向量试题 宝鸡铁一中司婷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的 代号填在题后的括号内(每小题 5 分,共 60 分). 1.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则 AB1与 C1B 所成的角的大小为()A. 60°B. 90°C. 105°D.75° 2.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=A 1 B 1 ,则 BE1 4 与 DF1所成角的余弦值是() A.15 B. 1 172 图 8 D.3 C. 2 17 3.如图, 1 1 1—是直三棱柱,∠=90°,点1、 1 分别是 1 1、 A B C ABC BCA D F A B A1C1的中点,若 BC=CA=CC1,则 BD1与 AF1所成角的余弦值是() A.C. 301 10 B. 2 30图 15 15 D. 10 4.正四棱锥S ABCD 的高 SO 2 ,底边长AB 2 ,则异面直线BD 和 SC 之间的距离() .15.5C. 2 5 A5B55 5.已知ABC A1 B1 C1是各条棱长均等于 a 的正三棱柱, D 是侧棱 CC1的中点.点 C1到平面 AB1 D 的距离() A. 2 a B. 2 a 48A 1D. 5 C1 10B1 D A C B图

C.3 2 a D. 2 a 42 6.在棱长为 1 的正方体ABCD A1 B1C1D1中,则平面 AB1C 与平面 A1 C1 D 间的距离() A.3B.3C.2 3 D.3 6332 7.在三棱锥-中,⊥,==1,点、 D 分别是、的中点,⊥底 P ABC AB BC AB BC2PA O AC PC OP 面 ABC,则直线 OD与平面 PBC所成角的正弦值() A.21B.8 3 C210 D .210 636030 8.在直三棱柱ABC A1B1C1中,底面是等腰直角三角形,ACB 90,侧棱 AA1 2 ,D,E 分别是CC1与A1B的中点,点 E 在平面AB D 上的射影是ABD 的重心G.则A1B 与平面 AB D所成角的余弦值() A. 2 B. 7 C. 3 D. 3 3327 9.正三棱柱ABC A1 B1C1的底面边长为3,侧棱AA13 3 ,D是C B延长线上一点,2 且 BD BC ,则二面角B1AD B 的大小() A. 3B. 6 C. 5 D. 2 63 10.正四棱柱ABCD A1B1C1D1中,底面边长为 2 2 ,侧棱长为4, E,F 分别为棱AB,CD的中点,EF BD G .则三棱锥B1EFD1的体积V() A.6B.16 3C.16 D.16 633 11.有以下命题: ①如果向量 a, b 与任何向量不能构成空间向量的一组基底,那么a, b 的关系是不共线; ② O , A, B,C 为空间四点,且向量OA, OB, OC不构成空间的一个基底,则点 O, A, B,C 一定共面; ③已知向量 a, b, c 是空间的一个基底,则向量 a b, a b, c 也是空间的一个基底。其中

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

利用向量法求空间角经典教案

利用空间向量求空间角 目标:会用向量求异面直线所成的角、直线与平面所成的角、二面角的方法; 一、复习回顾向量的有关知识: (1)两向量数量积的定义:><=?,cos ||||(2)两向量夹角公式:| |||,cos b a b a >= < 二、知识讲解与典例分析 知识点1:两直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a 、b 的方向向量分别为a 和b , 问题1: 当与的夹角不大于90°时,异面直线 的角θ与 和 的夹角的关系? 问题 2:与的夹角大于90°时,,异面直线a 、θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ 例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则)2,,0(),0,2 1 ,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC - =,)2,2 1 ,23(1a a a CB = 即21323,cos 22 111111==>= <11,cos BE DF 与>

选修21空间向量单元测试

空间向量单元测试(一) 本试卷分第Ⅰ卷和第II 卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是 符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则、一定不共面;③若、、三向量两两共面,则、、三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 z y x ++=.其中正确命题的个数为 ( ) A .0 B .1 C .2 D .3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 5.直三棱柱ABC —A 1B 1C 1中,若CC ===1,,, 则1A B = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 6.已知++=,||=2,||=3,||=19,则向量与之间的夹角>

第43讲 利用空间向量求空间角和距离(讲)(解析版)

第43讲 利用空间向量求空间角和距离 思维导图 知识梳理 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b |, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离

设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→ |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离 如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→ ·n | |n | . 题型归纳 题型1 异面直线所成的角 【例1-1】(2020?济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,1 2 AB AD BC == ,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90?,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥; (2)求异面直线BM 与EF 所成角的大小. 【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明: AB BC ⊥,AB BE ⊥,BC BE B =, AB ∴⊥平面BCE , 以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示: 设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0), ∴(2BM =,0),(1DF =,1-,0),

数学选修2-1 3.1空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

① 几何表示法:_________________________ ② 字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ① 零向量:__________________________,记作___(零向量的方向具有任意性) ② 单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③ 相等向量:____________________________ ④ 相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a +b =b +a 加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb 数乘结合律:λ(a μ)=a )(λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

用向量法求直线与平面所成的角教案

用向量法求直线与平面所 成的角教案 Prepared on 24 November 2020

第二讲:立体几何中的向量方法 ——利用空间向量求直线与平面所成的角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1.使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2.使学生能够应用向量方法解决一些简单的立体几何问题; 3.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法.

教学难点 求解直线与平面所成的角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾有关知识: 1、直线与平面所成的角:(范围:]2,0[π θ∈) 思考:设平面α的法向量为n ,则>

(完整版)选修21空间向量知识点归纳总结

第三章 空间向量与立体几何 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ, 使a ρ =λb ρ。 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是 存在实数,x y 使p xa yb =+r r r 。 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r , 存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个 有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。

选修2-1空间向量与立体几何教案

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ①经历向量及其运算由平面向空间推广的过程; ②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③掌握空间向量的线性运算及其坐标表示; ④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ①理解直线的方向向量与平面的法向量; ②能用向量语言表述线线、线面、面面的垂直、平行关系; ③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利

用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠0)、b ,a ∥b 的充要条件是存在实数 使b = a

相关文档
最新文档