A320系列飞机气象雷达系统

A320系列飞机气象雷达系统
A320系列飞机气象雷达系统

A320系列飞机气象雷达系统介绍及机组操作建议

概述:机载气象雷达系统(WXR)用于在飞行中实时地探测飞机前方航路上的危险气象区域,以选择安全的航路,保障飞行的舒适和安全。机载气象雷达系统可以探测飞机前方的降水、湍流情况,也可以探测飞机前下方的地形情况。在显示器上用不同的颜色来表示降水的密度和地形情况。新型的气象雷达系统还具有预测风切变(PWS)功能,可以探测飞机前方风切变情况,使飞机在起飞、着陆阶段更安全。本文主要针对我公司A320系列飞机机载气象雷达系统的组成、工作原理、显示特点及我公司A320系列飞机气象雷达的种类和机组操作建议进行了介绍。

一、机载气象雷达系统的组成

机载气象雷达系统的基本组成由:雷达收发机、雷达天线、显示器、控制面板和波导系统等,如图1-1所示:

雷达收发机:用来产生发射射频脉冲信号和接收并处理射频回波信号,提供气象、湍流和地形等显示数据,探测风切变事件并向机组发送警告和告诫信息。

雷达天线:用来产生高3.6°、宽3.4°的波束并接收回波信号。天线的稳定性受惯性基准组件(IRU)的俯仰和横滚数据控制。

显示器:对于A319/A320/A321飞机来说,气象雷达数据都显示在ND上。

控制面板:用于选择气象雷达的工作方式,控制天线的俯仰角度和稳定性,对接收机灵敏度进行控制。

波导系统:波导管作为收发机和天线之间射频信号桥梁通道。

二、气象雷达对目标的探测

机载气象雷达主要用来探测飞机前方航路上的气象目标和其他目标的存在以及分布状况,并

将所探测目标的轮廓、雷雨区的强度、方位和距离等显示在显示器上。它是利用电磁波经天线辐射后遇到障碍物被反射回来的原理,目标的导电系数越高,反射面越大,则回波越强。要清楚气象雷达如何工作的关键在于了解雷雨的反射率。一般来说,雷雨的反射率被划分成三个部分:雷雨的下三分之一由于温度在冰点之上,所以全部由小雨滴组成,这部分是雷雨中对雷达波能量反射最强的部分。中间部分由过度冷却的水和冰晶组成,由于冰晶是不良的雷达波反射体,所以这部分的反射率开始减小了。雷雨的上部完全由冰晶组成,所以在雷达上几乎不可见。另外,正在形成的雷雨在其上部可能会形成拱形的紊流波,如图2-1所示:

1.对降水目标的探测

机载气象雷达所探测的降水目标,如雷如、冰雹、雪等,它们属于导电的水物质,对雷达辐射的射频脉冲电磁波除一部分能量被吸收、损耗和散射外,均能被有效地反射回雷达天线。而反射的强弱与气象目标含水量的多少有关,所以,天线接收的回波经雷达接收机处理后,在显示器上用不同的颜色显示出雷雨的强弱,被测目标的距离由电磁波从发射到接收所用的时间来确定。

气象雷达能探测到的目标有: 1.雷雨

2.潮湿的冰雹和湍流

3.冰晶、干燥的冰雹、干燥的雪(回波弱)

气象雷达不能探测到的目标有:1.云、雾或风

2.洁净空气的湍流

3.沙尘暴

4.闪电

2. 对湍流的探测

气象雷达采用每组多个脉冲来探测湍流。由于湍流相对于飞机有速度的变化,根据多普勒频移原理,接收信号的频率相对于发射信号的频率产生偏移,利用接收回波信号频率的变化来探测湍流。

3.对风切变的探测

风切变是在很短的距离范围内,风速或风向,或两者一起发生急剧变化。它可以在很大区域内发生,并伴有狂风暴雨,或者只在一个很小区域内发生,特别是在接近地面的高度发生时,对飞机的起飞和着陆造成严重的威胁,如图2-2所示:

图2-2

在飞行中,驾驶员需要尽快、尽早知道飞机航路上风切变的存在,以采取措施保障飞行安全。对风切变的探测可应用多普勒原理来实现。当飞机强顶风时,产生正的多普勒频移,而逆风会产生负的多普勒频移,如果在一个很短的距离范围内探测到有非常明显的正的和负的风速变化,则可断定为风切变。

三、气象雷达信息的显示

1. 气象信息及湍流的显示

显示器上的气象雷达数据显示飞机前方的气象和地形信息。颜色显示气象或地形回波信号的强弱。这四中颜色用于气象雷达显示,如图3-1所示:

①绿色:轻度气象条件;②黄色:中度气象条件;③红色:重度气象条件;

④深红色:湍流(气象雷达系统只在40NM内计算和显示湍流)

2. 风切变信息的显示

在风切变工作方式时,雷达天线只扫描120° (±60 °).此时,天线从右至左扫描处理气象信息,从左至右扫描处理风切变信息,而且只有40海里、±30 °之内的风切变目标才被显示出来。

风切变的位置根据相对于飞机纵轴的方位和机头的距离而确定。根据风切变的位置不同,风切变警告可以分为三类:咨询(Advisory)、警戒(Caution)、警告(Warning)。图3-2所示分别为飞机在起飞和进近期件不同类型风切变警告的分布情况。

当有第二级风切变警戒时,除了在显示器上有显示外,还会有语音警告:“Monitor Radar Display”(监控雷达显示器);当有第三级风切变警告时,语音警告:“Windshear Ahead”(前方有风切变)或“Go-Around,Windshear Ahead”(复飞,前方有风切变),这时在PFD上还会有红色的“WINDSHEAR”文字显示。

四、我公司A320系列飞机气象雷达种类介绍

1. 第一种型号:HONEYWELL RTA-4B

B-6256,B-6285和B-6300飞机机载气象雷达收发机是HONEYWELL公司件号为:

066-50008-0405的气象雷达收发机(带有风切变探测功能),其控制面板如图4-1所示:

图4-1

①系统选择:

这个开关选择控制一部雷达或两部雷达工作。(对于B-6256、6285飞机都只装有一部气象雷达,SYS开关2不可用,B-6300飞机有两套雷达SYS开关2可用)

②增益选择旋钮(GAIN)

这个旋钮用来调节雷达在气象模式中(WX),或者在地面地图模式中(MAP)的接收机灵敏度。雷达厂家推荐将旋钮选择在CAL位,它调节增益至一个校准值。

③模式选择旋钮

WX(气象模式):用来探测航路上的气象信息,在ND上用不同色彩代表所含降雨水的密度(黑色代表强度最低,随着密度的逐渐增加,分别用绿色,琥珀色,红色来表示)。

WX+T (气象方式+紊流):用来探测航路上的气象信息和紊流,在屏幕仅仅以洋红色显示(降雨范围)中的紊流区域(40 海里以内)。

TURB(紊流) :屏幕仅仅显示紊流区域。

MAP(地图) :雷达在地图模式中工作:黑色代表水,绿色代表地面,琥珀色代表城市和山区。

④扫描倾斜角度选择旋钮(TILT)

用来调节雷达工作时雷达天线的俯仰角度,分为向上(UP)和向下(DN)。

⑤预测性风切变系统(WINDSHEAR)

AUTO(自动):预测性风切变被激活:即使系统开关在OFF位,天线在无线电高度2300英尺以下仍然进行扫描以探测风切变区域,如果高度低于1500英尺,它还会显示在ND上。OFF(关断):关闭预测性风切变功能。

2. 第二种型号:COLLINS公司 WXR-701X

B-2340,B-2341,B-2342,B-2293,B-2286,B-6025,B-6026,B-6257,B-6049和B-2348飞机机载气象雷达收发机是COLLINS公司件号为:622-5132-120的气象雷达收发机(无风切变探测功能),其控制面板如图4-2所示:

图4-2

①系统选择(SYS):

这个开关选择控制一部雷达或两部雷达工作。(对于上述飞机都只装有一部气象雷达,SYS 开关2不可用)

②增益选择旋钮(GAIN)

这个旋钮用来调节雷达在气象模式中(WX),或者在地面地图模式中(MAP)的接收机灵敏度。雷达厂家推荐将旋钮选择在CAL位,它调节增益至一个校准值。

③模式选择旋钮(MODE)

WX(气象模式):用来探测航路上的气象信息,在ND上用不同色彩代表所含降雨水的密度(黑色代表强度最低,随着密度的逐渐增加,分别用绿色,琥珀色,红色来表示)。

WX+T (气象方式+紊流):用来探测航路上的气象信息和紊流,在屏幕仅仅以洋红色显示(降雨范围)中的紊流区域(40 海里以内)。

TURB(紊流) :屏幕仅仅显示紊流区域。

MAP(地图) :雷达在地图模式中工作:黑色代表水,绿色代表地面,琥珀色代表城市和山区。

④扫描倾斜角度选择旋钮(TILT)

用来调节雷达工作时雷达天线的俯仰角度,分为向上(UP)和向下(DN)。

⑤地面杂波抑制开关(GND CLTR SPRS)

ON(开):抑制屏幕上的地面杂波。

OFF(关):关闭地面杂波抑制功能。

3. 第三种型号:COLLINS公司 WXP-701X

B-2370,B-2371,B-2373,B-2397,B-6027和B-6295飞机机载气象雷达收发机是COLLINS 公司件号为:622-5132-622的气象雷达收发机(带风切变探测功能),其控制面板如图4-3所示:

图4-3

①系统选择(SYS):

这个开关选择控制一部雷达或两部雷达工作。(对于上述飞机都只装有一部气象雷达,SYS 开关2不可用)

②增益选择旋钮(GAIN)

这个旋钮用来调节雷达在气象模式中(WX),或者在地面地图模式中(MAP)的接收机灵敏度。雷达厂家推荐将旋钮选择在CAL位,它调节增益至一个校准值。

③模式选择旋钮(MODE)

WX(气象模式):用来探测航路上的气象信息,在ND上用不同色彩代表所含降雨水的密度(黑色代表强度最低,随着密度的逐渐增加,分别用绿色,琥珀色,红色来表示)。

WX+T (气象方式+紊流):用来探测航路上的气象信息和紊流,在屏幕仅仅以洋红色显示(降雨范围)中的紊流区域(40 海里以内)。

TURB(紊流) :屏幕仅仅显示紊流区域。

MAP(地图) :雷达在地图模式中工作:黑色代表水,绿色代表地面,琥珀色代表城市和山区。

④扫描倾斜角度选择旋钮(TILT)

用来调节雷达工作时雷达天线的俯仰角度,分为向上(UP)和向下(DN)。

⑤地面杂波抑制开关(GND CLTR SPRS)

ON(开):抑制屏幕上的地面杂波。

OFF(关):关闭地面杂波抑制功能。

⑥预测性风切变系统(WINDSHEAR)

AUTO(自动):预测性风切变被激活:即使系统开关在OFF位,天线在无线电高度2300英尺以下仍然进行扫描以探测风切变区域,如果高度低于1500英尺,它还会显示在ND上。OFF(关断):关闭预测性风切变功能

4. 第四种型号:COLLINS公司WXR2100(MULTISCAN)

对于2004年10月(B-6043以后)后引进的飞机机载气象雷达收发机是COLLINS公司件号为:822-5132-120的双波束全自动气象雷达(带风切变探测功能)。这种雷达的主要特点有:1.双波束扫描并自动的调节俯仰角和增益,上面的波束扫描中距离的气象目标,下面的波束扫描远距离和近距离的气象信息。

2.将扫描到的信息存到计算机中,根据机组选择在ND上显示范围的不同,将气象图形进行处理或叠加,同时去除地面杂波,得到最优化的气象图形。如图4-4所示:

这种气象雷达的控制面板如图4-5所示:

①系统选择(SYS):

这个开关选择控制一部雷达或两部雷达工作。(对于上述飞机都只装有一部气象雷达,SYS 开关2不可用)

②增益选择旋钮(GAIN)

这个旋钮用来调节雷达在气象模式中(WX),或者在地面地图模式中(MAP)的接收机灵敏度。雷达厂家推荐将旋钮选择在CAL位,它调节增益至一个校准值。

③模式选择旋钮(MODE)

WX(气象模式):用来探测航路上的气象信息,在ND上用不同色彩代表所含降雨水的密度(黑色代表强度最低,随着密度的逐渐增加,分别用绿色,琥珀色,红色来表示)。

WX+T (气象方式+紊流):用来探测航路上的气象信息和紊流,在屏幕仅仅以洋红色显示(降雨范围)中的紊流区域(40 海里以内)。

TURB(紊流) :屏幕仅仅显示紊流区域。

MAP(地图) :雷达在地图模式中工作:黑色代表水,绿色代表地面,琥珀色代表城市和山区。

④扫描倾斜角度选择旋钮(TILT)

用来调节雷达工作时雷达天线的俯仰角度,分为向上(UP)和向下(DN)。注意:在自动模式下工作时,俯仰倾斜角度控制是不起作用的。在ND上显示的倾斜角度值为上下波束倾斜角度的平均值。

⑤多波束扫描( MULTISCAN )

MAN(人工):开关打到MAN位,人工方式进行多波束扫描,需要人工选择增益和调节天线俯仰角。

AUTO(自动):开关打到AUTO位,气象雷达以自动方式进行多波束扫描,不需要人工选择增益和调节天线俯仰角。

⑥地面杂波抑制开关(GCS)

ON(开):抑制屏幕上的地面杂波。

OFF(关):关闭地面杂波抑制功能。

⑦预测性风切变系统(WINDSHEAR)

AUTO(自动):预测性风切变被激活:即使系统开关在OFF位,天线在无线电高度2300英尺以下仍然进行扫描以探测风切变区域,如果高度低于1500英尺,它还会显示在ND上。OFF(关断):关闭预测性风切变功能。

五、气象雷达机组操作建议

对气象雷达的理解和使用主要包括天线俯仰角、显示范围、增益和雷达工作模式

几个方面:

1. 天线俯仰角

①雷达图象显示被波束扫到的目标而非飞机正前方的气象,如图5-1所示:

②最佳的天线俯仰角应该使ND雷达图象上缘显示部分地面回波,可用GCS功能抑制杂波(COLLINS 雷达),如图5-2所示:

③雷暴的底部反射强,顶部反射弱。经常调整天线角度以监视雷暴的发展并获得最佳的雷暴单体回波,如图5-3所示:

2.扫描距离圈

①通常提前40海里决定避开的天气目标,如图5-4所示:

②巡航时,PNF选择160海里范围(或以下),PF选择80海里(或以下),图5-5所示:

③时常调节距离圈,避免“盲谷”效应。所谓“盲谷”是指气象雷达是利用电磁波遇到障碍物反射回来的强弱来描述气象信息的强弱,图中黑色区域(HONEYWELL/COLLINS)和黄线(仅COLLINS)是因为雷达波束无法穿透前面的气象目标或穿透后波束衰减严重,无法准确地探测后面的气象目标,如图5-6所示:

3. 增益调节

①增益调节旋钮的自动(AUTO)或校准(CAL)位是观察气象目标的最佳设定位。

②人工增益调节用于深入分析气象目标,分析结束后必须放回CAL(AUTO)位。

③当需要判断气象目标强弱时,机组可以慢慢减小雷达增益并观察ND上气象目标的颜色变化,气象目标的颜色变化会随着雷达增益的减小由红色变为黄色再变为绿色,最后ND上仍为红色或最后变为黄色的气象目标就是能量最强的气象目标。(如图5-7所示)

④由于气象雷达对湍流的探测不随增益变化,

通过减小增益能有助于判断湍流;有助于区分多个气象目标。

⑤当飞机高高度飞行时,由于高空水汽凝结反射率小,机组可以适当增加增益来判断气象目标轮廓及面积。

六、总结

综上所述,机组要想充分利用气象雷达,必须掌握正确的使用方法和理解显示目标特点,同时机组对雷达知识的了解程度和经验, 会影响他们的判断,因此不同的机组对同样的显示会有不同的理解和判断。

客观上讲,我公司A320系列飞机目前存在四种不同厂家、类型的雷达,给机组人员操作带来一定影响,需要机组和维护人员进一步认识各种雷达的特性,从而更有效率地使用好机载雷达设备。

附:机务部夏季雷达故障预防措施

1.加强雷雨季节前的检查。在夏季来临之前,机务部在飞机换季检查工作单中都要纳入所有飞机雷达罩的湿度和雷达系统的普查内容。在雷达罩和机身之间有一密封胶带,由于胶带老化,容易发生破损,导致进水。另外在日常维护中加强检查,提前更换新的封条或对破损处用胶修补来杜绝湿气对雷达的影响,防患于未然。

2.显示器超温对雷达显示有影响。对于这一点我们可以从两个方面加以改进。其一:加强对

A320系列飞机气象雷达系统

A320系列飞机气象雷达系统介绍及机组操作建议 概述:机载气象雷达系统(WXR)用于在飞行中实时地探测飞机前方航路上的危险气象区域,以选择安全的航路,保障飞行的舒适和安全。机载气象雷达系统可以探测飞机前方的降水、湍流情况,也可以探测飞机前下方的地形情况。在显示器上用不同的颜色来表示降水的密度和地形情况。新型的气象雷达系统还具有预测风切变(PWS)功能,可以探测飞机前方风切变情况,使飞机在起飞、着陆阶段更安全。本文主要针对我公司A320系列飞机机载气象雷达系统的组成、工作原理、显示特点及我公司A320系列飞机气象雷达的种类和机组操作建议进行了介绍。 一、机载气象雷达系统的组成 机载气象雷达系统的基本组成由:雷达收发机、雷达天线、显示器、控制面板和波导系统等,如图1-1所示:

雷达收发机:用来产生发射射频脉冲信号和接收并处理射频回波信号,提供气象、湍流和地形等显示数据,探测风切变事件并向机组发送警告和告诫信息。 雷达天线:用来产生高3.6°、宽3.4°的波束并接收回波信号。天线的稳定性受惯性基准组件(IRU)的俯仰和横滚数据控制。 显示器:对于A319/A320/A321飞机来说,气象雷达数据都显示在ND上。 控制面板:用于选择气象雷达的工作方式,控制天线的俯仰角度和稳定性,对接收机灵敏度进行控制。 波导系统:波导管作为收发机和天线之间射频信号桥梁通道。 二、气象雷达对目标的探测 机载气象雷达主要用来探测飞机前方航路上的气象目标和其他目标的存在以及分布状况,并

将所探测目标的轮廓、雷雨区的强度、方位和距离等显示在显示器上。它是利用电磁波经天线辐射后遇到障碍物被反射回来的原理,目标的导电系数越高,反射面越大,则回波越强。要清楚气象雷达如何工作的关键在于了解雷雨的反射率。一般来说,雷雨的反射率被划分成三个部分:雷雨的下三分之一由于温度在冰点之上,所以全部由小雨滴组成,这部分是雷雨中对雷达波能量反射最强的部分。中间部分由过度冷却的水和冰晶组成,由于冰晶是不良的雷达波反射体,所以这部分的反射率开始减小了。雷雨的上部完全由冰晶组成,所以在雷达上几乎不可见。另外,正在形成的雷雨在其上部可能会形成拱形的紊流波,如图2-1所示:

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作

飞机惯性导航Matlab语言实现

%这是研究惯性导航的最好代码。记得自己添加测试数据 % 此为基于四元素法,角增量法的捷连惯导系统程序算法 % > 飞行器飞行过程中飞行高度不变 % > 航向角以逆时针为正 % > 以地理系为导航坐标系 % > 运行程序时需导入比力信息及陀螺议角速率信息 clc clear close all Data = load('Data1.txt'); f_INS = Data(:,2:4);% 加载加表数据 wib_INS = Data(:,5:7);% 加载陀螺数据 L0 = size(Data,1); Wie = 7.292115147e-5; %> 地球自传角速度 Re = 6378245; %> 地球椭球长半径 h = 30;% > 飞行高度 e = 1/298.3; %> 初始经纬度 Lamda(1) = 116.344695283*pi/180;% > 初始经度(弧度) L(1) = 39.975172*pi/180;% > 初始纬度(弧度) %> 初始姿态角 Seita(1) = 0.120992605*pi/180; %> 俯仰角(弧度) Gama(1) = 0.010445947*pi/180; %> 横滚角(弧度) Ksai(1) = 91.637207*pi/180;% > 航向角(弧度) %> 初始速度 Vx(1) = 0.000048637; %> x通道速度 Vy(1) = 0.000206947;% > y通道速度 Vz(1) = 0.007106781; %> z通道速度 %> 重力加速度计算参数 g0 = 9.7803267714; gk1 = 0.00193185138639; gk2 = 0.00669437999013; Vx = zeros(1,L0);Vy = zeros(1,L0);Vz = zeros(1,L0); Lamda = zeros(1,L0);L = zeros(1,L0);Seita = zeros(1,L0);Gama = zeros(1,L0);Ksai = zeros(1,L0); %> 四元素初始值 e0 = cos(0.5*Ksai(1))*cos(0.5*Seita(1))*cos(i0.5*Gama(1))-sin(0.5*Ksai(1))*sin(0.5*Seita(1))*sin(0.5* Gama(1)); e1 = -cos(0.5*Ksai(1))*sin(0.5*Seita(1))*cos(0.5*Gama(1))+sin(0.5*Ksai(1))*cos(0.5*Seita(1))*sin(0.5* Gama(1)); e2 = -cos(0.5*Ksai(1))*cos(0.5*Seita(1))*sin(0.5*Gama(1))-sin(0.5*Ksai(1))*sin(0.5*Seita(1))*cos(0.5* Gama(1));

机载气象雷达天线控制系统

龙源期刊网 https://www.360docs.net/doc/377804270.html, 机载气象雷达天线控制系统 作者:方智觅 来源:《科技视界》2015年第34期 【摘要】机载气象雷达天线控制系统是机载气象雷达的重要组成部分,用来控制天线的 运动,是飞机进行气象目标和地形探测的前提。机载气象雷达天线控制系统是自动控制技术在雷达中具体应用的产物,它涉及多方面的技术知识。 【关键词】天线控制;步进电机;光电脉冲发生器 随着航空技术的不断发展,人们对飞机的要求也越来越高,这促进了雷达技术的不断发展。机载气象雷达是雷达的一种,民用机载气象雷达的应用与发展则为飞行的安全性提供了可靠的保障。目前,具有风切变预警功能的机载气象雷达在民航飞机上的重要作用不可低估,已成为民航飞机必不可或缺的重要电子设备。机载气象雷达除了可以探测航路上的危险气象区域外,还可以用于观察地形并实现其他一些功能。现代机载气象雷达可实现的功能有以下几个方面: (1)探测航路前方扇形区域中的降雨区、冰雹区等气象区域; (2)探测夹带着雨粒的湍流区域; (3)观察飞机前下方的地形; (4)发现航路上的山峰等障碍物; (5)显示由其他系统输入的文字或图形信息; (6)用作雷达导航信标。 气象雷达天线是一种方向性很强的X波段微波天线。气象雷达发射机与接收机通过收发 转换开关通过天线实现雷达信号的辐射与回波信号的接收。在发射脉冲持续期内,气象雷达天线将发射机所产生的射频脉冲信号会聚成能量高度集中的雷达波束辐射到空中,在脉冲间隙期内(接收期内),目标所形成的反射回波由天线接收,输送给雷达接收机。 为了探测飞机前方广阔的扇形区域中的气象目标或观测飞机前方广阔的扇形区域中的气象目标或观测飞机前下方的地形,天线在辐射和接收雷达信号的同时,进行着往返的方位扫掠运动。与此同时,天线还必须根据飞机俯仰姿态和倾斜姿态的实时变化,自动地进行相对于飞机机身平面的俯仰修正运动,以保持天线扫掠平面的稳定。此外,还可在一定范围内对天线进行俯仰调节。为了实现雷达系统对天线运动及姿态的控制,天线组中除了用以辐射雷达信号的天

A320飞机惯性导航系统 校准 分析与维护

A320飞机惯性导航系统校准分析与维护A320飞机惯性导航系统校准分析与 维护 惯性导航是指利用惯性敏感元件测量航行体相对于惯性空间的线运动和角运动参数,在给定初始条件的情况下,由计算机推算出航行体的姿态、方位、速度、位置等导航参数,以引导航行体完成预定航行任务。这种建立在牛顿力学基础上的导航方法不依赖于任何外界信息,不受自然或人为因素的干扰,具有很好的隐蔽性,在航海、航空、航天等领域得到了广泛应用。惯性导航由于采用积分计算,其定位误差随时间而积累。目前普遍采用将惯性导航与其他种类的导航相组合的办法,这种组合能取各种导航方法之长,大大提高导航系统整体的定位精度和性能,是一种较为理想的导航方式。 我公司执管A320系列飞机采用惯性导航、无线电导航或惯性导航、卫星导航的组合导航方式,其中惯性导航系统采用捷联式惯性导航系统。系统的核心部件为三个惯性基准组件(IR),每个惯性基准组件已与相应的大气数据基准组件(ADR)组合在一起,称为大气数据惯性基准组件(ADIRU)。每个IR内均有三个激光陀螺和三个加速度计,分别用来测量绕飞机三轴的角加速度和沿飞机三轴的线加速度,测得的加速度信号经微处理器计算后,可以得到飞机各种各样的导航参数,这些参数一方面在各种显示仪表上显示,供飞行人员使用,另一方面传送至其他许多系统和设备,以完成特定的功能。 每套惯性导航系统均有两种工作方式,导航方式和姿态方式。导航方式是系统的正常工作方式,系统能提供全部的导航参数;姿态方式是系统导航计算功能失效后的减精度工作方式,此时系统仅能提供飞机的姿态和航向信息。

惯性导航系统进入导航工作方式前,必须进行校准。这是因为惯导系统采用的是积分计算,在进行计算前,系统必须知道飞机的初始状态。在校准过程中,系统寻找飞机所在处的地垂线,并确定当地的真北方位,从而获得飞机的初始姿态和初始方位信息。惯性导航系统通常有两种校准方式,正常校准和快速校准(又称反转校准)。 正常校准 飞机停在地面通电后,将惯导控制显示组件(CDU)上方式选择旋钮从OFF(关)位拔出置NAV(导航)位,系统在进行5秒钟的电瓶测试后即进入正常校准,CDU上校准(ALIGN)灯稳定地亮,飞机中央电子监控(ECAM)上显示屏显示IRSINALIGN7信息。此时,ADR提供的计算空速(CAS)、垂直速度(V/S)和气压高度(ALT)数据在正、副驾驶员位主飞行显示器(PFD)上显示。 惯性导航系统的正常校准一般需10分钟,校准过程主要分为三个阶段; 1.水平粗校准 正常校准的头30秒为水平粗校准阶段,主要利用加速度计测量飞机的姿态角,即俯仰角和倾斜角。 (1)利用纵向加速度计测量飞机的俯仰角 飞机停在地面上,俯仰角为θ、倾斜角为0时,虽然沿飞机纵轴方向没有线加速度,但纵向加速度计壳体随飞机纵轴俯仰了θ角,此时加速度计的质量摆敏感到了重力加速度g的分量g?sinθ?输出信号Uy 则Uy=Ky?g?sinθ(Ky为纵向加速度计比例系数) 当俯仰角θ很小时,sinθ?θ(θ单位为弧度)。 θ=Uy/(Ky?g) (2)利用横向加速度计测量飞机的倾斜角

20140410155620_课件B737NG气象雷达

浅谈B737NG气象雷达使用 一、一般介绍 我们公司执管的B737NG机型装有一套机载气象雷达,其基本组件为收发组、显示器、天线、控制面板。包括一部天线,一部收发机,一个或两个雷达控制盒(正副驾驶可以分别控制)。 收发机主要用于发射无线电脉冲,处理无线电回波,探测风切变并向机组发送警告和警戒信息,提供气象雷达数据显示,记录和显示故障状态及检测结果,在显示组件上生成图形。因为信号在传输过程中有衰减,所以在内部有补偿电路,保证远距离的气象目标和近距离目标在显示器上有同样的强度显示(如果目标条件相同)。 气象雷达系统可以提供气象条件、颠簸区域、风切变、地形图显示、地面杂波抑制、TFR(转换)等显示方式。雷达还具有穿透补偿功能,可以穿过降雨,更精确的看到降雨后面的风暴。此外,它也可以提供预测风切变的音响警告。 气象雷达数据显示在导航显示屏上,只有在扩展进近、扩展VOR、中央MAP、扩展MAP模式显示气象雷达数据或地形数据和风切变警告。如果EFIS控制面板上的TERR(地形)被选定或有来自EGPWS(增强型近地警告系统)的地形注意/地形越障警告时,EGPWS地形数据显示在导航显示屏上;如果TERR未被选定,且没有EGPWS警告,则只有气象雷达数据显示在导航显示屏上。当多种警告存在时,近地警告系统将自动确定警告呼叫的优先级,使

高一级警告出现在导航显示屏上,警告声音优先顺序如下:风切变(GPWS)、预测风切变(PWS)、GPWS 警告、TCAS 警告。 B737NG机型气象雷达使用的天线是平板式天线,其可生成高3.6度,宽3.4度的波束。天线稳定范围正负40度,扫描范围正负90度,天线稳定性是由收发机从大气数据惯性基准组件获得俯仰和横滚数据来控制的。 气象雷达系统控制面板包括左右EFIS控制面板、气象雷达控制面板。控制面板向收发机提供发射模式、仰角控制、增益控制、开/关气象雷达等功能。自动模式的控制面板,左右可以分别控制显示,这并不是说就存在两部天线和收发机,而是采用了分时扫描显示的办法。模式选择器有以下位置:TEST---开始收发机自检并在导航显示屏上显示检测结果;WX---收发机在导航显示屏上显示气象数据;WX/TRUB(WX-T)---收发机在导航显示屏上显示气象和颠簸数据;MAP---收发机在导航显示屏上显示地形特征;GC---地面杂波抑制,按下后无抑制功能,松开后自动恢复;TFR---转换显示,例如按下左边的TFR 把右边的模式,俯仰,增益转到左边ND 显示;仰角控制调节天线仰角在正负15度。增益控制调节收发机回波增益,在自动位,增益由收发机设定到校准水平。 气象雷达系统选择正常工作方式时只能有一个警戒信息显示在导航显示屏上,同时有多个警戒信息时,只有最高优先级的信息被显示。可能显示的提醒信息和显示有:WEAK:校准故

气象雷达原理与系统

1、测定目标的角坐标, 其中包括目标的方位角和仰角。雷达测角的物理基础是电波在均匀介质中传播的直线性和雷达天线的方向性。方向图的主要技术指标是半功率波束宽度θ0.5以及副瓣电平。在角度测量时θ0.5的值表征了角度分辨能力并直接影响测角精度, 副瓣电平则主要影响雷达的抗干扰性能。 2、振幅法测角可分为最大信号法和等信号法两大类。最大信号法测角的优点:1、简单;2、用天线方向图的最大值方向测角,此时回波最强,故信噪比最大,有利于检测发现目标。缺点:1、直接测量时测角精度不很高,约为波速半功率宽度的20%左右;2、不能判别目标偏离波速轴线的方向,故不能自动测角。 3、雷达发射机两种基本形式:单级振荡式发射机:只由一级大功率振荡器产生发射信号,主振放大式发射机:先由高稳固体微波源产生,再经级联的放大电路,形成满足功率要求的发射信号。 单级振荡式发射机的性能特点:简单、经济、轻便;质量技术指标低;产生简单发射波形;主振放大式发射机的性能特点:复杂、昂贵、笨重;质量技术指标高;产生各种复杂发射波形;二者共性:都需要脉冲调制器为其提供大功率的脉冲波。 4、超外差式雷达接收机的主要质量指标:①灵敏度:表示接收机接收微弱信号的能力。灵敏度用接收机最小可检测信号功率(Simin)来表示。制约接收机灵敏度的主要因素是接收机噪声。要提高灵敏度,必须减少噪声电平,同时还应使接收机有足够的增益。②接收机的工作频带宽度:表示接收机的瞬时工作频率范围,频带宽度越宽,选择性越差③动态范围:表示接收机能够正常工作所容许的输入信号强度变化的范围,使接收机开始出现过载时的输入功率Simax 与最小可检测信号功率Simin 之。过载:当输入信号太强时,接收机将发生饱和而失去放大作用。④中频的选择与滤波特性。中频的滤波特性是减少接收机噪声的关键。 ⑤工作稳定性(指环境条件和电源电压发生变化时,接收机的性能受影响的程度。希望影响越小越好)和频率稳定度⑥抗干扰能力:抗有源和无源干扰的能力。⑦微电子化和模块化结构:模块化结构的程度,微电子化程度,减少体积、重量、耗电、成本、技术实现难度。⑧放大量:放大量表示接收机放大信号的能力,接收机必须有足够的放大量,才能使十分微弱的回波信号具有足够的幅度来处理与显示。⑨、保真度:用来表示接收机输出信号波形与输入波形(高频包络)的相似程度。⑩噪声、噪声系数与灵敏度 5、如何提高接收机灵敏度:①降低总噪声系数F0,通常采用高增益、低噪声高放;②接收机中频放大器采用匹配滤波器,以便得到白噪声背景下输出最大信号噪声比;③识别系数M 与所要求的检测质量、天线波瓣宽度、扫描速度、雷达脉冲重复频率及检测方法等因素均有关系。在保证整机性能的前提下,尽量减小M的数值。 6、为提高雷达系统的灵敏度,须尽量减小分辨信号功率S min这就需要:(1)尽可能减小接收机的噪声系数或有效噪声温度(2)尽可能减小天线噪声温度(3)接收机选用最佳带宽 B opt(4)在满足系统性能要求下,尽量减小识别因子M,经常通过脉冲积累的方式减小M 7、混频器作用:将高频信号与本振电压进行混频并取出其差频,使信号在中频上进行放大。 8、雷达系统为了获得大的信噪比一是要尽量减少接收机内部的噪声,二是要增大发射功率。当一个线性的传递函数为信号函数的共轭时,其信噪比将达到最大,这个线性系统叫匹配滤波器。 9、正交鉴相是同时提取信号幅度和相位信息的有效方法。模拟(数字)正交鉴相又称零中频处理。所谓零中频是指因相干振荡器的频率与中频信号的中心频率相等(不考虑多普勒转移),使其差频为零。零中频处理既保持了处理时的全部信息,同时又在视频实现,因而得到了广泛应用。 10、数字正交鉴相三种方法:数字混频低通滤波法、数字插值法、Hilbert变换法 11、应用广泛的频率源:直接合成频率源、间接合成频率源、直接数字合成频率源 12、天线作用:测角、波束扫描和目标跟踪、测高。 13、雷达天线的基本参量:(1)辐射方向图(包括波束宽度、副瓣电平)(2)增益(有效孔

A320飞机惯性导航系统校准分析与维护

A320飞机惯性导航系统校准分析与维护 惯性导航是指利用惯性敏感元件测量航行体相对于惯性空间的线运动和角运动参数,在给定初始条件的情况下,由计算机推算出航行体的姿态、方位、速度、位置等导航参数,以引导航行体完成预定航行任务。这种建立在牛顿力学基础上的导航方法不依赖于任何外界信息,不受自然或人为因素的干扰,具有很好的隐蔽性,在航海、航空、航天等领域得到了广泛应用。惯性导航由于采用积分计算,其定位误差随时间而积累。目前普遍采用将惯性导航与其他种类的导航相组合的办法,这种组合能取各种导航方法之长,大大提高导航系统整体的定位精度和性能,是一种较为理想的导航方式。 关键词:ADIRU 校准维护 我公司执管A320系列飞机采用惯性导航、无线电导航或惯性导航、卫星导航的组合导航方式,其中惯性导航系统采用捷联式惯性导航系统。系统的核心部件为三个惯性基准组件(IR),每个惯性基准组件已与相应的大气数据基准组件(ADR)组合在一起,称为大气数据惯性基准组件(ADIRU)。每个IR 内均有三个激光陀螺和三个加速度计,分别用来测量绕飞机三轴的角加速度和沿飞机三轴的线加速度,测得的加速度信号经微处理器计算后,可以得到飞机各种各样的导航参数,这些参数一方面在各种显示仪表上显示,供飞行人员使用,另一方面传送至其他许多系统和设备,以完成特定的功能。 每套惯性导航系统均有两种工作方式,导航方式和姿态方式。导航方式是系统的正常工作方式,系统能提供全部的导航参数;姿态方式是系统导航计算功能失效后的减精度工作方式,此时系统仅能提供飞机的姿态和航向信息。 惯性导航系统进入导航工作方式前,必须进行校准。这是因为惯导系统采用的是积分计算,在进行计算前,系统必须知道飞机的初始状态。在校准过程中,系统寻找飞机所在处的地垂线,并确定当地的真北方位,从而获得飞机的初始姿态和初始方位信息。惯性导航系统通常有两种校准方式,正常校准和快速校准(又称反转校准)。 正常校准 飞机停在地面通电后,将惯导控制显示组件(CDU)上方式选择旋钮从OFF(关)位拔出置NAV (导航)位,系统在进行5秒钟的电瓶测试后即进入正常校准,CDU上校准(ALIGN)灯稳定地亮,飞机中央电子监控(ECAM)上显示屏显示"IRS IN ALIGN >7"信息。此时,ADR提供的计算空速(CAS)、垂直速度(V/S)和气压高度(ALT)数据在正、副驾驶员位主飞行显示器(PFD)上显示。 惯性导航系统的正常校准一般需10分钟,校准过程主要分为三个阶段; 1. 水平粗校准 正常校准的头30秒为水平粗校准阶段,主要利用加速度计测量飞机的姿态角,即俯仰角和倾斜角。 (1) 利用纵向加速度计测量飞机的俯仰角 飞机停在地面上,俯仰角为θ、倾斜角为0时,虽然沿飞机纵轴方向没有线加速度,但纵向加速度计壳体随飞机纵轴俯仰了θ角,此时加速度计的质量摆敏感到了重力加速度g的分量g·sinθ 输出信号Uy 则Uy=Ky·g·sinθ(Ky为纵向加速度计比例系数) 当俯仰角θ很小时,sinθ≈θ(θ单位为弧度)。

惯性导航系统发展应用现状

惯性导航系统发展应用现状 测绘10-2班张智远07103094 摘要:阐述了惯性导航技术的核心技术构成(陀螺定向),总结了惯性导航的发展概况,并列举出陀螺仪的发展历程及发展方向。同时,概括了惯性技术的应用领域及当前应用情况。最后指出,随着新型惯性器件的涌现和完善,以惯性导航为基础的组合导航系统将成为未来导航系统的主要发展方向。 关键词:惯性导航陀螺仪惯性导航技术惯性导航系统 惯性导航(Inertial Navigation)是20 世纪中期发展起来的完自主式的导航技术。通过惯性测量组件(IMU)测量载体相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动推算载体的瞬时速度和位置信息,具有不依赖外界信息、不向外界辐射能量、不受干扰、隐蔽性好的特点,且惯导系统能连续地提供载体的全部导航、制导参数(位置、线速度、角速度、姿态角)。惯性导航技术,包括平台式惯导系统和捷联惯导系统。平台式惯性导航系统将陀螺通过平台稳定回路控制平台跟踪导航坐标系在惯性空间的角速度。捷联惯性导航系统利用相对导航坐标系角速度计算姿态矩阵,把雷体坐标系轴向加速度信息转换到导航坐标系轴向并进行导航计算。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。3个自由度陀螺仪用来测量飞行器的三个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。 陀螺仪是惯性系统的主要元件。陀螺仪通常是指安装在万向支架中高速旋转的转子,转子同时可绕垂直于自转轴的一根轴或两根轴进动,前者称单自由度陀螺仪,后者称二自由度陀螺仪。陀螺仪具有定轴性和进动性,利用这些特性制成了敏感角速度的速率陀螺和敏感角偏差的位置陀螺。由于光学、MEMS 等技术被引入于陀螺仪的研制,现在习惯上把能够完成陀螺功能的装置统称为陀螺。陀螺仪种类多种多样,按陀螺转子主轴所具有的进动自由度数目可分为二自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高速旋转体物理特性工作的转子式陀螺,和利用其他物理原理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光纤陀螺等。 由于陀螺仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的先后、理论的建立和新型传感器制造技术的出现,将惯性技术的发展划分为四代,但是惯性技术发展的各阶段之间并无明显界线。 第一代惯性技术指1930年以前的惯性技术。自1687年牛顿三大定律的建立,并成为惯性导航的理论基础;到l852年,傅科(Leon Foucault)提出陀螺的定义、原理及应用设想;再到1908年由安修茨(Hermann Anschütz—Kaempfe)研制出世界上第一台摆式陀螺罗经,以及1910年的舒勒(Max Schuler)调谐原理;第一代惯性技术奠定了整个惯性导航发展的基础。 第二代惯性技术开始于上世纪40年代火箭发展的初期,其研究内容从惯性仪表技术发展扩大到惯性导航系统的应用。首先是惯性技术在德国V-II火箭上的第一次成功应用。到50年代中后期,0.5n mile/h的单自由度液浮陀螺平台惯导系统研制并应用成功。1968年,漂移约为0.005°/h的G6B4型动压陀螺研制成功。这一时期,还出现了另一种惯性传感

惯性导航系统的发展及应用

惯性导航系统的发展及应用 绪论 惯性导航是一门重要的学科技术,它是飞机、船舶、火箭等载体能顺利完成导航和控制任务的关键性技术之一。1942年德国在V-2火箭上首次应用了惯性导航原理;1954年纯惯性导航系统在飞机上试飞成功。30余年来,惯性导航技术获得迅速发展。在我国惯性导航技术已在航空、航天、航海和陆地车辆的导航和定位中得到应用。1970年以来,我过多次发射的人造地球卫星和火箭都采用了本国研制的惯性导航系统。不仅如此,70多年以来,这门科学技术还在大地测量、海洋勘测、石油钻井、航空测量和摄影等国民经济领域里获得成功应用。 惯性导航简介 惯性导航(Inertial Navigation)是20 世纪中期发展起来的完自主式的导航技术。通过惯性测量组件(IMU)测量载体相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动推算载体的瞬时速度和位置信息,具有不依赖外界信息、不向外界辐射能量、不受干扰、隐蔽性好的特点,且惯导系统能连续地提供载体的全部导航、制导参数(位置、线速度、角速度、姿态角)。惯性导航技术,包括平台式惯导系统和捷联惯导系统。平台式惯性导航系统将陀螺通过平台稳定回路控制平台跟踪导航坐标系在惯性空间的角速度。捷联惯性导航系统利用相对导航坐标系角速度计算姿态矩阵,把雷体坐标系轴向加速度信息转换到导航坐标系轴向并进行导航计算。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。3个自由度陀螺仪用来测量飞行器的三个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。 陀螺仪 陀螺仪是惯性系统的主要元件。陀螺仪通常是指安装在万向支架中高速旋转的转子,转子同时可绕垂直于自转轴的一根轴或两根轴进动,前者称单自由度陀螺仪,后者称二自由度陀螺仪。陀螺仪具有定轴性和进动性,利用这些特性制成了敏感角速度的速率陀螺和敏感角偏差的位置陀螺。由于光学、MEMS 等技术被引入于陀螺仪的研制,现在习惯上把能够完成陀螺功能的装置统称为陀螺。陀螺仪种类多种多样,按陀螺转子主轴所具有的进动自由度数目可分为二自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高速旋转体物理特性工作的转子式陀螺,和利用其他物理原理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光纤陀螺等。 单自由度陀螺仪敏感角速度,二自由度陀螺仪敏感角位移。为了将角速度和角位移转换成惯性系统中可用的信号,陀螺仪需安装信号传感器。为了能控制陀螺仪按一定的规律进动,需安装力矩器。 加速度计 加速度计是惯性导航系统的核心元件之一。依靠它对比力的测量,完成惯性导航系统确定载体的位置、速度以及产生跟踪信号的任务。载体加速度的测量必须十分准确地进行,而

新一代天气雷达系统功能规格需求书(C波段)..说课材料

新一代天气雷达系统功能规格需求书 (C波段) 中国气象局 二〇一〇年八月

修订说明 为指导和规范新一代天气雷达建设和技术升级工作,统一组网 新一代天气雷达技术状态,进一步提高雷达系统运行保障能力,更好地满足气象业务应用和发展需求,根据天气雷达技术发展状况,中国气象局组织对1997年发布的《新一代天气雷达系统功能规格需求书》进行了修订完善。 主要修订了新一代天气雷达系统的部分性能参数,增加了雷达 保障和培训方面的内容,同时对雷达的自动在线标定、易维护性、保 障维护时效、故障定位诊断、随机文件和仪表、机内状态监控、厂家 的保障培训职责等提出了明确要求。 修订工作由中国气象局综合观测司组织,中国气象局气象探测 中心牵头承担,高玉春、潘新民、黄晓、柴秀梅、陈大任、周红根、 高克伟、陈玉宝、蒋小平、徐俊领、雷茂生等同志参加了修订,张培昌、葛润生、张沛源、王顺生、李柏、李建明、苏德斌、李建国、张 建云、蒋斌、陈晓辉、陆建兵等专家进行了指导。

目录 1. 前言 2. 新一代天气雷达(C波段)系统总体性能规格需求 3. 雷达子系统功能规格需求 4. 雷达信号处理机功能规格需求 5. 数据处理与显示子系统功能规格需求 6. 雷达输出产品功能规格需求 7. 系统检测、标校功能规格需求 8. 系统与外部通信联接的性能规格需求 9. 保障性需求 10. 培训需求 11. 系统性能评估

1 前言 1.1 《气象事业发展纲要(1991-2020年)》明确指出,“2000年前将大力发展新一代天气雷达,加速多普勒天气雷达软硬件和应用技术的研究,建立新一代天气雷达的业务试验基地;2020年前将进一步加强新一代天气雷达、多参数天气 雷达和激光雷达等的研制,发展具有通信功能的气象卫星、新一代天气雷达及其他地基遥测遥感手段,进一步发展、完善中尺度气象监测网和气候监测网”。发展新一代天气雷达,并投入气象业务使用,是气象事业发展的需要。 1.2 《我国新一代天气雷达发展规划(1994-2010)》明确指出,“新一代天气雷达应该是一个能够定量估算回波强度、径向速度、谱宽和降水物相态等信息的全 相干系统。主要选用S和C两种波段,选取全相干体制。新一代天气雷达的主 要定量探测和测量对象,包括降水、热带气旋、雷暴、中尺度气旋、湍流、龙卷、冰雹、冻雨、冻结层、融化层等,并具备一定的晴空回波的探测能力”。 1.3按照《新一代天气雷达建设增补站点布局方案》对建立培训、研发和保障体 系的要求,根据《气象事业发展纲要(1991-2020年)》、《我国新一代天气雷达发 展规划》、《新一代天气雷达建设增补站点布局方案》,对《中国新一代天气雷达(CINRAD)性能要求》进行了修订,它对新一代天气雷达系统基本结构、各子系 统的性能等提出了要求。 1.4 为保证新一代天气雷达性能进一步满足气象业务发展的需要,更好地在灾害 性天气监测、预警中发挥作用,修订了《新一代天气雷达系统功能规格需求书》。修订后的《新一代天气雷达系统功能规格需求书》分S波段、C波段两种,分别作为S波段和C波段新一代天气雷达系统设计生产、考核、验收的基本依据。 2 新一代天气雷达(C波段)系统总体性能规格需求 2.1 对台风、暴雨、飑线、冰雹、龙卷等灾害性天气的有效监测和预警是新一代 天气雷达系统的重要任务。上述灾害性天气的空间尺度分布跨度较大,从台风的

惯性导航系统

惯性导航系统 以下是为大家整理的惯性导航系统的相关范文,本文关键词为惯性,导航,系统,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。 目录 1.惯性导航系统的概念.........................22.惯导系统的发展历史及发展趋势 (3)

惯性导航系统的发展.......................3我国的惯性导航系统.......................5捷联惯导系统现状及发展趋势...............63.惯性导航系统的组成........................104、惯性导航系统的工作原理....................145、惯性导航系统的功能.......................186、惯性导航系统的服务模式与应用模式..........207、惯性导航系统当前的应用情况................218、惯性导航系统的特点 (23) 系统的主要优点......................23系统的主要缺点.....................249、惯性导航系统给我们的启示. (24) 1 惯性导航系统 一、惯性导航系统的概念 什么是惯性导航或惯性制导呢?惯性导航系统(Ins)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。在给定的运动初始条件(初始地理坐标和初始速度)下,利用惯性敏感元件测量飞机相对惯性空间的线运动和角运动参数,用计算机推算出飞机的速度、位置和姿态等参数,从而引导飞机航行。 推算的方法是在运载体上安装加速度计,经过计算(一次积分和二次积分),从而求得运动轨道(载体的运动速度和距离),进而进行导航。在运载体上安装加速度计,用它来敏感、测量运载体运动的加速

惯性导航系统

惯性导航系统 一、惯性导航系统(Inertial Navigation System,INS) 1、基本概念 惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。 惯性导航系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固 态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光 陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好, 性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直 占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。我国的惯导技术 近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺 四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率 0.01°-0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率 0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的 性能。 惯性导航系统有如下主要优点:(1)由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的 影响;(2)可全天流全球、全时间地工作于空中、地球表面乃至水下;(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且 噪声低;(4)数据更新率高、短期精度和稳定性好。其缺点是:(1)由 于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4) 不能给出时间信息。但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。 2、惯性导航原理 目前,惯性导航分为两大类:平台式惯导和捷联式惯导。它们的主要区别在于,前者有实体的物理平台,陀螺和加速度计置于由陀螺定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;在捷联式惯导中,陀螺和加速度计直接固连在载体上。惯性平台的功能由计算机完成,

气象雷达系统操作性测试

气象雷达系统操作性测试 是否必检:Y 警告和注意事项: 警 告:不要移动油门杆,否则,油门杆的移动会引起前视风切变系统的自动工作,会对 人员和在前雷达舱区域的设备造成损伤。 警 告:在飞机加减燃油时,不要操作气象雷达,在离飞机300英尺范围内加减燃油时,不 要开启气象雷达,否则可能会引起爆炸。 警 告:确认开启雷达时,天线周围50英尺范围内无人,否则会伤人。 步骤: (1) 供电。 (2) 校准惯导(在NAV位)。 (a) 确认机长和副驾驶EADI上无ATT旗。 (3) 确保以下跳开关闭合: (a) P6-1板: 1) 6D13 WEATHER RADAR RT

(4) 对机长和副驾驶EFIS控制面板做如下设置: (a) 左、右ADF/VOR电门置OFF位。 (b) 方式选择选VOR。

(5) 将仪表转换组件的SOURCE电门置ALL ON 1(或ALL ON 2)位。 (6) 按压在WXR控制面板上的WX方式电门(适用于非高高原B737-700飞机)。 (7) 选择气象雷达控制面板上的左、右WX模式电门(适用于B737-800和高高原700型飞机)。

(8) 将机长和副驾驶EFIS控制面板上的WXR电门置ON位。 (9) 按压在WXR控制面板上的TEST电门(适用于非高高原B737-700飞机)。 注:需要3-15秒来显示以下情况。 (a) 确认听到“MONITOR RADAR DISPLAY”“GO AROUND , WINDSHEAR AHEAD, WINDSHEAR AHEAD,WINDSHEAR AHEAD”信息。 (b) 确认机长和副驾驶显示组件上显示WXR TEST和图501的图样。 步骤8和9的两次按键应连续进行 如不能显示工卡要求的结果,请联系工程师排故 737-700型飞机测试至此结束,步骤(10)仅适用737-800型

气象雷达系统项目可行性研究报告

【引言】 探测大气风场和光学湍流廓线的微波雷达系统(以下简称风廓线雷达)主要是由 Airda3000边界层风廓线雷达和Airda16000对流层(低平流层)风廓线雷达组成,主要是利用大气湍流对电磁波的散射作用进行地面到边界层和对流层顶的大气风场诸要素的遥感探测,探测要素主要有分层风的风速、风向、大气湍流Cn2等,是现代气象探测的重要新技术装备。风廓线雷达是21世纪世界气象组织推荐使用的一种新型大气遥感设备,在人工影响天气,大气环境监测,灾害性天气预报,数值天气预报,航空航天气象保障,突发气象灾害、化学气体泄漏等应急保障中都有着不可或缺的用途,是大气科学研究必不可缺少的先进大气探测装备。 国际上一些技术先进的国家都充分利用先进技术和大气探测技术的研究成果,研制不同制式、多功能风廓线雷达,建立国家风廓线雷达网,提高对大气污染物的输送、灾害性天气监测预警能力和人工影响天气的能力,提高数值预报、临近天气预报的准确度。在跨世纪的前后五年期间,美国、日本率先建立起国家风廓线雷达网,随后英国、德国、澳大利亚等国家也大力投入风廓线雷达监测网的建设,我国早在七五期间就着手风廓线雷达的研究,在2005年中国气象局预研我国风廓线雷达网的规划,现在计划在十二五期间,布设300套风廓线雷达,建立国家风廓线雷达网。 【目录】 第一部分气象雷达系统项目总论 总论作为可行性研究报告的首要部分,要综合叙述研究报告中各部分的主要问题和研究结论,并对项目的可行与否提出最终建议,为可行性研究的审批提供方便。 一、气象雷达系统项目概况 (一)项目名称 (二)项目承办单位介绍 (三)项目可行性研究工作承担单位介绍 (四)项目主管部门介绍 (五)项目建设内容、规模、目标 (五)项目建设地点 二、项目可行性研究主要结论 在可行性研究中,对项目的产品销售、原料供应、政策保障、技术方案、资金总额及筹措、项目的财务效益和国民经济、社会效益等重大问题,都应得出明确的结论,主要包括:(一)项目产品市场前景 (二)项目原料供应问题 (三)项目政策保障问题 (四)项目资金保障问题 (五)项目组织保障问题

气象雷达

A320系列飞机气象雷达系统介绍 第一部分概述 机载气象雷达系统(WXR)用于在飞行中实时地探测飞机前方航路上的危险气象区域,以选择安全的航路,保障飞行的舒适和安全。机载气象雷达系统可以探测飞机前方的降水、湍流情况,也可以探测飞机前下方的地形情况。在显示器上用不同的颜色来表示降水的密度和地形情况。新型的气象雷达系统还具有预测风切变(PWS)功能,可以探测飞机前方风切变情况,使飞机在起飞、着陆阶段更安全。 机载气象雷达系统的基本组成由:雷达收发机、雷达天线、显示器、控制面板和波导系统等。 雷达收发机:用来产生发射射频脉冲信号和接收并处理射频回波信号,提供气象、湍流和地形等显示数据,探测风切变事件并向机组发送警告和告诫信息。 雷达天线:用来产生高3.6°、宽3.4°的波束并接收回波信号。天线的稳定性受惯性基准组件(IRU)的俯仰和横滚数据控制。 显示器:对于A319/A320/A321飞机来说,气象雷达数据都显示在ND上。 控制面板:用于选择气象雷达的工作方式,控制天线的俯仰角度和稳定性,对接收机灵敏度进行控制。 波导系统:波导管作为收发机和天线之间射频信号桥梁通道。

第二部分本公司雷达型号 我们公司的气象雷达一共有3种类型,最早的一种是HONEYWELL公司的RTA-4B,适用于5架老飞机【2360,2361,2362,2363,2201,2202】,件号为066-50008-0405,一种是COLLINS公司 WXP-701X,件号为622-5132-622,适用于后续的320飞机【6261,2219,2220,2221,2230,6012,2410,2411,2412】,最后一种为COLLINS公司WXR2100(MULTISCAN),件号为822-1710-202,最近在逐步拆下送上海执行SB WRT-2100-34-502改装为件号822-1710-203的,适用于321飞机。(根据EO-2009-A320-34-048-R1《安装COLLINS带有“Multiscan”功能的气象雷达收发机PN 822-1710-203》,气象雷达收发机的件号由822-1710-202升级到822-1710-203,适用我公司飞机B-2291、B-2292、B-6332、B-6368、B-6369五架飞机。目前B-2291、B-2292、B-6332已完成改装, B-6368、B-6369尚未完成改装。按EO要求,飞机装上822-1710-203则不能装回822-1710-202,822-1710-202可以用822-1710-203替代;822-1710-203和822-1710-202不能混装(B-6368、B-6369是双雷达收发机构型)。目前空客IPC没有PN:822-1710-203资料,对IPC修订需要一段时间,IPC将不能及时反映改装的情况,维护人员要特别注意飞机的实际改装状态,在拆装WXR时,按实际情况安装对应件号的WXR。新的气象雷达收发机PN 822-1710-203修正了一些操作方面的限制并抑制BITE测试时的虚假信息,从而提高收发机的性能,包括:增加了气象评估功能,不显示不重要的气象信息;扩大气候与地理的相关性;改进了山区俯仰角度控制规则等等。) =============================================================================== 下面详细介绍WXR控制面板的主要功能和操作: 第一部分:RTA-4B(PN:066-50008-0405)

相关文档
最新文档