浙江专版2018高考数学一轮复习第3章三角函数解三角形第6节正弦定理和余弦定理

浙江专版2018高考数学一轮复习第3章三角函数解三角形第6节正弦定理和余弦定理
浙江专版2018高考数学一轮复习第3章三角函数解三角形第6节正弦定理和余弦定理

第六节 正弦定理和余弦定理

1.正弦定理和余弦定理

(1)S =1

2a ·h a (h a 表示边a 上的高);

(2)S =12ab sin C =12ac sin B =1

2bc sin A .

(3)S =1

2

r (a +b +c )(r 为内切圆半径).

1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)在△ABC 中,若A >B ,则必有sin A >sin B .( ) (2)在△ABC 中,若b 2

+c 2

>a 2

,则△ABC 为锐角三角形.( )

(3)在△ABC 中,若A =60°,a =43,b =42,则B =45°或135°.( )

(4)在△ABC 中,a sin A =a +b -c

sin A +sin B -sin C

.( )

[解析] (1)正确.A >B ?a >b ?sin A >sin B .

(2)错误.由cos A =b 2+c 2-a 2

2bc

>0知,A 为锐角,但△ABC 不一定是锐角三角形.

(3)错误.由b <a 知,B <A .

(4)正确.利用a =2R sin A ,b =2R sin B ,c =2R sin C ,可知结论正确. [答案] (1)√ (2)× (3)× (4)√

2.(教材改编)在△ABC 中,若sin 2

A +sin 2

B <sin 2

C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形

D .不能确定

C [由正弦定理,得a 2R =sin A ,b 2R =sin B ,c

2R

=sin C ,代入得到a 2+b 2<c 2

,由余弦

定理得cos C =a 2+b 2-c 2

2ab

<0,所以C 为钝角,所以该三角形为钝角三角形.]

3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =2

3,则b

=( )

A. 2

B. 3 C .2

D .3

D [由余弦定理得5=b 2

+4-2×b ×2×23,

解得b =3或b =-1

3

(舍去),故选D.]

4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知A =π

6

,a =1,b =3,则

B =________. 【导学号:51062120】

π3或2π3 [由正弦定理a sin A =b sin B ,代入可求得sin B =32,故B =π3或B =2π3.] 5.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.

2 3 [由题意及余弦定理得cos A =b 2+c 2-a 22bc =c 2+16-122×4×c =12

,解得c =2,所以S =

12bc sin A =1

2

×4×2×sin 60°=2 3.]

在△ABC 中,∠BAC =3π

4

,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD

的长.

[解] 设△ABC 的内角∠BAC ,B ,C 所对边的长分别是a ,b ,c , 由余弦定理得a 2

=b 2

+c 2

-2bc cos ∠BAC =(32)2+62

-2×32×6×cos 3π4

=18+36-(-36)=90, 所以a =310.6分 又由正弦定理得sin B =b sin ∠BAC a =3310=10

10

, 由题设知0<B <π

4,

所以cos B =1-sin 2

B =

1-110=31010

.10分 在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,所以∠ADB =π-2B , 故由正弦定理得

AD =

AB ·sin B sin π-2B =6sin B 2sin B cos B =3

cos B

=10.14分

[规律方法] 1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.

2.(1)运用余弦定理时,要注意整体思想的运用.

(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.

[变式训练1] (1)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边, 且(b -c )(sin

B +sin

C )=(a -3c )sin A ,则角B 的大小为( )

A .30°

B .45°

C .60°

D .120°

(2)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =5

13

,a =1,则

b =________.

(1)A (2)

2113 [(1)由正弦定理a sin A =b sin B =c

sin C

及(b -c )·(s in B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2

-c 2

=a 2

-3ac ,∴a 2

+c 2

-b 2

=3ac .又

∵cos B =a 2+c 2-b 22ac ,∴cos B =3

2

,∴B =30°.

(2)在△ABC 中,∵cos A =45,cos C =5

13

∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×

12

13=63

65

. 又∵a sin A =b sin B ,∴b =a sin B

sin A =1×

636535

=2113

.]

(1)(2017·浙江五校二联)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满

足a cos A =b cos B ,则△ABC 的形状为( )

A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰三角形或直角三角形

(2)(2017·绍兴二模)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

(1)D (2)A [(1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π

2,所以△ABC 为等腰三

角形或直角三角形,故选D.

(2)由A +B +C =π,A +B <C ,可得C >π

2,故三角形ABC 为钝角三角形,反之不成立.故

选A.]

[规律方法] 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.

2.无论使用哪种方法,都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能.

[变式训练2] 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A cos B =sin

C ,那么△ABC 一定是( )

A .直角三角形

B .等腰三角形

C .等腰直角三角形

D .等边三角形

B [法一:由已知得2sin A cos B =sin

C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .

法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac

=c ?a 2=b 2

?a =b .]

已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;

(2)设B =90°,且a =2,求△ABC 的面积. 【导学号:51062121】 [解] (1)由题设及正弦定理可得b 2

=2ac .2分 又a =b ,可得b =2c ,a =2c .

由余弦定理可得cos B =a 2+c 2-b 22ac =1

4

.6分

(2)由(1)知b 2

=2ac .8分

因为B =90°,由勾股定理得a 2

+c 2

=b 2

, 故a 2

+c 2

=2ac ,进而可得c =a = 2.12分 所以△ABC 的面积为1

2×2×2=1.14分

[规律方法] 三角形面积公式的应用方法:

(1)对于面积公式S =12ab sin C =12ac sin B =1

2bc sin A ,一般是已知哪一个角就使用哪

一个公式.

(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.

[变式训练3] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos

A )=c .

(1)求C ;

(2)若c =7,△ABC 的面积为33

2,求△ABC 的周长.

[解] (1)由已知及正弦定理得

2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C ,3分 故2sin C cos C =sin C .

可得cos C =12,所以C =π

3.6分

(2)由已知得12ab sin C =33

2.

又C =π

3

,所以ab =6.10分

由已知及余弦定理得a 2

+b 2

-2ab cos C =7, 故a 2

+b 2

=13,从而(a +b )2

=25. 所以△ABC 的周长为5+7.14分

[思想与方法]

1.在解三角形时,应熟练运用内角和定理:A +B +C =π,A 2+B 2+C 2=π

2

中互补和互余

的情况,结合诱导公式可以减少角的种数.

2.判定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.

3.在△ABC 中,A >B ?a >b ?sin A >sin B . [易错与防范]

1.已知两边及一边的对角,利用正弦定理求其它边或角.可能有一解、两解、无解. 在△ABC 中,已知a ,b 和A 时,解的情况如下:

课时分层训练(二十) 正弦定理和余弦定理

A 组 基础达标 (建议用时:30分钟)

一、选择题

1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )

A .锐角三角形

B .直角三角形

C .钝角三角形

D .不确定

B [由正弦定理得sin B cos

C +sin C cos B =sin 2

A , ∴sin(

B +

C )=sin 2

A ,

即sin(π-A )=sin 2

A ,sin A =sin 2

A .

∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π

2

.]

2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )

【导学号:51062122】

A .有一解

B .有两解

C .无解

D .有解但解的个数不确定

C [由正弦定理得b sin B =c

sin C ,

∴sin B =b sin C

c =40×

3220

=3>1.

∴角B 不存在,即满足条件的三角形不存在.]

3.在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3

D .4

A [由余弦定理得A

B 2

=AC 2

+BC 2

-2AC ·BC ·cos C ,即13=AC 2

+9-2AC ×3×cos 120°,化简得AC 2

+3AC -4=0,解得AC =1或AC =-4(舍去).故选A.]

4.(2017·台州二次适应性测试)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且

a 2+

b 2-

c 2=ab =3,则△ABC 的面积为( )

A.34

B.34

C.

32

D.32

B [依题意得cos

C =a 2+b 2-c 22ab =12,C =60°,因此△ABC 的面积等于12ab sin C =1

2

×3

×

32=3

4

,故选B.] 5.(2016·全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于1

3BC ,则sin A =( )

A.3

10 B.1010 C.55

D.

310

10

D [过A 作AD ⊥BC 于D ,设BC =a ,由已知得AD =a 3.∵B =π

4,∴AD =BD ,∴BD =AD =

a

3,DC =2

3

a ,∴AC =? ????a 32+? ??

??23a 2=5

3

a ,在△ABC 中,由正弦定理得

a sin ∠BAC =5

3a sin 45°,

∴sin ∠BAC =310

10,故选D.]

二、填空题

6.(2017·嘉兴模拟)在△ABC 中,a =15,b =10,A =60°,则cos B =__________. 63 [由正弦定理可得1532

=10sin B

,所以sin B =33,再由b <a ,可得B 为锐角,

所以cos B =1-sin 2

B =

63

.] 7.(2017·青岛模拟)如图3-6-1所示,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =22

3

,AB =32,AD =

3,则BD 的长为________.

图3-6-1

3 [∵sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =22

3,

∴在△ABD 中,有BD 2

=AB 2

+AD -2AB ·AD cos ∠BAD , ∴BD 2

=18+9-2×32×3×223=3,

∴BD = 3.]

8.已知△ABC 中,AB =3,BC =1,sin C =3cos C ,则△ABC 的面积为________. 32 [由sin C =3cos C 得tan C =3>0,所以C =π3

. 根据正弦定理可得BC sin A =AB sin C ,即1sin A =33

2

=2,

所以sin A =12.因为AB >BC ,所以A <C ,所以A =π6,所以B =π

2,即三角形为直角三

角形,

故S △ABC =12×3×1=3

2.]

三、解答题

9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =2,c =5,cos B =3

5.

(1)求b 的值;

(2)求sin C 的值. 【导学号:51062123】

[解] (1)因为b 2=a 2+c 2

-2ac cos B =4+25-2×2×5×35=17,所以b =17.6分

(2)因为cos B =35,所以sin B =4

5

,10分

由正弦定理b sin B =c sin C ,得1745

=5

sin C

所以sin C =417

17

.14分

10.(2017·云南二次统一检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,m =(sin

B,5sin A +5sin C )与n =(5sin B -6sin C ,sin C -sin A )垂直.

(1)求sin A 的值;

(2)若a =22,求△ABC 的面积S 的最大值.

[解] (1)∵m =(sin B,5sin A +5sin C )与n =(5sin B -6sin C ,sin C -sin A )垂直,∴m ·n =5sin 2

B -6sin B sin

C +5sin 2

C -5sin 2

A =0,

即sin 2B +sin 2C -sin 2

A =6sin

B sin

C 5.4分

根据正弦定理得b 2

+c 2

-a 2

6bc 5

, 由余弦定理得cos A =b 2+c 2-a 22bc =3

5

.

∵A 是△ABC 的内角, ∴sin A =1-cos 2

A =45.7分

(2)由(1)知b 2+c 2-a 2

=6bc 5,

6bc 5

=b 2+c 2-a 2≥2bc -a 2

.10分 又∵a =22,∴bc ≤10.

∵△ABC 的面积S =12bc sin A =2bc

5≤4,

∴△ABC 的面积S 的最大值为4.14分

B 组 能力提升 (建议用时:15分钟)

1.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 已知b =c ,a 2

=2b 2

(1-sin A ),则A =( )

A.3π

4 B.π3 C.π4

D.π6

C [∵b =c ,∴B =C .

又由A +B +C =π得B =π2-A

2.

由正弦定理及a 2

=2b 2

(1-sin A )得 sin 2

A =2sin 2

B (1-sin A ), 即sin 2

A =2sin 2

?

??

??π2-A 2(1-sin A ),

即sin 2

A =2cos 2

A

2(1-sin A ),

即4sin 2

A

2cos 2

A

2=2cos 2

A

2(1-sin A ),

整理得cos 2A 2? ?

???

1-sin A -2sin 2

A 2=0,

即cos 2

A

2

(cos A -sin A )=0.

∵0<A <π,∴0<A 2<π2,∴cos A

2

≠0,

∴cos A =sin A .又0<A <π,∴A =π

4

.]

2.(2017·浙江高考冲刺卷(一))在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且

a cos C ,

b cos B ,

c cos A 成等差数列,则角B =________;若b =3,a +c =3,则△ABC

的面积为________. 【导学号:51062124】

π3 32

[依条件有a cos C +c cos A =2b cos B ,由正弦定理得sin A cos C +sin C cos A =2sin B cos B ,即sin(A +C )=2sin B cos B ,则有sin B =2sin B cos B ,由sin B ≠0,

得cos B =12,又B ∈(0,π),故B =π3

.

由余弦定理得a 2

+c 2

-ac =3,即(a +c )2

-3ac =3,所以ac =2, 则S △ABC =12ac sin B =32

.]

3.在△ABC 中,cos C 是方程2x 2

-3x -2=0的一个根. (1)求角C ;

(2)当a +b =10时,求△ABC 周长的最小值.

[解] (1)因为2x 2

-3x -2=0,所以x 1=2,x 2=-12.2分

又因为cos C 是方程2x 2

-3x -2=0的一个根, 所以cos C =-12,所以C =2π

3

.6分

(2)由余弦定理可得:c 2=a 2+b 2-2ab ·? ??

??-12=(a +b )2

-ab ,10分

则c 2

=100-a (10-a )=(a -5)2

+75,

当a =5时,c 最小且c =75=53,此时a +b +c =10+53, 所以△ABC 周长的最小值为10+5 3.14分

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

解三角形(1)---正弦定理

解三角形(1)---正弦定理 【定理推导】 如图1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。思考: (1)∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? (2)显然,边AB 的长度随着其对角∠C 的大小的增大而增大,能否用一个 等式把这种关系精确地表示出来? 如图1-2,在Rt ?ABC 中,设BC=a 、AC=b 、AB=c ,根据锐角三角函数 中正弦函数的定义,有a sinA c =,sin b B c =,又sin 1c C c ==, 则a b c c sinA sinB sinC ===,从而在直角三角形ABC 中, sin sin sin a b c A B C ==。 思考:那么对于任意的三角形,以上关系式是否仍然成立?(分为锐角三角形和钝角三角形两种情况) 如图1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则:sin sin a b A B = , 同理可得 sin sin c b C B = ,从而 sin sin a b A B = sin c C = 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。 证法二:(向量法)过点A 作j AC ⊥ ,由向量的加法可得AB AC CB =+ 则 ()j AB j AC CB ?=?+ ∴j AB j AC j CB ?=?+? ()()0 0cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即 sin sin = a c A C 证明三:(外接圆法)如图所示,∠A =∠D ,∴ 2sin sin a a CD R A D ===, 同理:sin b B =2R ,sin c C =2R 同理,过点C 作⊥ j BC ,可得sin sin =b c B C ,从而a b c sinA sinB sinC == 类推:当?ABC 是钝角三角形时,以上关系式仍然成立。 从上面的探究过程,可得以下定理: c b a C B A (图1-2) c b a C B A (图1-3) c b a C B A j C B A (图1-1) a b c O B C A D

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高考数学三角函数知识点总结及练习

三角函数总结及统练 一. 教学内容: 三角函数总结及统练 (一)基础知识 1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ 2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值 3. 三角函数的符号——口诀:一正二弦,三切四余弦。 4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan 5. 同角三角函数的关系 平方关系:商数关系: 倒数关系:1cot tan =?αα 1c s c s i n =?αα 1s e c c o s =?αα 口诀:凑一拆一;切割化弦;化异为同。 6. 诱导公式——口诀:奇变偶不变,符号看象限。 α απ+k 2 α- απ- απ+ απ-2 α π -2 α π +2

正弦 αsin αsin - αsin αsin - αsin - αcos αcos 余弦 αcos αcos αcos - αcos - αcos αsin αsin - 正切 αtan αtan - αtan - αtan αtan - αcot αcot - 余切 αcot αcot - αcot - αcot αcot - αtan αtan - 7. 两角和与差的三角函数 ?????? ? ?+-=-?-+=+?????????+?=-?-?=+?-?=-?+?=+βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαt a n t a n 1t a n t a n )t a n (t a n t a n 1t a n t a n )t a n (s i n s i n c o s c o s )c o s (s i n s i n c o s c o s )c o s (s i n c o s c o s s i n )s i n (s i n c o s c o s s i n )s i n ( 8. 二倍角公式——代换:令αβ= ??????? -= -=-=-=?=ααααααααααα22222tan 1tan 22tan sin cos sin 211cos 22cos cos sin 22sin 降幂公式?????? ?+=-=22cos 1cos 22cos 1sin 22αααα 半角公式: 2cos 12 sin αα -± =;2cos 12cos αα+±=; αα αcos 1cos 12tan +-± = αα ααα cos 1sin sin cos 12 tan += -= 9. 三角函数的图象和性质 函数 x y sin = x y cos = x y tan =

必修五解三角形正弦定理和余弦定理

学案正弦定理和余弦定理 导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 自主梳理 1.三角形的有关性质 (1)在△ABC中,A+B+C=________; (2)a+b____c,a-bb?sin A____sin B?A____B; (4)三角形面积公式:S△ABC=1 2ah= 1 2ab sin C= 1 2ac sin B=_________________; (5)在三角形中有:sin 2A=sin 2B?A=B或________________?三角形为等腰或直角三角形; sin(A+B)=sin C,sin A+B 2=cos C 2. 自我检测 1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于() A.30°B.60°C.120°D.150° 3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为() A.27 B.21 C.13 D.3

4.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________. 5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3 ,则a =________. 探究点一 正弦定理的应用 例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c . 变式迁移1 (1)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用 例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2- b 2=a c . (1)求角B 的大小; (2)若c =3a ,求tan A 的值. 变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3 ,b =13,a +c =4,求a . 探究点三 正、余弦定理的综合应用 例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C . (1)证明:B =C ; (2)若cos A =-13 ,求sin ????4B +π3的值. 1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它 是对正、余弦定理,三角形面积公式等的综合应用. 2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求

高考数学复习三角函数常用公式

2019年高考数学复习三角函数常用公式 常见的三角函数包括正弦函数、余弦函数和正切函数。以下是三角函数常用公式,请打击学习记忆。 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及 sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

解三角形之正弦定理

1.1.1 解三角形之正弦定理2 2015.03.17 命题人——王峰 班级 姓名 学号 一、选择题 1.在△ABC 中,若∠B =135°,AC =2,则BC sin A = ( ) A .2 B .1 C . 2 D .2 2 2.在△ABC 中,∠B =45°,c =22,b =433 ,则∠A 的大小为 ( ) A .15° B .75° C .105° D .75°或15° 3.已知△ABC 的面积为3 2,且b =2,c =3,则sin A = ( ) A .32 B .12 C .34 D . 3 4.在△ABC 中,a =1,A =30°,C =45°,则△ABC 的面积为 ( ) A .22 B .24 C .32 D .3+14 5.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为 ( ) A .45° B .60° C .75° D .90° 6.在△ABC 中,(b +c )∶(a +c )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C = ( ) A .4∶5∶6 B .6∶5∶4 C .7∶5∶3 D .7∶5∶6 7.在△ABC 中,a =2b cos C ,则这个三角形一定是 ( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 *8.[2013·辽宁理,6]在△ABC 中,若a sin B cos C +c sin B cos A =1 2b ,且a >b ,则B = ( ) A .π6 B .π3 C .2π3 D .5π 6 二、填空题 9.在△ABC 中,若b =5,∠B =π 4,cos A =5 5,则sin A =________;a =________. 10.(1)在△ABC 中,若a =32,cos C =1 3,S △ABC =43,则b =________; (2)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________. 11.(1)在△ABC 中,若b =a cos C ,则△ABC 是___________三角形; (2)在△ABC 中,若a cos A =b cos B ,则△ABC 是______________三角形;

高考数学三角函数复习专题

三角函数复习专题 一、核心知识点归纳: ★★★1、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ?? ≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当22 x k π π=+ () k ∈Z 时,max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在2,22 2k k π πππ? ? - + ??? ? ()k ∈Z 上是增函数;在 32,222k k ππππ??++??? ? ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π πππ? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ? ?+∈Z ?? ? 对称轴()x k k π=∈Z 对称中心 (),02k k π?? ∈Z ??? 无对称轴 ★★2.正、余弦定理:在ABC ?中有: 函 数 性 质

①正弦定理: 2sin sin sin a b c R A B C ===(R 为ABC ?外接圆半径) 2sin 2sin 2sin a R A b R B c R C =??=??=? ? sin 2sin 2sin 2a A R b B R c C R ? =?? ? =?? ? =?? 注意变形应用 ②面积公式:111 sin sin sin 222 ABC S abs C ac B bc A ?= == ③余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ?=+-?=+-??=+-? ? 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ?+-=?? +-?=???+-= ?? 二、练习题 1、角α的终边过点 b b 则且(,5 3 cos ),4,--=α的值( ) A 、3 B 、-3 C 、3± D 、5 2、已知2π θπ<<,3 sin()25 πθ+=-,则tan(π-θ)的值为( ) A .34 B .43 C .34- D .4 3 - 3、2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 4、为得到函数πcos 3y x ? ?=+ ?? ?的图象,只需将函数sin y x =的图像( ) A .向左平移π 6个长度单位 B .向右平移 π 6 个长度单位 C .向左平移5π 6 个长度单位 D .向右平移 5π 6 个长度单位 5、()sin()(0,0,||)2 f x A x A ωφωφπ =+>>< 是( ) A. y = 2sin(x -4π) B. y = 2sin(x +4π) C. y = 2sin (2x -8π) D. y = 2sin (2x +8 π )

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

正弦定理解三角形

利用正弦定理解三角形 利用正弦定理可以解决以下两类有关三角形问题: 1、已知三角形的两角和任意一边,求三角形其他两边与角。 2、已知三角形的两边和其中一边的对角,求三角形其他边与角。 例题设计一: 已知△ABC,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1)。 (1)∠A=60°∠B=45° a=10 (2)∠A=45°∠B=105° c=10 (1)属于已知三角形的两角和其中一角的对边,先由三角形内角和定理知∠C=180°-∠A-∠B=75°,然后由正弦定理直接得:b===≈8.2,c==≈11.2 (2)为已知两角和另一角的对边,这时先利用∠A+∠B+∠C=π,求出另一角∠C=30°,然后由正弦定理得:a=== b=== 这两道例题均选自教材,使学生明确在三角形中已知两角和任意一边时,这样的三角形是唯一确定的。学会用方程思想分析正弦定理解决问题。 习题设计一: 设计意图:巩固当堂内容 已知在△ABC中,c=10, ∠A=45°,∠C=30°,求a、b和∠B.

解:∵,∴a=,∠B=180°- (∠A+∠C)=180°-(45°+30°)=105°,∵,∴ b ==20sin75°=20×=5+5. 例题设计二: 已知△ABC中,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1) (1) a=3 b=4 ∠A=30° (2) a=b=6 ∠A=120° (3) a=2 b=3 ∠A=45° (1)由正弦定理得sinB===,再由三角形内角和定理 知∠B的范围为:0°<B<150°,∴∠B≈41.8°或∠B≈138.2°,再根据“三角形中大边对大角”知 b=4>a=3,∴∠B>∠A, ∴∠B≈41.8°或∠B≈138.2°; 当∠B≈41.8°时,∠C≈180°-30°-41.8°=108.2°, c==≈5.7; 当∠B≈138.2°时,∠C≈180°-30°-138.2°≈11.8°,

高考数学总复习三角函数

高三数学二轮专题复习教案――三角函数 一、本章知识结构: 二、重点知识回顾 1、终边相同的角的表示方法:凡是与终边α相同的角,都可以表示成k ·3600+α的形式,特例,终边在x 轴上的角集合{α|α=k ·1800,k ∈Z},终边在y 轴上的角集合{α|α=k ·1800+900,k ∈Z},终边在坐标轴上的角的集合{α|α=k ·900,k ∈Z}。在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。 理解弧度的意义,并能正确进行弧度和角度的换算; ⑴角度制与弧度制的互化:π弧度ο 180=, 1801π = ο弧度,1弧度 ο )180 ( π ='1857ο≈ ⑵弧长公式:R l θ=;扇形面积公式: Rl R S 21212==θ。 2、任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、 诱导公式: (1)三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则: ,cos ,sin r x r y == ααx y =αtan (2)三角函数符号规律:一全正,二正弦,三正切,四余弦; (3)特殊角的三角函数值 α 6π 4π 3π 2π π 23π 2π sin α 0 21 22 23 1 -1 cos α 1 23 22 21 0 -1 0 1

tan α 0 33 1 3 不存在 0 不存在 0 (3)同角三角函数的基本关系: x x x x x tan cos sin ; 1cos sin 22==+ (4)诱导公式(奇变偶不变,符号看象限): sin(πα-)=sin α,cos(πα-)=-cos α,tan(πα-)=-tan α sin(πα+)=-sin α,cos(πα+)=-cos α,tan(πα+)=tan α sin(α-)=-sin α,cos(α-)=cos α,tan(α-)=-tan α sin(2πα-)=-sin α,cos(2πα-)=cos α,tan(2πα-)=-tan α sin(2k πα+)=sin α,cos(2k πα+)=cos α,tan(2k πα+)=tan α,()k Z ∈ sin(2 π α -)=cos α,cos(2 π α -)=sin α sin(2 π α +)=cos α,cos(2 π α +)=-sin α 3、两角和与差的三角函数 (1)和(差)角公式 ①;sin cos cos sin )sin(βαβαβα±=± ②;sin sin cos cos )cos( βαβαβαμ=±③βαβ αβαtan tan 1tan tan )tan(μ±= ± (2)二倍角公式 二倍角公式:①αααcos sin 22sin =; ②ααααα2 222sin 211cos 2sin cos 2cos -=-=-=;③ ααα2tan 1tan 22tan -= (3)经常使用的公式 ①升(降)幂公式: 21cos 2sin 2αα-= 、21cos 2cos 2αα+=、1 sin cos sin 22ααα =; ②辅助角公式:sin cos )a b ααα?+=+(?由,a b 具体的值确定); ③正切公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-?. 4、三角函数的图象与性质 (一)列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘: ⑴最值的情况; ⑵了解周期函数和最小正周期的意义.会求sin()y A x ω?=+的周期,或者经过简单的恒等变形可化为上

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

高考数学-三角函数大题综合训练

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值.

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

高三数学知识点总结三角函数公式大全

2014高三数学知识点总结:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是为大家整理的三角函数公式大全:锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)²] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°) /2]}

相关文档
最新文档