托卡马克磁场位形中带电粒子的运动解读

托卡马克磁场位形中带电粒子的运动解读
托卡马克磁场位形中带电粒子的运动解读

托卡马克磁场位形中带电粒子的运动

王中天

核工业西南物理研究院

(2007年核聚变与等离子体物理暑期讲习班)

Particle Dynamics in Tokamak Configuration

Ⅰ. Charged particle motion in a general magnetic field

1. Larmor orbits Particle in the magnetic field satisfies the equation of motion,

B e dt d m ?=υυ (1.1.1)

where m is the mass, e is the charge, υ is the velocity B is the

magnetic field. If the magnetic field is uniform in z-direction the components of the equation are

y c x dt

d υωυ= , x c y dt d υωυ-= (1.1.2) 0=dt

d z υ (1.1.3) wher

e m eB =ω is the cyclotron frequency. The solutions are

t c x ωυυsin ⊥=, t c y ωυυcos ⊥= (1.1.4)

.const z =υ (1.1.5)

The equation (1.14) can be integrated,

t x c ωρcos -= t y c s i n ρ= (1.1.6) where eB

m c ⊥⊥==υωυρ is the Larmor radius. Thus the particle has a helical orbit composed of the circular motion and a constant velocity in the direction of the magnetic field.

2. Particle drifts

The particle orbits calculated in last section resulted from the assumption of a uniform magnetic field and no electric field. The charged particles gyrate rapidly about the guiding centre of their motion. The perpendicular drifts of the guiding centre arise in the presence of any of the following [1]:

1) an electric field perpendicular to the magnetic field;

2) a gradient in magnetic field perpendicular to the magnetic field;

3) curvature of the magnetic field;

4) a time dependent electric field.

The drift velocity for each case is derived below.

B E ? drift

If there is an electric field perpendicular to the magnetic field the particle orbit undergo a drift perpendicular to both fields. This is the so-called B E ? drift.

The equation of motion is

)(B E e dt d m ?+=υυ (1.2.1)

Choosing the z coordinate along the magnetic field and the y coordinate along the perpendicular electrical field, the components of Eq.(1.2.1) are

B e dt d m y x υυ=, )(B E e dt d m x y

υυ-=

The solution of the equations can be written

B E t c x +=⊥ωυυsin , t c y ωυυcos ⊥= (1.2.2)

B E

is the B E ? drift which is independent of the charge, mass, and energy of the particle. The whole plasma is therefore subject to the drift.

B ? drift

If the magnetic field has a transverse gradient, this leads to a drift perpendicular to both the magnetic field and its gradient.

Taking the magnetic field in z direction and its gradient in y direction, the y component of the equation of motion is

B e dt d m x y

υυ-= (1.2.3)

where y B B B '+=0 d x x υυυ+=0 (1.2.4)

The unperturbed motion of the particle is written by

t c x ωυυsin 0⊥=, t y c ωρsin = (1.2.5)

We assume that both the gradient

y B ' and drift d υ are small, then,

we have

0000B y B B dt d e m d x x y υυυυ-'--= (1.2.6)

Taking the time average gives the drift

⊥??=υρυ221B B B d

(1.2.7) where eB m ⊥

=υρ, the ion and electron have opposite drift because of

the charge.

Curvature drift

When a particle ’s guiding center follow a curved magnetic field line it undergoes a centrifugal force ,

)(2//B e i R m dt d m c ?+=⊥⊥υυυ (1.2.8)

where c i is the unit vector outward along the radius of the curvature.

It is similar to Eq.(1.2.1) for the case of the

B E ? drift with the force

eE replaced R m /2//υ. By analogy the curvature drift is given by R

c d ωυυ2//= (1.2.9) Since c ω takes the sign of the charge, the electron and ion have

opposite drift, the drift direction is

B i e c ?. For axisymmetric system, B ? drift and curvature drift are in same direction. I will show you later.

Polarization drift

When an electric field perpendicular to the magnetic field varies

in time it results in what is called the polarization drift. The name is given from the fact the ion and electron drifts are in opposite direction and give rise to a polarization current.

The equation of motion is

])([B t E e dt d m ?+=υυ (1.2.10)

The electric field can be transformed away by moving to an accelerated frame having a velocity

2B B E f ?=υ (1.2.11) The equation of motion is then

B dt E d B m B e dt d m ?-?=2υυ (1.2.12)

This equation is similar to Eq.(1.2.1) with

E e being replaced by

B dt E d B m ?-2. The polarization drift is therefore dt E d B B B dt E d eB m c d ωυ1)(2=??-= (1.2.13) The polarization current, which play an important role in the neoclassical tearing modes, is

dt E d B j m p 2ρ= (1.2.14)

where m ρ is the mass density.

Ⅱ. Charged Particle motion in Tokamak Configuration

1. Hamiltonian Euations

Various equivalent forms of equations of motion may be

obtained by coordinate transformations. One such form is obtained by introducing a lagrangian function

),()(),,(t q U q T t q q L -= (2.1.1)

where the q and q

are the vector position and velocity over the all degrees of freedom, T is the kinetic energy, U is the potential energy, and any constraints are assumed to be time independent. The equations of motion are, for each coordinates, i q

0=??-??i i q L q L dt d (2.1.2) which is derived from a variation principle (?=0Ldt δ).

If we define the Hamiltonian by

∑-=i i i t q q L p q

t q p H ),,(),,( (2.1.3) where i i q L

p ??= . According to Eq.(2.1.2), we get a form of equations of motion by Hamiltonian,

i i q H

p ??-= (2.1.4)

i i p H

q ??= (2.1.5)

The set of p and q is known as generalized momenta and coordinates. Eqs. (2.1.4) and (2.1.5) are Hamiltonian equations. Any set variables p and q whose time evolution is given by Eqs. (2.1.4) and (2.1.5) is said to be canonical with i p and i q said to be conjugate variables.

2. Canonical transformation

In tokamak configuration, the relativistic Hamiltonian of a charged particle can be expressed as

Φ++-+-+-=e c m c R RA c e P A c e P A c e P H Z Z R R 42022222]/)()()[(φφ (2.2.1) where A R , A Z , and A φ are the vector potential components of the magnetic field, Φ is the electrical potential, 0m is the rest mass, and

e is the charge. P R , P φ, P Z, are the canonical momenta conjugate to R, φ, and Z respectively,

0R R R A c e u m P += (2.2.2) R c

e +0φφφA u Rm P = (2.2.3) 0Z Z Z A c e u m P += (2.2.4)

where γυ=u and 2/122)/1(c u +=γ is the relativistic factor. The magnetic field can be expressed as

φφ?+ψ???=I B (2.2.5)

where ψ is related to the poloidal flux of the magnetic field, I is related to the poloidal current, R is the major radius. Then, in tokamaks we have

, ln , 00R A R R I A A Z R ψ-=-==φ (2.2.6)

“There has been a gradual evolution over the years away from the averaging approach and towards the transformation approach” said Littlejohn [2]

We introduce a generating function [3, 4] for changing to the guiding center variables,

))(ln exp(22000000020001ZX tg R m X R R R m X R m F -Ω-ΩΩ-=α (2.2.7)

where

ln 0000R R R m X C Ω= (2.2.8)

and Ωc is the toroidal gyro-frequency, ρ the Larmor radius, α the gyro-phase, subscripts o and c refer to the values at the magnetic axis and the guiding center respectively. X and α are the new coordinates conjugate to the momenta 24 2αραρsin R sin Z P C X +

+= (2.2.9) 2120ραC m P Ω= (2.2.10)

That the moment is turned to be coordinate often occurs during area-conserved canonical transformation [3]. The other two canonical variables φP and φ do not change in the new coordinates. The old coordinates are connected with new ones through four identical equations,

αραρ

sin cos 0c R c R e m P Ω= (2.2.11)

X P Z -= (2.2.12)

)R cos exp(R R C C α

ρ-= (2.2.13)

24 2

αραρsin R sin P Z C X --= (2.2.14)

The Jacobian in the area-conserved transformation is unity [3], that is,

φατφαdXd

d dP dP JdP d x = (2.2.15) 1=J (2.2.16)

The exact Hamiltonian for the relativistic particles is

Φ++ψ+++Ω=e c m c e P R

R R P m H c c 4202222220}][1]cos sin )[(2{φααα (2.2.17)

It is suitable for particle simulation. The equations of motion and Vlasov ’s equation could be derived from the Hamiltonian.

For the gyro-kinetics the Hamiltonian in Eq.(2.2.17) could be averaged with the gyro-phase;

Φ+++Ω=e c m c u m P m H c 42022200)2(φα (2.2.18) We form a new invariant [2],

?=∏dX P x

π21

(2.2.19) New momenta ζαP P ,,∏,which are the three invariants, are conjugate

to ζαη,, and b dt d ωη=, ζωζ=dt d , ?ψ=ψ-=0c e P ζ which is actually the position variable [5]. The bounce frequency and the precession frequency are obtained from Hamiltonian equations,

1)(-?∏?=∏??==

H

H dt d b ηω (2.2.20) )/()(H H dt d ?∏?ψ?∏?-=ψ??==??ζωζ (2.2.21)

For the trapped particles in the large aspect ratio configuration, that is, the inversed aspect ratio 1<<ε, we get

)]()1()([)/(812115

.00000k K k k E m P m qR t --Ω=∏πεα (2.2.22)

which is the toroidal magnetic flux enclosed by drift surface. According to Eq.(2.2.20) and (2.2.21) the bounce frequency and the precession frequency are obtained [5,6, 7],

)

(2)/(105.000k K qR m P bt γεπωαΩ= (2.2.23) t p p p t G R m P k k K k E R m s P k K k E R m P 2000211120001120002)]1()

()([4]21)()([2ΩΩ=--ΩΩ+-ΩΩ=γγγωαααζ (2.2.24)

where p Ωis the poloidal gyro-frequency, 0/R r =ε, αφεP u m k 0200214Ω=, 212200)/21(c u m P C φαγ+Ω+

=, and s is the magnetic shear,)(1k E and )(1k K are complete elliptic functions, t G the normalized precession

velocity of the trapped particle seen in Fig.1,

For the circulating particles,

)(22000200k E u m qR r m c πσφ+Ω=∏ (2.2.25)

)(200k K qR u bc γσ

πωφ= (2.2.26)

02

020202020

2)()()]21()()([2ζφφφζωωγωγγωω+=Ω+=Ω+--Ω+=bc c p bc p p bc c q G rR u q k K k E R s u k k K k E rR u q (2.2.27)

where q is safety factor, c G is the normalized precession velocity of

the circulating particle seen in Fig.2, σ represents direction of the circulating particle and 212-=k k . It is found for first time that the

precession of all the circulating electrons is in ion diamagnetic direction if magnetic shear is neglected. It is easy to understand. Deep-trapped particles experience in the low field site. The precession is in one direction. Barely trapped particles experience both high field site and low field site. The precession is reversed. The circulating particles, which play very important role in the electron fishbone modes [8], like the barely trapped particles experience both high field site and low field site, therefore, the precession reversal is reasonable.

3. Non-relativistic scenario

The Hamiltonian of the charged particle is

, )],([21200200Φ+ψ++Ω=e P X e P mR P H x C C φα (2.2.28) Equations of motion are

dR dt B B u R Ru R R E =-φ()02 , (2.2.29)

dZ dt B B u R Ru R Z E d =-+φυ()0

2 , (2.2.30)

where . )(1= , = 22

00d 0E 202

R u m P R B E R R R u c p E +ΩΩ=ψΦ-=αυω??The B E ? drift, B ? drift, Curvature drift are recovered. If 20R Ru R u E - is smaller than d υ, particle will continuously drift along z-direction

until it is lost. Not all particles could be confined in tokamak configuration. There is somewhat of “ loss cone ” like in the mirror machine.

The velocities in R and Z directions are easy to change to the radial and poloidal directions through rotating the coordinates. For any tokamak configuration, the particle guiding-center equations of motion are reduced in (R, φ, Z ) coordinates,

υυψ=B B R p d , (2.2.31)

υυφp p E z p

B B u R Ru R B B =-+()02d , (2.2.32) where φυR u =,υψ is in radial direction, while υp is in poloidal direction. The Eqs.(2.31) and (2.32) are the generalized version of equations of motion obtained by Balescu [9].

In the large aspect ratio circular configuration, that is, the inversed aspect ratio, 1<<ε, from Eq.(2.2.28) we get

dr dt d =-υθsin (2.2.33)

d dt qR r

d θυυθφ=-10cos (2.2.34)

21

2202

0)2sin 2(θ

ευυυφφ⊥-= (2.2.35)

where 0φυ and 0⊥υ are the values at 0=θ point. When

002⊥<υευφ, the particle will be trapped mainly in the outer part of

the cross section forming banana a orbit. If particle is near the magnetic axis the orbit is like a potato [4] and called potato orbit.

With conservation of the canonical momentum in toroidal direction c e -0ψ=u m P φ, the equation of motion in the toroidal direction is

000φφυB E R R dt du d R Ω+Ω=, (2.2.36)

The electric field can be transformed away in Eq. (2.2.32) by moving to a frame having a velocity, p f B E =

υ. Eq. (2.2.36) is then 0000φ

φυB E R R dt dE B R dt du d R p f Ω+Ω+= (2.2.37) where f u represents toroidal velocity in the moving frame. If the radial electric field is time-dependent, dt dE

term will lush a toroidal

flow. The radial electric field may play an important role in the L-H mode transition [10]. The second term is the B //? acceleration [1]. The third term is the parallel electric field acceleration.

Figure 1 Normalized precession velocity of the trapped electrons versus 1k , s is the magnetic shear. For s

0≤ and 8.01≥k the

particles precession is reversed.

Figure 2 Normalized precession velocity of the circulating electrons versus k, s is the magnetic shear. For s

0≤ the precession

of all the particles is reversed.

References

[1] John Wesson, Tokamaks, The Oxford Engineering Science Series 48, Second edition 1997.

[2] Robert G. Littlejohn, J. Plasma physics 29, 111(1983).

[3] Lichtenberg A J and Lieberman M A, Regular and Stochastic Motion, Applied Sciences 38,

(Springer-Verlag New York Inc. 1983).

[4] Wang Z T 1999 Plasma Phys. Control. Fusion 41 A679.

[5] Hazeltine R D, Mahajan S M and Hitchcock D A 1972 Phys. Fluids 24 1164.

[6] Wang Z T, Long Y X, Dong J Q, Wang L and Zonca F 2006 Chin. Phys. Lett. 23 158.

[7] Connor J W, Hastie R J, and Martin T J, 1983 Nucl. Fusion 23 1702.

[8] Wang Z T, Long Y X, Wang A K, Dong J Q, Wang L and Zonca F 2007 Nucl. Fusion 47

accepted.

[9] Balescu R 1988 in Transport Processes in Plasma, (North-Holland, Amsterdam. Oxford. New

York. Tokyo), V ol.2, P.393.

[10] Wang Z.T. and Le Clarir G., 1992 Nucl. Fusion 32 2036.

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

带电体在磁场中的运动

带电在匀强磁场中的运动 (大庆实验中学2015-2016学年高二上学期期中)7.如图所示,一个带正电q 的小带电体处于一匀强磁场中,磁场垂直纸面向里,磁感应强度为B .带电体质量为m ,为了使它对水平绝缘面正好无压力,应( ) A .使 B 数值增大 B .使磁场以速率v=向上移动 C .使磁场以速率v=向右移动 D .使磁场以速率v= 向左移动 【考点】共点力平衡的条件及其应用;洛仑兹力. 【分析】小球能飘离平面的条件:竖直向上的洛伦兹力与重力平衡,由左手定则可知,当洛伦兹力竖直向上时,电荷向右运动,根据相对运动小球不动时,磁场相对小球向左运动. 【解答】解:小球能飘离平面的条件,竖直向上的洛伦兹力与重力平衡即:qvB=mg ,得: ,根据相对运动当小球不动 时,磁场相对小球向左运动.故选项D 正确,ABC 错误. 故选:D 【点评】考查了运动电荷在磁场中的运动,用左手定则判断洛伦兹力的方向,注意小球飘离地面的条件. (哈尔滨师大附属中2014-2015学年高二上学期期末)12.【多选】如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称。两导线通有大小相等、方向相反的电流。已知长直导线周围产生的磁场的磁感应强度B =k I r ,式中k 是常数,I 是导线中的电流、r 为点到导线的距离。一带负电的小球以初速度v 0从a 点出发沿连线运动到b 点。关于上述过程,下列说法正确的是 BC A .小球先做加速运动后做减速运动 B .小球一直做匀速直线运动 C .小球对桌面的压力先减小后增大 D .小球对桌面的压力先增大后减小 (大庆实验中学2015-2016学年高二上学期期末) 【多选】12. 如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v 与时间t 的关系图像可能是 BD (牡丹江一中2013-2014学年高二上学期期末)8.如图所示,空间存在垂直于纸面向里的磁感应强度为B 的匀强磁场,场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电量为-q 、质量为m 的带负电的小球套在直杆上,从A 点由静止沿杆下滑,小球与杆之间的动摩擦因数为μ,在小球以后运动的过程中,下列说法正确的是( B ) A .小球下滑的最大速度为v =mgsin θ μBq B .小球下滑的最大加速度为am =gsin θ C .小球的加速度一直在减小 D .小球的速度先增大后减小 (黑龙江某重点中学2014-2015届高二上学期期末) 【多选】 7. 如图所示,一带正电的滑环套在水平放置且足够长的粗糙绝缘杆上,整个装置处于方向如图所示的匀强磁场中.现给环施以一个水平向右的速度,使其运动,则滑环在杆上的运动情况可能是( ABD ) A.先做减速运动,后做匀速运动 B.一直做减速运动,直到静止 C.先做加速运动,后做匀速运动 D.一直做匀速运动 (大庆实验中学2012-2013学年高二11月月考) (安达市高级中学2013-2014学年高二下学期开学检测) 【多选】4. 如图所示,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是下图中的( AD )

《圆周运动的实例分析》教案设计

教学设计 高一年级物理《圆周运动的实例分析》 子 洲 中 学 艾娜

高一年级物理《圆周运动的实例分析》教学设计 一、教材依据 本节课是沪科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。 二、设计思路 (一)、指导思想 ①突出科学的探究性和物理学科的趣味性; ②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。 (二)、设计理念 本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境和指导学生探究实验,引导学生分析实验现象,归纳总结出实验结论。 (三)教材分析 本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。 本节通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。 (四)学情分析 本人任教的学生基础较好、动手能力较强,对物理学科特别是紧密联系生活的内容特感兴趣。而且学生已经学完向心力和向心加速度理论知识,将会在极大的好奇心中学习本节内容,只是缺乏对实际圆周运动的深度分析,还没有能将其上升至理论高度。 三、教学目标 (一)知识与技能

带电粒子在磁场中运动之多解周期运动问题

考点4.7 周期性与多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图6甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B 垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作 用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能穿过去,也可能转过180°从入射界面这 边反向飞出,从而形成多解,如图丙所示. 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图丁所示. 一圆筒的横截面如图所示,其圆心为O.筒有垂直于纸面向里的匀 强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中 M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子 自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方 向射入磁场中.粒子与圆筒发生两次碰撞后仍从S孔射出.设粒子与圆筒碰 撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: (1)M、N间电场强度E的大小; (2)圆筒的半径R.

(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处 由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。 1.如图所示,在纸面有磁感应强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想边界。已知三角形ABC边长为L,虚线三角形为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁 场。一电量为+q、质量为m的带正电粒子从AB边中点P垂直AB 边射入三角形外部磁场,不计粒子的重力和一切阻力,试求: (1)要使粒子从P点射出后在最快时间通过B点,则从P点射出 时的速度v0为多大? (2)满足(1)问的粒子通过B后第三次通过磁场边界时到B的 距离是多少? (3)满足(1)问的粒子从P点射入外部磁场到再次返回到P点的最短时间为多少?画出 粒子的轨迹并计算。

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

带电粒子在均匀电磁场中的运动

目 录 一、引言 ........................................................................................ 1 二、认识等离子体 ........................................................................ 1 三、单粒子轨道运动 .................................................................... 5 3.1带电粒子在均匀电场中的运动学特性 .. (5) 3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5) 3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5) 3.2带电粒子在均匀磁场中的运动学特性 .......................... 6 3.2.1洛伦兹力 .. (6) 3.2.2粒子的初速度0v 垂直于B ...................................... 7 3.2.3粒子的初速度0v 与B 成任一夹角时 (8) 3.3带电粒子在均匀电磁场中的运动学特性 (10) 3.3.10v 、E 和B 两两相互垂直 (10) 3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 (12) 四、小结 ...................................................................................... 16 参考文献 .. (16)

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 一、两类模型——轻绳类和轻杆类 1.轻绳类。运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点 的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的 最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。 2.轻杆类。运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡 状态。所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持 力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。过最高点的最小向心加速度。

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图1甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 图1 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过磁场飞出,也可能转过180°从入射界面这边反向飞出,从而形成多解,如图2甲所示. 图2 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示. 典例1(多选)如图17所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是()

图17 A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场 B .若该带电粒子在磁场中经历的时间是23 t 0,则它一定从ad 边射出磁场 C .若该带电粒子在磁场中经历的时间是54 t 0,则它一定从bc 边射出磁场 D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 答案 AC 解析 如图所示,作出刚好从ab 边射出的轨迹①、刚好从bc 边射出的轨 迹②、从cd 边射出的轨迹③和刚好从ad 边射出的轨迹④.由从O 点沿纸面 以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场可 知,带电粒子在磁场中做圆周运动的周期是2t 0.可知,从ad 边射出磁场经历的时间一定小于13t 0;从ab 边射出磁场经历的时间一定大于等于13t 0,小于56 t 0;从bc 边射出磁场经历的时间一定大于等于56t 0,小于43t 0;从cd 边射出磁场经历的时间一定是53 t 0. 典例2 如图18所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在磁场a 中,磁感应强度为2B ,方向垂直于纸面向里,在磁场b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电粒子从P 点沿y 轴负方向射入磁场b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.求: 图18 (1)粒子从P 点运动到O 点的最短时间是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl 12nm (n =1,2,3,…)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

带电粒子在磁场中的运动解题技巧

带电粒子在磁场中的运动 带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。只要确定了带电粒子的运动轨迹,问题便迎刃而解。下面举几种确定带电粒子运动轨迹的方法。 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。 例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点 相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。 解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。 由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°= 又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动 练习题 1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A .D′点一定在D 点左侧 B .D′点一定与D 点重合 C .D″点一定在 D 点右侧 D .D″点一定与D 点重合 2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗 糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A . B . C . D . 子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( ) A .Ga 最大 B .Gb 最大 C .Gc 最大 D .Gb 最小 5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B. t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象 限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个

圆周运动实例分析

圆周运动实例分析 广州南沙东涌中学 一.教学目标 1.知识与技能 1.能定量分析汽车转弯时的向心力由谁提供。 2.能定量分析汽车过拱形桥最高点和凹形桥最低点的压力问题。 3.会用牛顿第二定律分析生活中较简单的圆周运动问题。 2.过程与方法 通过对圆周运动的实例分析,渗透理论联系实际的观点,提高分析和解决问题的能力。 3.情感、态度与价值观 养成应用实践能力和思维创新意识;运用生活中的几个事例,激发学习兴趣、求知欲和探索动机;通过对实例的分析,建立具体问题具体分析的科学观念。 二.学情分析 学生已经学习过了圆周运动以及向心力的基本知识,并且生活中有很多圆周运动,学生在生活经验中已具备一些有关圆周运动的感性认识,但他们还不是很清楚物体做圆周运动的向心力应该由谁来充当,,也不能理性的分析和解释各种实际的圆周运动的情况。教学中要充分利用学生已有知识经验,使学生积极主动地参与教学过程。 三.重点难点 会用牛顿第二定律分析生活中较简单的圆周运动问题 四.教学过程 活动1【导入】引入新课 向同学们提出以下问题:1.物体做圆周运动受到的合外力是否为0? 2.向心力它是恒力还是变力以及向心力的公式? 3.生活中有哪些运动是圆周运动?引出本节课《圆周运动实例分析》 活动2【讲授】讲授新课 本节课主要有两个知识点:(1)汽车转弯问题(2)汽车过拱形桥问题 (1)汽车转弯的问题 1.汽车在水平路面转弯: 汽车在水平面转弯时,向心力由哪个力来提供?为什么汽车转弯时,要减速慢行? 通过PPT呈现汽车转弯时的图片,引导学生找出汽车转弯时的向心力由静摩擦力提供,通过分析可知,汽车转弯时 ,车速越大,所需向心力越大,因此,转弯时,必须减速慢行。 例题讲解; 例1.在一段半径为R的圆弧形水平弯道上,已知地面对汽车轮胎的最大静摩擦力等于车重的μ倍 ,则汽车转弯时的 安全速度是多少?

解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ①轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1一个质量为m,带电量为+q的粒子(不计重力), 从O点处沿+y方向以初速度射入一个边界为矩形的匀强 磁场中,磁场方向垂直于xy平面向里,它的边界分别是 y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________ 时,粒子将从上边界射出:当B满足条件_________时, 粒子将从左边界射出:当B满足条件_________时,粒子 将从下边界射出: 例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则 相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由 d Cosθ R R0 = + 有: θ + = Cos 1 d R0 ; 故粒子必能穿出EF的实际运动轨迹半径R≥R0 即: θ + ≥ = Cos 1 d qB mv R0 有: ) Cos 1( m qBd v0 θ + ≥ 。 图9-8 图9-9 图 9-10

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式: qB mv R = ③周期: qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的 物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系( T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下 两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 (2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 图9-1 图9-2 图9-3

知识讲解_带电粒子在磁场中的运动 提高

带电粒子在磁场中的运动 编稿:周军审稿:隋伟 【学习目标】 1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法。 2.理解质谱仪和回旋加速器的工作原理和作用。 【要点梳理】 要点一:带电粒子在匀强磁场中的运动 要点诠释: 1.运动轨迹 带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中: (1)当v∥B时,带电粒子将做匀速直线运动; (2)当v⊥B时,带电粒子将做匀速圆周运动; (3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动. 说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动. 2.带电粒子在匀强磁场中的圆周运动 如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q. (1)轨道半径:由于洛伦兹力提供向心力,则有 2 v qvB m r =,得到轨道半径 mv r qB =. (2)周期:由轨道半径与周期之间的关系 2r T v π =可得周期 2m T qB π =. 说明:(1)由公式 mv r qB =知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率 成正比. (2)由公式 2m T qB π =知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率 均无关,而与比荷q m 成反比. 注意: mv r qB =与 2m T qB π =是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明 题中,两公式不能直接当原理式使用. 要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:

《带电粒子在磁场中的运动》教案示例

《带电粒子在磁场中的运动》教案示例 设计思想 本节课是一节新常规课,组织方式为课堂教学。在设计本课时,遵循了新课程理念中“学生为主体、教师为主导”的原则,体现了传统媒体、现代媒体与课堂教学恰当整合的思想。 一.学生主体、教师主导的实现 主要通过恰当地创设教学情景来体现学生的主体地位。本节课共创设了以下几个情景: 1.在观察电子射线管中电子在磁场中的圆周运动的基础上,提出:从理论上如何分析、论证带电粒子垂直射入匀强磁场中时,为什么是匀速圆周运动?引导学生分析、推理、论证。 2.在得出带电粒子做匀速圆周的结论后,提出:粒子在多大的圆周上运动?运动一周的时间是多少?引导学生运用牛顿第二定律,结合圆周运动的知识,推导带电粒子运动的轨道半径和运动周期。 3.最后,提出:带电粒子在磁场中运动规律在实际中有什么应用?引导学生运用所学知识,分析质谱仪、回旋加速器的原理。 在整个课堂教学过程中,通过教师的引导,学生观察实验;思考回答问题;分析、推理、论证;完成实验原理设计,在这一系列的活动中,学生始终处于主体地位,是活动的主体。应用所学知识解决实际问题的过程,充分调动了学生的主体参与,而教师则始终主导着课堂的进行,体现教师的主导作用。 二.现代媒体与课堂教学的整合 在现代课堂教学中,现代媒体已经成为一个重要的支持教学的工具,媒体与课堂教学的整合一般有以下几种方式: 1.模拟演示/多媒体展示 2.情境化学习 3.微型世界 4.虚拟实验 具体采用哪种整合方式应视教学目标而定。在本课的教学中,目标是让学生建立带电粒子垂直进入匀强磁场时的运动图景,掌握带电粒子的运动规律及其应用。图景的建立是难点,为了突破这个难点,我设计了一个模拟带电粒子在磁场中运动的软件,在学生观察了电子射线管中电子的圆周运动后,再让学生观察模拟运动,帮助学生建立动态图景,突破了思维障碍。为了展示质谱仪和螺旋加速器的原理,我制作了相应的课件,动态演示它们的工作原理,帮助学生建立直观的图景,降低了教学难度。在整堂的教学过程中,传统媒体、现代媒体有机融合,相辅相成,使课堂教学行云流水,提高了课堂教学质量和教学效果。 教学设计

圆周运动的实例分析

圆周运动的实例分析(三) 1.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A运动的半径比B的大,则() A.A所需的向心力比B的大 B.B所需的向心力比A的大 C.A的角速度比B的大 D.B的角速度比A的大 2.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A和B,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是() A.速度v A>v B B.角速度ωA>ωB C.向心力F A>F B D.向心加速度a A>a B 3.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法正确的是() A.球A的线速度必定大于球B的线速度 B.球A的角速度必定小于球B的角速度 C.球A的运动周期必定小于球B的运动周期 D.球A对筒壁的压力必定大于球B对筒壁的压力 4.如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球在一个更高一些的水平面上做匀速圆周运动(图上未画出),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是() A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大 5.质量不计的轻质弹性杆P插在桌面上,杆端套有一个质量为m的小球,今使小球沿水平方向做半径为R的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为() A.mω2R B.m2g2-m2ω4R2 C.m2g2+m2ω4R2 D.不能确定

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

相关文档
最新文档