计算方法与计算 实验一误差分析

计算方法与计算 实验一误差分析
计算方法与计算 实验一误差分析

《计算方法与分析》实验报告

实验一、误差分析

一、上机前的准备工作

1、复习和掌握与本次实验有关的教学内容。

2、根据本次实验要求,在纸上编写算法及上机的程序,并经过人工模拟运行检验,减少不必要的错误,提高上机效率。切忌不编程序、不作人工检查就进行程序输入,这只能使上机调试的难度增加,甚至可能带来学习自信心的下降,影响后续课程的学习。

二、上机实验步骤

1、启动开发环境;

2、建立源程序文件,输入源程序;

3、编译产生目标程序,连接生成可执行程序,运行程序,输出结果;

4、对数值计算结果进行误差分析,讨论数值算法的收敛性与稳定性;

5、整理实验报告。

三、实验报告

实验报告是记录实验工作全过程的技术文档,实验报告的撰写是科学技术工作的一个组成部分。《数值分析》实验报告包括下列要求:

1、实验原理;

2、实验内容和要求;

3、数值算法描述,包括数据输入、数据处理和数据输出;

4、算法的实现

(1)给出具体的计算实例,

(2)经调试正确的源程序清单,

(3)对具体的数值例子给出数值结果;

5、计算结果的误差分析,算法的收敛性与稳定性的讨论;

6、实验心得。

误差分析

误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 一、实验目的

1、通过上机编程,复习巩固以前所学程序设计语言及上机操作指令;

2、通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念;

3、 通过上机计算,了解舍入误差所引起的数值不稳定性。

二、算法实例 例 1.1 用差商h

a f h a f a f )

()()(-+≈

'求x x f ln )(=在3=x 处导数的近似值。取

1.0=h ,1000.0=h ,h =0.000 000 000 000 001和h =0.000 000 000 000 000 1分别用MATLAB 软件计算,取十五位数字计算。

解: 在MATLAB 工作窗口输入下面程序

>>a=3;h=0.1;y=log(a+h)-log(a);yx=y/h 运行后得

yx = 0.32789822822991. 将此程序中h 改为0.000 1,运行后得

yx = 0.33332777790385.

后者比前者好。再取h = 0.000 000 000 000 001,运行后得

yx = 0.44408920985006,

不如前者好。取h = 0.000 000 000 000 000 1,运行后得

yx = 0,

算出的结果反而毫无价值。

例1.2 分别求方程组b AX =在下列情况时的解,其中A ???

?

??=01.11

11

. (1)???? ??=22b ; (2)???

? ??=01.22b . 解: (1) 首先将方程组b AX =化为同解方程b A X 1-=,然后在MATLAB 工

作窗口输入程序

>> b=[2,2]';A=[1,1;1,1.01]; X=A\b

运行后输出当???? ??=22b 时,b AX =的解为???? ??=02X ; (2)同理可得,当???? ??=01.22b 时,b AX =的解为???? ??=11X .

例1.3 计算e 的近似值。 解:泰勒级数

e +++++++=!!4!3!21432 

 n x x x x x n

x

)(∞<<-∞x ,

取1=x ,得

e ++++++

+=!1

!41!31!2111 

 n . (1.1) 这是一个无限过程,计算机无法求到精确值。只能在(1.1)取有限项时计算,再估计误差。如果取有限项

!!!!)( n s n 1

413121111+

+++++=

作为e 的值必然会有误差,根据泰勒余项定理可知其截断误差为

e !)1()1( 

+=-n e s n θ

)10(<<θ.

如果取(1.1)的前九项,输入程序

>> n=8; s=1;S=1; for k=1:n s=s*k; S=S+1/s, end s,S,

R=3/(s*(n+1))

>>n=8; s=1;S=1; for k=1:n s=s*k; S=S+1/s; end s,S,

R=3/(s*(n+1))

运行结果:

s =40320 S =2.7183

R =8.2672e-006

>>S1=1+1+1/2+1/(1*2*3)+1/(1*2*3*4)+1/(1*2*3*4*5)+1/

(1*2*3*4*5*6)+1/(1*2*3*4*5*6*7)+1/(1*2*3*4*5*6*7*8),

R1=3/(1*2*3*4*5*6*7*8*9)

运行后结果

S =8.267195767195768e-006 R =2.71827876984127 颠倒!!!!!!!!!

因为截断误差为

e ),10(101968.267!93

!)18()1(6-8<

-θθ 

 e s 所以e 的近似值e ≈≈++++++++=!81!71!61!51!41!31!2111)1(8

s 2.718 28. 例1.4 取282.718作为e 的四舍五入近似值时,求其绝对误差和相对误差。 解:在MATLAB 工作窗口输入程序

>>juewu=exp(1)-2.71828

运行后输出结果为

juewu = 1.828 459 045 505 326e-006

例1.5 计算?2

sin π

x

x

d x 的近似值,并确定其绝对误差和相对误差。 解 因为被积函数

x

x

sin 的原函数不是初等函数,故用泰勒级数求之。 ++-+-=!

!!!1sin 429 75 38

6x x x x x x )(∞<<-∞x , (1.5) 这是一个无限过程,计算机无法求到精确值。可用(1.5)的前四项

!

!!14275 36x x x -

+-代替被积函数x x sin ,得

?=2

sin π

x x y d ?≈20(πx !

!!14275 36x x x -+-)d x =!7)2(!5)2(!3)2(27

5

3

75 3?-?+?-π

π

π

π=y ?. 根据泰勒余项定理和交错级数收敛性的判别定理,得到绝对误差

!

99)

2(?9

?<-=πy

y R = WU , 在MATLAB 命令窗口输入计算程序如下:

syms x

f=1-x^2/(1*2*3)+x^4/(1*2*3*4*5)-x^6/(1*2*3*4*5*6*7) y=int(f,x,0,pi/2),y1=double(y)

y11=pi/2-(pi/2)^3/(3*3*2)+(pi/2)^5/(5*5*4*3*2)-(pi/

2)^7/(7*7*6*5*4*3*2)

inf=int(sin(x)/x,x,0,pi/2) ,infd=double(inf) WU =(pi/2)^9/(9*9*8*7*6*5*4*3*2), R =infd-y11

因为运行后输出结果为: =y 1.370 762 168 154 49,y

?=1.370 744 664 189 38,=R 1.750 396 510 491 47e-005, WU= 1.782 679 830 970 664e-005410-<. 所

以,y ?的绝对误差为=ε410-,故?=20sin π

x

x

y d 7 1.370≈x 。y

?的相对误差为 =r ε7

1.37010?4

-=

y ε<0.007 3%. 例 1.6 设计三种算法求方程01522

=-+x x 在)3,2(的一个正根*x 的近似

值,并研究每种算法的误差传播情况.

解:为解已知方程,我们可以设计如下三种算法,然后将计算结果与此方程的精确解5.2*=x 比较,观察误差的传播.

算法1 将已知方程化为同解方程=x 2

215x -.取初值20=x ,按迭代公式

2

1

215k k x x -=+ 依次计算 ,,,,21n x x x ,结果列入表1–3中。

算法2 将已知方程化为同解方程1

215

+=

x x .取初值20=x ,按迭代公式

12151+=

+k k x x

依次计算 ,,,,21n x x x ,结果列入表1–1中。

算法3 将已知方程化为同解方程1

415

22+-+-=x x x x x .取初值20=x ,按迭代

公式为 1

415

22

1

+-+-=+k k k

k k x x x x x 依次计算 ,,,,21n x x x ,结果列入表1–1中。

我们为这三种算法的计算编写两套MATLAB 程序如下:

(1)MATLAB 主程序

function [k,juecha,xiangcha,xk]= liti112(x0,x1,limax) % 输入的量--x0是初值, limax 是迭代次数和精确值x;

% 输出的量--每次迭代次数k 和迭代值xk,

% --每次迭代的绝对误差juecha 和相对误差xiangcha , x(1)=x0;

for i=1:limax

x(i+1)=fl(x(i));%程序中调用的fl.m juecha = abs(x(i)-x1);

xiangcha = juecha /( abs(x(i))+eps);

xk=x(i);k=i-1;[(i-1),juecha,xiangcha,xk] end

(2)MATLAB 调用函数程序及其计算结果 ① 算法2的MATLAB 调用函数程序

function y1=fl(x) y1=15/(2*x+1);

② 将MATLAB 主程序和调用函数程序分别命名liti112.m 和fl.m ,分别保存为M 文件,然后在MATLAB 工作窗口输入命令

>> [k,juecha,xiangcha,xk]= liti112(2,2.5,100)

③ 运行后输出计算结果列入表1–1和表 1-2中。

④ 将算法2的MATLAB 调用函数程序的函数分别用y1=15-2*x^2和y1=x-(2*x^2+x-15)/(4*x+1)代替,得到算法1和算法3的调用函数程序,将其保存,运行后将三种算法的前8个迭代值821,,,x x x 列在一起(见表 1-1),进行比较.将三种算法的821,,,x x x 对应的绝对误差和相对误差的值列在一起(见表 1-2),进行比较。

表 1-1 例1.6中三种算法的计算结果

算 法

迭代次数

算法1的迭代结果

算法2的迭代结果

算法3的迭代结果

2 2.000 000 00 2.000 000 00 1 7 3.000 000 00 2.555 555 56 2 -8

3 2.142 857 1

4 2.500 550 06 3 -13 763 2.837 837 84 2.500 000 06 4 -378 840 323 2.246 963 56 2.500 000 00

5 -2.870 41710? 2.24

6 963 56 2.500 000 00 6 -1.64

7 83510? 2.321 774 84 2.500 000 00 7

-5.430 77010?

2.657 901 65

2.500 000 00

99

-Inf

2.500 000 01

2.500 000 00

表 1-2 例1.6中三种算法计算结果的误差

算法 迭 代 次 数

算法1的误差 算法2的误差 算法3的误差 绝对误差

相对误差

绝对误差

相对误差

绝对误差

相对误差

0 0.500 000 00 0.250 000 00 0.500 000 00

0.250 000 00 0.500 000 00 0.250 000 00 1 4.500 000 00 0.642 857 14 0.500 000 00 0.166 666 67 0.055 555 60 0.021 739 13 2 85.500 000 00 1.030 120 48 0.357 142 86 0.1666 666 70 0.000 550 10 0.000 219 97 3 13 765.500 00 0.000 100 02 0.337 837 84 0.119 047 62 0.000 000 06 0.000 000 02 4 378 840 326 1.000 000 01

0.253 036 44 0.112 612 62 0.000 000 00

0.000 000 00

5 2.870 399 811710?

1 0.230 287 04 0.084 345 48 0 0 6 1.647 839 013510?

1 0.178 225 16 0.076 76

2 47 0 0 7 5.430 746 807010?

1 0.157 901 65 0.059 408 39 0 0

99

Inf

NaN

0.000 000 01

0.000 000 00

例1.7 求数)

181(71915-+?=-x 的近似值。 解 (1)直接用MATLAB 命令

>> x=(7^15)*(sqrt(1+8^(-19))-1)

运行后输出结果

x = 0.

问题出现在两个相近的数19

81-+与1相减时,计算机运行程序

>>sqrt(1+8^(-19))-1

运行后输出结果

ans = 0.

由于计算机硬件只支持有限位机器数的运算,因此在计算中可能引入和传播舍入误差.因为有效数字的严重损失,导致输出18119-+-的结果为0,计算机不能再与数157继续进行真实的计算,所以,最后输出的结果与x 的精确值不符。

(2)如果化为

1

8

187)18

1(719

191519

15++?=

-+?=---x ,

再用MATLAB 命令

>> x=(7^15)*( (8^(-19))/(sqrt(1+8^(-19))+1))

运行后输出结果

x = 1.6471e-005

这是因为18

119

-+-化为

1

8

1819

19++--后,计算机运行程序

>> x= (8^(-19))/(sqrt(1+8^(-19))+1)

运行后的结果为

x =3.4694e-018

由于有效数字的损失甚少,所以运算的结果-18103.4694?再与157继续计算,最后输出的结果与x 的精确值相差无几。

例1.8 求数)13030ln(2--=y 的近似值。 解 (1)直接用MATLAB 程序

>> x=30;x1= sqrt(x^2-1)

运行后输出结果

x1 = 29.9833

输入MATLAB 程序

>> x=30; x1=29.9833;y=log(x-x1)

运行后输出结果

y = -4.0923

(2)因为)13030ln(2--中的30=x 很大,如果采用倒数变换法

1

112

21-+=

--=x x x x z ,

1

30301ln

)13030ln(2

2-+=--)190030ln(-+-=.

输入MATLAB 程序

>> x=30;y=-log(x+sqrt(x^2-1))

运行后输出结果

y = -4.0941

(3)输入MATLAB 程序

>> x=30; y=log(x-sqrt(x^2-1))

运行后输出结果

y = -4.0941

可见,(2)计算的近似值比(1)的误差小。

参加计算的数,有时数量级相差很大.如果不注意采取相应的措施,在它们的加减法运算中,绝对值很小的那个数经常会被绝对值较大的那个数“吃掉”,不能发挥其作用,造成计算结果失真。

例1.9 请在16位十进制数值精度计算机上利用软件MA TLAB 计算下面的两个数

0.30.1111111111111111*++=x 和0.30.11111111111111111*++=y

将计算结果与准确值比较,解释计算结果。 解 在MA TLAB 工作窗口输入下面程序

>> x=111111*********+0.1+0.3, y=1111111111111111+0.1+0.3

运行后输出结果

x = 1.111111*********e+014,y =1.111111*********e+015

从输出的结果可以看出,x *x =,而y *

y ≠.为什么*

y 仅仅比*x 多一位1,而y *

y ≠呢?

这是因为计算机进行运算时,首先要把参加运算的数写成绝对值小于1而“阶码”相同的数,这一过程称为数的“对阶”。在16位十进制数值精度计算机上利用软件MATLAB 计算这两个数,把运算的数*

x 写成浮点规格化形式为

1515

15*103000**********.0001010000000000000.000100111111111111111.0?+?+?=x

在16位十进制数值精度计算机上,三项的数都表示为小数点后面16位数字的数与15

10

之积,所以,计算机没有对数进行截断,而是按原来的三个数进行计算。因此,计算的结果x *

x =。而

16

16

16*10030000000000000.00010010000000000000.000101111111111111111.0?+?+?=y

三项的数都表示写成绝对值小于1而“阶码”都为16

10的数以后,第一项的纯小数的

小数点后面有16位数字.但是,后两项数的纯小数的小数点后面有17位数字,超过了16位十进制数值精度计算机的存储量,计算机对后两项的数都进行截断最后一位,即后两项的数都是16位机上的零,再进行计算,所以计算结果与实际不符。

三、实验任务

对20,,2,1,0 =n ,计算定积分

?+=1

5dx x x y n

n .

算法1:利用递推公式

151

--=

n n y n

y , 20,,2,1 =n , 取 ?

≈-=+=1

0182322.05ln 6ln 5

1

dx x y . >> a=0.182322;n=1;b=(1/n)-(5*a)

算法2:利用递推公式

n n y n y 5

1

511-=

- 1,,19,20 =n . 注意到

???=

≤+≤=1

1

020201

0201051

515611261dx x dx x x dx x , 取 008730.0)126

11051(20120≈+≈

y . 思考:从计算结果看,哪个算法是不稳定的,哪个算法是稳定的。

>> a=0.008730;n=20;b=(1/5)*1/n-(1/5)*a

解:

10:,(6),:

n y 1

n n n

-≈=

由递推公式可得当 =1,2,,20 时以及0.182322=0.182322 小数点后面取位使用Matlab 计算得出下列各值 -5y y

Ni

由以上计算结果可以看出,当n ≥8时,出现负值,完全失真,但与原题中:

编号

计算结果

1 0.0884

2 0.0580

3 0.0433

4 0.033

5 5 0.0325

6 0.0042

7 0.1219

8 -0.4845

9 2.5336 10 -12.5680 11 62.9309 12 -314.5712 13 1.5729e+003 14 -7.8644e+003 15 3.9322e+004 16 -1.9661e+005 17 9.8305e+005 18 4.9153e+006 19 -2.4576e+007 20

1.2288e+008

01111

01000

1

15555min max x n n n

x x x x x x dx dx dx

x x ≤≤≤≤++<<++???116(1)

5(1)

n n n y ++<<

完全不符,

~~

11|||||5()|n n n n n E y y y y --=-=--

02020||5||n n E E E =误差被放大5

因此第一种算法是不稳定的。

我们来看第2种方法:

-120

:20191,(6)

,:

n 1

1

55

n n y y n =≈由递推公式可得

当 =,,

, 时以及0.008730=0.008730 小数点后面取位使用Matlab 计算得出下列各值 -

y

编号

计算结果

1

0.1823 2 0.0884 3 0.0580 4 0.0431 5 0.0343 6 0.0285 7 0.0243 8 0.0212 9 0.0188 10 0.0169 11 0.0154 12 0.0141 13 0.0130 14 0.0120 15 0.0112 16 0.0105 17 0.0099 18 0.0093 19 0.0089 20 0.0083

由上看来当n 减少时,

也随之降低,并没有波动,因此看来也较为稳定。

2020

1

||||

5

1

|5m n n m

E E E -=

|误差被缩小了

四、实验心得

对于这门课程来说,是第一次接触,从专升本上来的我,对于Matlab 软件操作简直是一窍不通,论是带公式或者是编写代码。这是我学习这门课程的最大障碍!第一次上课,听老师讲解Matlab 软件的操作,我学会了一点,但也局限于把文档里的代码,往Matlab 里一粘贴,看看它是否与文档中,所记录的答案一致。有的错,就用红色的标注,我也只能做到这里了,用Matlab 计算一些,可能按按计算器也能得出的结果,可谓是心有余而力不足。 这是我第一次上机课所学会的,比如一些基本的格式: 一般MATLAB 命令格式为:

[输出参数1,输出参数2,……]=(命令名)(输入参数1,输入参数2,……) 输出参数用方括号,输入参数用圆括号如果输出参数只有一个可不使用 括号。

对于Matlab 软件来说,能操作好它,对于眼前来说,能将自己的毕业论文写好,往远了说,在以后的工作中,碰到此类问题,也有能力解决。

对于课程,本人还有一些想法,既然是上机课,我觉得学会Matlab 是很重要的,能不能针对Matlab 来多做些习题,毕竟上机时间比较充裕,因而曾加习题,从易到难,提高对Matlab 的操作水平!!

~

~111

|||||()|

5

n n n n n E y y y y --=-=--~

n y

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

(完整word版)实验力学学习心得

实验力学学习心得 曾经对力学的认识很懵懂,以前在我心中力学是一个很抽象的东西,我一直认为力学更多的是在图纸上的演算与推导,凡是与力相关的事物都属于力学范畴。对于力学应用方面的理解,也只是粗略的知道它会应用于航空航天、机械、土木、交通、能源、化工、材料、环境、船舶与海洋等等,但原理是什么,方法是怎样的,我想也绝不只是我最初理解的只是一些受力分析那么简单。而对实验力学这门课的学习则是让我们知道了目前所学的这些知识与它所应用的工程实际相联系的途径和方法。 简单的来说,实验力学就是用实验的方法求解力学问题。即用实验方法测量在力的作用下,物体产生的位移、速度、加速度、应变(形变)、应力、振动频率等物理量。工程实验力学中对实验力学的定义是用实验方法测量应变、应力和位移。也称为实验应力分析。在我现在学习了这门课之后的理解,实验力学是解决工程问题中力学问题的一个重要环节,是求解其力学问题的中间环节,通过实验力学方法测得所需物理量,最终求出结果。 通过课程认知,我了解了解决力学问题的方法主要有两个:理论方法和实验方法。理论方法就是理论方法就是将实际问题转化为数学模型,建立方程,然后求解。它主要有解析法和数值法,理论方法的解答是数学模型的解答,只有实际问题与数学模型相符时才是精确的,这也是它的局限性。而我们这学期学的实验力学的方法就是在实际问题上直接测量。我们这学期做了三个实验力学的实验,分别是测量电桥特性,动态应变测量和光测弹性学方法。这三个实验就用到了实验应力分析的方法——电测,振动测量,光测。实验力学的实验结果更可靠,并且可以发现新问题,开创新领域。不过它也有它的缺点就是测量都有误差,并且实验仪器和材料昂贵,这也导致了费用高。不过,理论分析和实验分析是相辅相成。理论的建立需要实验分析的成果,发现新问题,建立新理论。实验设计和实施需要理论分析做指导。复杂问题需要需要理论与实验共同完成。 正如我刚刚说的,误差是实验方法的一个弊端,也是不可避免的,但随着测试手段的改进和测量者水平的提高,可以减少误差,或者减少误差的影响,提高实验准确程度。实验误差按其产生原因和性质,可以分为系统性误差、偶然性误差和过失误差(粗差)三种。实验力学这门课,同样教会了我们如何去减少误差。比如对称法、初载荷法、增量法消除系统误差。还有通过分析给出修正公式用来消除系统误差,或者定期用更准确的仪器校准实验仪器以减少实验误差,校准时做好记录供以后修正数据用。偶然性误差难以排除,但可以用改进测量方法和数据处理方法,减少对测量结果的影响。例如用多次测量取平均值配合增量法,可以使偶然性误差相互抵消一部分,得到最佳值。过失误差是指明显与实际不符,没有一定的规律。这在我们实验中也会经常出现,通常这些都是由于疏忽大意、操作不当或设备出了故障引起明显不合理的错值或异常值,一般都可以从测量结果中加以剔除。 我们主要做了三个实验,测量电桥特性,动态应变测量和光测弹性学方法。给自己印象最深刻的就是第一个实验。桥路变换接线实验是在等强度实验梁上进行,当时是要在梁的上下表面哥粘贴两个应变片。当时老师在黑板上画了三个图,可是我当时连最基本的图都看不懂,根本不知道哪个是应变片哪个是电阻的意思。接下来在粘应变片的时候也遇到了各种麻烦,应变片倒是没粘好几个,但是手上已经一团糟。好不容易把应变片粘好后,需要用焊锡把电线连上,在仔细琢磨过到底那根线连哪个之后,又遇到了新的麻烦就是那个怎么焊都焊不上,后来找来老师才知道原来是我们那一组的电烙铁有问题,换了个,才继续把这个艰辛的实验做完。这个实验做了不少时间,也着实费了不少的功夫,不过通过这个实验我认识到了自己

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

偏差分析心得体会

偏差分析心得体会 篇一:误差分析及实验心得 误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、 纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获:

(1)、培养了严谨求实的精神和顽强的毅力。通过此 次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。 (2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以 我在以后的实验中保持严谨的态度。我通过本次实验我学

机械加工误差分析实验报告

机械加工误差的综合分析 ------统计分析法的应用一、实验目的

运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1.M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间连续加工的零件120件,由此计算出X、σ,并做出尺寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调---微调---水平调整步骤进行(注意大调和水平调整一般都予先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位置。 4. 检查磨床的挡片,支片位置是否合理(如果调整不好,将会引起较大的形变误差)。对于挡片可通过在机床不运转情况下,用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉,直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理 该实验选用M1040A型无心磨床和块规一付 (1)实验原始数据

定位误差计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准)由夹 具定位元件的定位工作面体现的,用于调 整加工刀具位置所依据的基准。必须指出, 对刀基准与上述两工艺基准的本质是不 同,它不是工件上的要素,它是夹具定位 元件的定位工作面体现出来的要素(平面、 轴线、对称平面等)。如果夹具定位元件是 支承板,对刀基准就是该支承板的支承工 a) 作面。在图3.3中,刀具的高度尺寸由对 导块2的工作面来调整,而对刀块2工作 面的位置尺寸7.85±0.02是相对夹具体4 的上工作面(相当支承板支承工作面)来 确定的。夹具体4的上工作面是对刀基准, 它确定了刀具在高度方向的位置,使刀具 加工出来的槽底位置符合设计的要求。图 3.3中,槽子两侧面对称度的设计基准是工 b 图3.21 钻模加工时的基准分析

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成绩: 完成时间:

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21.0 windows10.0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0 2. x 与y 之间大致呈线性关系? 3. 用最小二乘法估计求出回归方程。 4. 求出回归标准误差σ∧ 。 5. 给出0 β∧与1 β∧ 的置信度95%的区间估计。 6. 计算x 与y 的决定系数。 7. 对回归方程作方差分析。 8. 作回归系数1 β∧ 的显著性检验。 9. 作回归系数的显著性检验。 10.对回归方程做残差图并作相应的分析。

11.该公司预测下一周签发新保单01000 x=张,需要的加班时间是多少? 12.给出0y的置信度为95%的精确预测区间。 13.给出 () E y的置信度为95%的区间估计。 四、实验过程及分析 1.画散点图 如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。 2.最小二乘估计求回归方程

用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下: 0.1180.004y x =+ 3.求回归标准误差σ∧ 由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差: 2= 2SSE n σ∧-,2σ∧=0.48。 4.给出回归系数的置信度为95%的置信区间估计。 由回归系数显著性检验表可以看出,当置信度为95%时:

误差分析及实验心得

误差分析及实验心得 误差分析1系统误差:使用台秤、量筒、量取药品时产生误差; 2随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获: (1 )、培养了严谨求实的精神和顽强的毅力。通过此次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。 (2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为_ 论上应该是约1.5g。所 得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作方法初步了解有机合成中乙酰化反 应原理巩固和进一步熟悉了减压过滤、重结晶基本操作的原理和方法了解到乙酰水杨酸中杂质的来源及 其鉴别方法通过误差分析可能原因进一步更深理解实验的原理和操作养成严谨的态度。

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

误差分析及实验心得

误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获: (1)、培养了严谨求实的精神和顽强的毅力。通过此次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。(2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约1.5g。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作方法初步了解有机合成中乙酰化反应原理巩固和进一步熟悉了减压过滤、重结晶基本操作的原理和方法了解到乙酰水杨酸中杂质的来源及其鉴别方法通过误差分析可能原因进一步更深理解实验的原理和操作养成严谨的态度。

定位误差计算方法

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸 H 1所产生的定位误差: 故得: O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε 2. 工序基准为圆柱体的下母线:

工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量 C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1C O ='' 所以: C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε 3. 工序基准为上母线 如果键槽的位置尺寸采用上母线标注时,上母线K 的极限位置变动量为 K K ''',就是对加工尺寸H 3 所产生的定位误差。

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

化学实验误差分析总结

高中化学高二第一学期 第十章学习几种定量测定方法 关于实验误差方面的总结 10.1 测定1mol气体体积 在实验中造成测定结果偏小的是 1.装置漏气 2.镁带含有跟硫酸不反应的杂质 3.称量后擦去镁带表面的氧化膜 4.反应结束后,未用针筒抽气 5.硫酸注入量不足10ml,使镁带有剩余 6.实验仪器本身存在量得气体体积偏小的误差 在实验中造成测定结果偏大的是 1.最后计算氢气体积时没有扣去硫酸的体积 2.反应放热,实验过程中温度升高较大 3.镁带中含有产生气体比等质量的镁产生气体多的杂质(如Al 等) 4.实验仪器本身存在量得气体偏大的误差 10.2结晶水合物中结晶水含量的测定

1.加热不彻底造成硫酸铜晶体未失去全部结晶水 2.失去全部结晶水后未放入干燥器中冷却(在空气中冷却) 3.取用的样品中混有前面同学操作后的无水硫酸铜 4.晶体中含有不挥发杂质 在实验中造成测定结果偏高的是 1.加热时有晶体溅出(用玻璃棒搅拌时被沾去一点硫酸铜) 2.坩埚不干燥 3.晶体表面有水 4.加热时间过长,部分变黑 5.晶体中含有受热易分解的杂质 6.为了测定一包白色粉末的质量,将药品放在右盘,砝码放在 左盘,并需移动游码使之平衡,测得药品的质量为m(砝码)和m(游码的移动) 10.3酸碱滴定 在实验中造成测定结果偏低的是 1.用以量取待测液的滴定管未用待测液润洗 2.滴定时,摇动锥形瓶不慎溅出几滴溶液

1.锥形瓶洗净后又用待测液润洗 2.装酸液的滴定管内有气泡,滴定后气泡消失 3.滴定管用水洗后,未用标准溶液润洗就装入标准溶液 4.滴定前,滴定管尖嘴部分有一气泡,滴定过程中气泡消失 滴定结束读数时,若仰视,则读数值比溶液的实际体积偏大,结果造成测得的待测液浓度偏大 若同一次读数采用俯视,则使测得待测液浓度偏小。

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

数值分析实验误差分析

实验报告 课程名称数值分析实验 实验项目误差分析 专业班级姓名学号 指导教师______________________ 成绩_______________ 日期____________ 、实验目的 1?了解误差分析对数值计算的重要性。 2?掌握避免或减小误差的基本方法。 、实验设备 安装有C、C++或MATLAB的计算机。 三、实验原理 根据不同的算法,得到的结果的精度是不一样的。 四、实验内容步骤 求方程 ax2+bx+c=0 的根,其中 a=1, b= -(5 x 108+1), c=5 x 108 采用如下两种计算方案,在计算机上编程计算,将计算结果记录下来,并分析产生误差的原因。 方案一: .bW b2 -4ac x1 - 2a 万案一: b sgn(b) b2-4ac 2a -b -d b2-4ac x2 2a c X2 : X i

要求:编写程序实现该算法;调试程序,检查输出结果。 五、实验结果及分析

x2=(-b-sqrt(q))/2; x3=-(b-sqrt(q))/2; x4=c/x1; prin tf("%f\n",x1); prin tf("%f\n",x2); prin tf("%f\n",x3); prin tf("%f\n",x4); } 2.拉格朗日(Lagrange )多项式插值 Lagrange插值多项式:

L n(x) =a n x n- a n 1x n丄讦’"理 n 7 yh(x) i卫 ](X)= (x —X o)…(X — X i」)(X —X iJ …(X—X n) (x i —x0)■…(x i —x i」)(x i —Xi申)…(x i —Xn) 3.牛顿(Newton)插值公式 N n(X)- f (X o) flX o’xKX-X。)flXo^xKX-XoXX-Xj flX o’Xj‘XnKX — XoXX—Xj (X—X n」) 四、实验内容步骤 1?给定sin 1T =0.190809, sin 12 -0.207912.sin13‘ =0.224951,构造 Lagrange 插值函数计 算sinll 30'。 2 .已知4个点的函数值如下表,用Newt on插值法求x=0.596时的函数值。 五、实验结果及分析 1.拉格朗日插值 2.牛顿插值

定位误差计算

定位误差计算 定位误差计算是工艺设计中经常的事。下面的几个例题属于典型定位条件下的计算。 例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。 解:① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。

③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?B 基准位移误差0=?Y 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ? 例题二:如下图所示齿轮坯,内孔及外圆已加工合格( 025 .00 35+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。

解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T (mm) 例题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。

实验后心得体会

实验后心得体会 篇一:实验心得体会 实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样,做完实验,然后两下子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还不如不做.做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛. 通过这次测试技术的实验,使我学到了不少实用的知识,更重要的是,做实验的过程,思考问题的方法,这与做其

他的实验是通用的,真正使我们受益匪浅. 实验心得体会 这个学期我们学习了测试技术这门课程,它是一门综合应用相关课程的知识和内容来解决科研、生产、国防建设乃至人类生活所面临的测试问题的课程。测试技术是测量和实验的技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、变换、信号分析和特征识别、诊断等,涉及到测试系统静动态性能、测试动力学方面的考虑和自动化程度的提高,涉及到计算机技术基础和基于LabVIEW的虚拟测试技术的运用等。 课程知识的实用性很强,因此实验就显得非常重要,我们做了金属箔式应变片:单臂、半桥、全桥比较, 回转机构振动测量及谱分析, 悬臂梁一阶固有频率及阻尼系数测试三个实验。刚开始做实验的时候,由于自己的理论知识基础不好,在实验过程遇到了许多的难题,也使我感到理论知识的重要性。但是我并没有气垒,在实验中发现问题,自己看书,独立思考,最终解决问题,从而也就加深我对课本理论知识的理解,达到了“双赢”的效果。 实验中我学会了单臂单桥、半桥、全桥的性能的验证;用振动测试的方法,识别一小阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;掌握压电加速度传感器的性能与使用方

相关文档
最新文档