PCBA虚焊及解决PCBA虚焊的方法

PCBA虚焊及解决PCBA虚焊的方法
PCBA虚焊及解决PCBA虚焊的方法

PCBA虚焊及解决PCBA虚焊的方法

什么是PCBA虚焊?

就是表面看起来是焊连了,实际内部并没有通,或者处于可能通也可能不通的中间不稳定状态。这样最可恶。找起问题来比较困难。

就是常说的冷焊(cold solder),有些是因为焊接不良或少锡造成元件脚和焊垫没有导通,其他还有因为元件脚、焊垫氧化或有杂质造成。肉眼的确不容易看出。。

PCBA虚焊是常见的一种线路故障,有两种,

一种是在生产过程中的,因生产工艺不当引起的,时通时不通的不稳定状态;

另外一种是电器经过长期使用,一些发热较严重的零件,其焊脚处的焊点极容易出现老化剥离现象所引起的。

如何判断的话,楼主可以到网上去搜索一下,很多的方法。

英文名称cold solder,一般是在焊接点有氧化或有杂质和焊接温度不佳,方法不当造成的.实质是焊锡与管脚之间存在隔离层.它们没有完全接触在一起.肉眼一般无法看出其状态. 但是其电气特性并没有导通或导通不良.影响电路特性.

对元件一定要防潮储藏.对直插电器可轻微打磨下.在焊接时,可以用焊锡膏和助焊剂.最好用回流焊接机.手工焊要技术好.只要第一次焊接的好.一般不会出现"电器经过长期使用,一些发热较严重的零件,其焊脚处的焊点极容易出现老化剥离现象所引起的". 这是板基不好.

解决PCBA虚焊的方法:

我想这个问题应该是:有什么好办法较容易发现PCBA虚焊部位。

1)根据出现的故障现象判断大致的故障范围。

2)外观观察,重点为较大的元件和发热量大的元件。

3)放大镜观察。

4)扳动电路板。

5)用手摇动可疑元件,同时观察其引脚焊点有否出现松动。

什么会出现虚焊?如何防止?

虚焊是最常见的一种缺陷。有时在焊接以后看上去似乎将前后的钢带焊在一起,但实际上没有达到融为一体的程度,结合面的强度很低,焊缝在生产线上要经过各种复杂的工艺过程,特别是要经过高温的炉区和高张力的拉矫区,所以虚焊的焊缝在生产线上极易‘造成断带事故,给生产线正常运行带来很大的影响。

虚焊的实质就是焊接时焊缝结合面的温度太低,熔核尺寸太小甚至未达到熔化的程度,只是达到了塑性状态,经过碾压作用以后勉强结合在一起,所以看上去焊好了,实际上未能完全融合。

分析虚焊的原因和步骤可以按以下顺序进行:

(1)先检查焊缝结合面有无锈蚀、油污等杂质,或凸凹不平、接触不良,这样会使接触电阻

增大,电流减小,焊接结合面温度不够。

(2)检查焊缝的搭接量是否正常,有无驱动侧搭接量减小或开裂现象。搭接量减小会使前后

钢带的结合面积太小,使总的受力面减小而无法承受较大的张力。特别是驱动侧开裂现象会造成应力集中,而使开裂越来越大,而最后拉断。

(3)检查电流设定是否符合工艺规定,有无在产品厚度变化时电流设定没有相应随之增加,使焊接中电流不足而产生焊接不良。

(4)检查焊轮压力是否合理,若压力不够,则会因接触电阻过大,实际电流减小,虽然焊接控制器有恒电流控制模式,但电阻增大超过一定的范围(一般为15%),则会超出电流补偿的极限,电流无法随电阻的增加而相应增加,达不到设定的数值。这种情况下系统正常工作时会发出报警。在实际操作中,若一时无法分析出虚焊发生的确切原因,可以将钢带的头尾清理干净以后,加大焊接搭接量,适当增加焊接电流和焊轮压力再焊一次,并在焊接中密切注意焊缝的形成状态,大部分情况下都可以应急处理好问题。当然,如果出现控制系统问题,或电网电压波动等使焊缝虚焊就必须采取其他措施加以解决。

焊接品质的控制

要想焊接好,设计时就要控制好,还有焊接的火侯也是很关键的,以下是流水作业长遇到的问题及解决方法,抛砖引玉!关键是要实践中了解.

一、焊接前对印制板质量及元件的控制

1.1 焊盘设计

(1)在设计插件元件焊盘时,焊盘大小尺寸设计应合适。焊盘太大,焊料铺展面积较大,形成的焊点不饱满,而较小的焊盘铜箔表面张力太小,形成的焊点为不浸润焊点。孔径与元件引线的配合间隙太大,容易虚焊,当孔径比引线宽0.05 - 0.2mm,焊盘直径为孔径的2 - 2.5倍时,是焊接比较理想的条件。

(2)在设计贴片元件焊盘时,应考虑以下几点:为了尽量去除“阴影效应”,SMD的焊端或引脚应正对着锡流的方向,以利于与锡流的接触,减少虚焊和漏焊。波峰焊时推荐采用的元件布置方向图如图1所示。

波峰焊接不适合于细间距QFO、PLCC、BGA和小间距SOP器件焊接,也就是说在要波峰焊接的这一面尽量不要布置这类元件。

较小的元件不应排在较大元件后,以免较大元件妨碍锡流与较小元件的焊盘接触 造成漏焊。

1.2 PCB平整度控制

波峰焊接对印制板的平整度要求很高,一般要求翘曲度要小于0.5mm,如果大于0.5mm 要做平整处理。尤其是某些印制板厚度只有1.5mm左右,其翘曲度要求就更高,否则无法保证焊接质量。

1.3 妥善保存印制板及元件,尽量缩短储存周期在焊接中,无尘埃、油脂、氧化物的铜箔及元件引线有利于形成合格的焊点,因此印制板及元件应保存在干燥、清洁的环境下,并且尽量缩短储存周期。对于放置时间较长的印制板,其表面一般要做清洁处理,这样可提高可焊性,减少虚焊和桥接,对表面有一定程度氧化的元件引脚,应先除去其表面氧化层。

二、生产工艺材料的质量控制

在波峰焊接中,使用的生产工艺材料有:助焊剂和焊料。分别讨论如下:

2.1 助焊剂质量控制

助焊剂在焊接质量的控制上举足轻重,其作用是:

(1)除去焊接表面的氧化物;

(2)防止焊接时焊料和焊接表面再氧化;

(3)降低焊料的表面张力;

(4)有助于热量传递到焊接区。

目前,波峰焊接所采用的多为免清洗助焊剂。选择助焊剂时有以下要求:

(1)熔点比焊料低;

(2)浸润扩散速度比熔化焊料快;

(3)粘度和比重比焊料小;

(4)在常温下贮存稳定。v 2.2 焊料的质量控制

锡铅焊料在高温下(250℃)不断氧化,使锡锅中锡-铅焊料含锡量不断下降,偏离共晶点,导致流动性差,出现连焊、虚焊、焊点强度不够等质量问题。可采用以下几个方法来解决这个问题:

①添加氧化还原剂,使已氧化的SnO还原为Sn,减小锡渣的产生。

②不断除去浮渣。

③每次焊接前添加一定量的锡。

④采用含抗氧化磷的焊料。

⑤采用氮气保护,让氮气把焊料与空气隔绝开来,取代普通气体,这样就避免了浮渣的产生。

这种方法要求对设备改型,并提供氮气。

目前最好的方法是在氮气保护的氛围下使用含磷的焊料,可将浮渣率控制在最低程度,焊接缺陷最少、工艺控制最佳。

三、焊接过程中的工艺参数控制

焊接工艺参数对焊接表面质量的影响比较复杂,并涉及到较多的技术范围。3.1 预热温度的控制

预热的作用:①使助焊剂中的溶剂充分挥发,以免印制板通过焊锡时,影响印制板的润湿和焊点的形成;②使印制板在焊接前达到一定温度,以免受到热冲击产生翘曲变形。根据我们的经验,一般预热温度控制在180 200℃,预热时间1 - 3分钟。

3.2 焊接轨道倾角

轨道倾角对焊接效果的影响较为明显,特别是在焊接高密度SMT器件时更是如此。当倾角太小时,较易出现桥接,特别是焊接中,SMT器件的“遮蔽区”更易出现桥接;而倾角过大,虽然有利于桥接的消除,但焊点吃锡量太小,容易产生虚焊。轨道倾角应控制在5°- 7°之间。

3.3 波峰高度

波峰的高度会因焊接工作时间的推移而有一些变化,应在焊接过程中进行适当的修正,以保证理想高度进行焊接波峰高度,以压锡深度为PCB厚度的1/2 - 1/3为准。3.4 焊接温度

焊接温度是影响焊接质量的一个重要的工艺参数。焊接温度过低时,焊料的扩展率、润湿性能变差,使焊盘或元器件焊端由于不能充分的润湿,从而产生虚焊、拉尖、桥接等缺陷;焊接温度过高时,则加速了焊盘、元器件引脚及焊料的氧化,易产生虚焊。焊接温度应控制在250+5℃。

四、常见焊接缺陷及排除

影响焊接质量的因素是很多的,下表列出的是一些常见缺陷及排除方法,以供参考。

缺陷产生原因焊点不全

1、助焊剂喷涂量不足

2、预热不好

3、传送速度过快

4、波峰不平

5、元件氧化

6、焊盘氧化

7、焊锡有较多浮渣

解决方法

1、加大助焊剂喷涂量

2、提高预热温度、延长预热时间

3、降低传送速度

4、稳定波峰

5、除去元件氧化层或更换元件

6、更换PCB

7、除去浮渣

桥接

1、焊接温度过高

2、焊接时间过长

3、轨道倾角太小

解决方法

1、降低焊接温度

2、减少焊接时间

3、提高轨道倾角

焊锡冲上印制板

1、印制板压锡深度太深

2、波峰高度太高

3、印制板葬翘曲

解决方法

1、降低压锡深度

2、降低波峰高度

3、整平或采用框架

钻孔崩落应力测量方法简介

钻孔崩落应力测量方法简介 一.孔壁崩落的力学机制 根据弹性理论,在单项水平应力σ作用下的一个无限大矩形平板中,其内部为一均匀应力场。这时的应力分布状态为: 式中,θ由σ方向逆时针量取,σ r 、σ θ 和τ rθ 分别为径向,切向和剪切应力。 当在矩形板中心钻了一个半径为α的圆孔后,势必扰动原来的应力场,寻致应力的重新分布。这时,在圆孔附近的应力分布由基尔希方程给出: 而当γ=α时,也就是说,孔壁上的应力分布为: 由方程(3)可以看出,当时,即在与σ垂直的孔径的两个端点上,切向应力σ θ 有最大值3σ,当θ=0和π时,即在平行于σ的孔径的两个端点上,切向应力仅有极小值为-σ。 由上述可见,应力的集中,仅仅是在与σ正交的直径的孔壁上,切向应力取得最大值。而随着径向的延伸(即r逐渐增大),在与σ垂直的方向(即)上,切向应力变化为:

显然,切向应力σ θ 随着径向的延伸而迅速减小。当半径(r)等于几个钻孔半径时,切向应力就近似地等于施加应力(σ)。如当r=1.3α时,σ θ =1.82lσ,而当r=4α时,σ θ 就仅为1.0372σ。 地壳中的岩石,一般都是处在各向不等载荷的压应力作用下。对于一个沿直铅孔来说,它的横载面往往都是处于两项水平主应力σ 1 和σ 2 (σ 1 >σ 2 )的压缩之下。根据叠加原理,这时孔壁上(即r=α处)的应力分布状态为: 由上式可见,当时,即在与最小水平主应力平行的钻孔直径的两个端点(M和N),切向应力σ θ 达到最大值(σ θ =3σ 1 -σ 2 );而当θ=0和π时,即在与最大水平主应力平行的直径的两个端点(P和Q),切向应力σ θ 达到最小值(σ θ =3σ 2 -σ 1 图2)。根据脆性破裂理论,当作用在M和N点处的切向应力,达到或超过该点处的破裂强度时,就会使孔壁岩石崩落,形成崩落椭圆孔段,其长轴方向与最小水平主应力方向平行。 二.钻孔崩落椭圆的形成条件 在不同地质时期形成的各种岩石,都具有一定的强度,因而在地壳应力场的作用下,能够发生弹性变形,并可以在孔壁附近引起应力集中。 钻孔崩落椭圆的形成,必须满足一定的地应力场条件,即最大水平主应力与最小水平主应力不相等。如果钻孔处于各项均匀的地应力场中(即σ 1 =σ 2 ),这时沿钻孔圆周的切向应力σ θ ≈2σ 1 ,假定岩石也是各项均匀的话,则不会产生优势方向的孔壁崩落现象。 大量的地壳应力测量资料表明,在地壳中各项应力都存在着明显差异,而且两项水平主应力值及其差值(σ 1 -σ 2 ),大都是随深度呈线性增加的。因此,一般来说,形成钻孔孔壁崩落的地应力场条件是普遍存在的。

应变测试方法

应变测试方法 电阻应变测试 1.电阻应变测量技术是用电阻应变片测量构件的表面应变,再根据应力—应变关系确定构件表面应力状态的一种实验应力分析方法。 用电阻应变片测量应变的过程: 2.分类: (1)静态测量:对永远恒定的载荷或短时间稳定的载荷的测量。(2)动态测量:对载荷在2~1200HZ范围内变化的测量。 3.电阻应变测量方法的优点 (1)测量灵敏度和精度高。其最小应变读数为1με(微应变,1με=10-6 ε)在常温测量时精度可达1~2%。 (2)测量范围广。可测1με~20000με。 (3)频率响应好。可以测量从静态到数十万赫的动态应变。(4)应变片尺寸小,重量轻。最小的应变片栅长可短到0.178毫米,安装方便,不会影响构件的应力状态。 (5)测量过程中输出电信号,可制成各种传感器。 (6)可在各种复杂环境下测量。如高、低温、高速旋转、强磁

场等环境测量。 4.电阻应变测量方法的缺点 (1)只能测量构件的表面应变,而不能测构件的内部应变。 (2)一个应变片只能测构件表面一个点沿某个方向的应变,而不能进行全域性测量。 电阻应变片 1.电阻应变片的工作原理 由物理学可知:金属导线的电阻率为 当金属导线沿其轴线方向受力变形时(伸长或缩短),电阻值会随之发生变化(增大或减小),这种现象就称为电阻应变效应。 将上式取对数并微分,得: 2.电阻应变片的构造 电阻应变片由敏感栅、引线、基底、盖层、粘结剂组成。其构造如图所示 L R=A ρdR d dL dA R L A ρρ=+-dR d (12)R ρμερ =++

3.电阻应变片的分类 电阻应变片按敏感栅材料不同可分为金属电阻应变片和半导体应变片。其中金属电阻应变片分为: (1)丝绕式应变片:敏感栅是用直径为0.01~0.05 毫米的铜镍合金或镍铬绕制而成。 优点:基底、盖层均为纸做成,价格便宜,易安装。 缺点:其横向效应大,测量精度较差,应变片性能分散。 (2)短接式应变片:将金属丝平行排成栅状, 端部用粗丝焊接而成。 优点:横向效应小,制造时敏感栅形状易保证,测量精度高。缺点:焊点多,疲劳寿命较低。 (3)箔式应变片:敏感栅采用的是0.002~0.005毫米的铜镍合金或镍铬合金的金属箔,采用刻图制板、光刻及腐蚀等工艺制作。 优点: ①制造技术能保证敏感栅尺寸准确、线条均匀,可以制成任意形状,以适应不同的测量要求; ②敏感栅截面为薄而宽的矩形,其表面积即粘合面积大,传递试件应变性能好; ③横向效应好,可忽略;

塑料应力测试方法及判定标准

塑料应力测试方法及判定 标准 This model paper was revised by the Standardization Office on December 10, 2020

三:常用塑料: 1. PA、PVC、PMMA、PC、POM、PE、PP、ABS、PS、EVA以及一些混合物。 2. 常用塑料特征、性能: 2.(尼龙):8026上盖、532支撑体、049D内芯等。 ①原色为乳白、微褐,燃烧缓慢,离火后慢熄,火焰呈上黄下蓝,熔融滴落,起泡,有特殊的羊皮或指甲烧焦气味。 ②较好的物理、机械性能, ③应力测试:正丙烷、乙无开裂、裂纹。 2.:聚氯乙烯 ①原色为无色透明,难燃离火即灭,火焰上黄下绿,白烟,燃烧变软有刺激性酸味。紫外线下,使PVC产生浅蓝、紫白的莹光。软的PVC发蓝或蓝白的荧光。②根据增剂的不同分为硬质和软质,硬质PVC采用分子量小的树脂,不含5%的曾剂,机械强度好,耐腐蚀、耐阳光、耐燃烧,软质PVC采用分子量较大的树脂,加入30%-70%增剂制成柔韧性好,抗化学药品性强。 2.:有机玻璃、压克力①原色为无色透明、易燃、离火后继续燃烧,火焰上黄下浅蓝,熔融滴落,加热到 120°C可自由弯曲,不自浊,冒出特有的压克力臭,易熔于丙酮、苯。②高透明性耐光折射率高,用丙酮、氯仿等溶剂自体粘结,制品成型收缩率,料粒的吸湿性可导致制品起泡。③应力测试:乙醇或异丙醇,十秒无开裂、裂痕。 2.:聚甲醛 ①原色为浅黄或白色,慢燃,离火后继续燃烧,火焰上黄下蓝,熔融滴落,强烈鱼腥臭。 ②较强机械性能,缺点不耐酸,强碱和不耐日光紫外线的辐射,长期在大气中暴晒会老化,粘合性差。 ③应力测试:12-18%盐酸溶液浸泡2H,无变形、裂纹。 2.:聚乙烯①原色为半透明——腊色,易燃,火焰上黄下蓝,边熔边滴落,有石腊气味,常温下不熔于溶剂,加热时可溶于丙酮、苯、甲醛。②根据加工方法,可分为高密度PE和低密度PE 高密度PE为半透明腊状固体,质地坚韧,不透水性,耐磨性,抗化学药品性较好。缺点:受热后因应力消失而发生尺寸减少,柔韧性、耐剧冷热差。低密度PE为无色无味无毒的固体,低温仍能保持柔曲特性,抗水性,化学稳定性较强。③应力测试:硬脂酸钠或肥皂水,无变形、裂纹、断裂。 2.:丙烯腈、丁乙烯和苯乙烯三种单体的三元共聚物①原色为乳白或白色,不透明,燃烧缓慢,离火后继续燃烧,火焰呈黄色,黑烟,软化烧焦,溶于丙酮、苯、甲苯。②丙烯腈具有拉伸强度、热稳定性、化学稳定性,丁二烯具有韧性、抗冲击能力以及低温性能,苯乙烯具有良好的光泽性、刚性和加工性;调节三者之间比例,可调节高冲击型、中冲击型、通用型、特殊耐热型ABS。缺点:耐热性不够高,易老化,不耐燃不透明。③应力测试:95%以上醋酸浸泡30秒,无变形、裂纹、断裂。 2.:聚丙烯①原色为半透明腊色,易燃,离火燃烧,火焰上黄下蓝,有少量黑烟,熔融滴落,发出石油气味。②密度cm3,是密度最小的塑料之一,熔点

薄膜应力测试方法

薄膜的残余应力 一、薄膜应力分析 图一、薄膜应变状态与应力 薄膜沉积在基体以后,薄膜处于应变状态,若以薄膜应力造成基体弯曲形变的方向来区分,可将应力分为拉应力(tensile stress)和压应力 (compressive stress),如图一所示。拉应力是当膜受力向外伸张,基板向内压缩、膜表面下凹,薄膜因为有拉应力的作用,薄膜本身产生收缩的趋势,如果膜层的拉应力超过薄膜的弹性限度,则薄膜就会破裂甚至剥离基体而翘起。压应力则呈相反的状况,膜表面产生外凸的现象,在压应力的作用下,薄膜有向表面扩张的趋势。如果压应力到极限时,则会使薄膜向基板内侧卷曲,导致膜层起泡。数学上表示方法为拉应力—正号、亚应力—负号。 造成薄膜应力的主要来源有外应力 (external stress)、热应力 (thermal stress) 及內应力 (intrinsic stress),其中,外应力是由外力作用施加于薄膜所引起的。热应力是因为基体与膜的热膨胀系数相差太大而引起,此情形发生于制备薄膜時基板的温度,冷卻至室温取出而产生。內应力则是薄膜本身与基体材料的特性引起的,主要取决于薄膜的微观结构和分子沉积缺陷等因素,所以薄膜彼此的界面及薄膜与基体边界之相互作用就相當重要,這完全控制于制备的参数与技术上,此为应力的主要成因。 二、薄膜应力测量方法

测量薄膜内应力的方法大致可分为机械法、干涉法和衍射法三大类。前两者为测量基体受应力作用后弯曲的程度,称为曲率法;后者为测量薄膜晶格常数的畸变。 (一)曲率法 假设薄膜应力均匀,即可以测量薄膜蒸镀前后基体弯曲量的差值,求得实际薄膜应力的估计值,其中膜应力与基体上测量位置的半径平方值、膜厚及泊松比(Poisson's ratio) 成反比;与基体杨氏模量 (Es,Young's modulus)、基体厚度的平方及蒸鍍前后基体曲率(1/R)的相对差值成正比。利用这些可测量得到的数值,可以求得薄膜残余应力的值。 1、悬臂梁法 薄膜沉积在基体上,基体受到薄膜应力的作用发生弯曲。当薄膜的应力为拉应力时,基体表面成为凹面,若为压应力,基板的表面变为凸面。于是可以将一基体的一端固定,另一端悬空,形成机械式悬臂梁,如图二所示。测量原理为将激光照在自由端上的一点,并在沉积薄膜后再以相同方法测量一次,得到反射光的偏移量,进而求得薄膜的残余应力。 图二、悬臂梁法示意图 2、牛顿环法 本法是利用基体在镀膜后,薄膜产生的弯曲面与一参考平面,产生干涉条纹的牛顿环,利用测量到的牛顿环间距与条纹数,推算基体的曲率半径R,其中R 与牛顿环直径之平方差成正比,并与波长的4倍、牛頓环条纹数的差成反比,將所求得的R帶入牛顿环应力公式,可求出残余应力值 (如图三)。 图三、牛頓环法示意图 3、干涉仪相位移式应力测量法

实验方法:应力与应变曲线的测定

真实应力-真实应变曲线的测定 一、实验目的 1、学会真实应力-真实应变曲线的实验测定和绘制 2、加深对真实应力-真实应变曲线的物理意义的认识 二、实验内容 真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。实测瞬间时载荷下试验的瞬间直径。特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。 σ真=f(ε)=B·εn 三、试样器材及设备 1、60吨万能材料试验机 2、拉力传感器 3、位移传感器 4、Y6D-2动态应变仪 5、X-Y函数记录仪 6、游标卡尺、千分卡尺 7、中碳钢试样 四、推荐的原始数据记录表格 五、实验报告内容 除了通常的要求(目的,过程……)外,还要求以下内容: 1、硬化曲线的绘制 (1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε) (2)由工程应力应变曲线换算出真实应力-真实应变曲线

(3) 求出材料常数B 值和n 值,根据B 值作出真实应力-真实应变近似理论硬化 曲线。 2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。 3、实验体会 六、实验预习思考题 1、 什么是硬化曲线?硬化曲线有何用途? 2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。 3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差? 附:真实应力-真实应变曲线的计算机数据处理 一、 目的 初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。 二、 内容 一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。如把方程的二边取对数: ln σ=lnB+nln ε, 令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx 成为一线性方程。在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。 已知有测量点σ1,σ2……σk ,ε1,ε2……εk ,既有y 1y 2y 3……y k ,x 1x 2x 3……x k ,把这些数据代入回归后的线性方程y =a+bx 中去,必将产生误差△v 。 △v 1=a+bx 1-y 1 △v 2=a+bx 2-y 2 · · · △v k =a+bx k -y k 即 △V i =a+bx i -y i 我们回归得直线应满足 ∑△V ︱i 2 ,最小 △ V ︱i 2 =a 2+b 2 x ︱i 2+y ︱i 2 +2abx i -2ay i -2bx i y i

应力测量方法的历史

应力测试方法的概述 在几乎所有的机械设备中, 都有金属构件承受负载。这些构件内部应力的大小及其变化是造成失效( 如疲劳等) 的主要原因。金属构件内部应力的大小变化除了与其受力情况有关外, 还与其加工过程, 形变及周围的温度有关。为了维护、检查这些和延长使用寿命, 长期以来人们很关注应力的检测。应力的测量方法也很多, 如盲孔法、x 射线法、磁力法、超声方法等。由于超声波所固有的特性, 如穿透能力强、仪器设备简单、测量速度快、低成本等, 利用超声波无损测量材料表面和内部的应力状况的潜力是显而易见的。目前应力超声波测量的主要理论有: 1 声速与应力关系的Hu g h e s 和ke lly 理论 超声波测量应力方法是基于声弹性效应, 其理论基本假设为: ( 1 ) 固体连续性假设; ( 2 ) 声波的小扰动叠加在物体静态有限变形上; ( 3 ) 物体是超弹性的、均匀的; ( 4 ) 物体在变形中可视为等温或等熵过程。1949 年Hughes 利用超声波测量晶体的三阶弹性常数, 以此为基础, 随后超声波应力测量技术得到了较大的发展。1953 年Hughes 和Kelly 利用Lame 常数λ和μ, 以及Murnaghan 常数l 、m 和n提出了各向同性材料的声弹性理论表达式, 建立了超声波在材料中传播速度与应力之间的关系。 设固体不存在机械耗散过程,可得质点的运动方程为: (1) 式中 是固体的单位体积中的势能, η是拉格朗日坐标下的应变矩阵, ai, xk( i , k =1 , 2 , 3 ) 是拉格朗日坐标和位移坐标。这一方程是研究声波在固体中传播的基础。利用( 1 ) 式, Hughes 和kelly 从理论上研究了各向同性中的波速与附加静压力或常应力的关系, 这些关系也是后来人们测量固体应力的理论基础。 选自变量为拉格朗日变量a , b , c , 质点位移用u , v, w 把表示, 由力学定律方程( 1 ) 可以写成

梁应力应变测试

机械工程测试技术基础 梁应力应变测量 :辉 班级:机自1304班 学号:12041427

梁应力应变测量 一、实验目的 1、了解电阻应变片的结构及种类; 2、掌握电阻应变片的粘贴技巧; 3、掌握利用电阻应变片测量应力应变的原理; 4、掌握动态测试分析系统的使用及半桥、全桥的接法; 二、实验容 进行悬臂梁的应变测量 三、实验原理 1、电阻应变片的测量技术 将应变片固定在被测构件上,当构件变形时,电阻应变片的电阻值发生相应的变化。通过电阻应变测量装置(简称应变仪)可将电阻应变片中的电阻值的变化测定出来,换算成应变或输出与应变呈正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应力或应变值。 2、电阻应变式传感器 电阻应变式传感器可测量应变、力、位移、加速度、扭矩等参数。具有体积小、动态响应快、测量精度高、使用简便等优点。电阻应变式传感器可分为金属电阻应变片和半导体应变片两类。 常用的金属电阻应变片有丝式和箔式两种。它由敏感元件、引出线、基底、覆盖层组成,用粘贴剂粘贴在一起,如图所示。 图1 电阻应变片结构图2 电桥 3、应变片的测量电路

在使用应变片测量应变时,必须有适当的方法检测其阻值的微小变化。为此,一般是把应变片接入某种电路,让它的电阻变化对电路进行某种控制,使电路输出一个能模拟这个电阻变化的电信号,之后,只要对这个电信号进行相应的处理(滤波、放大、调制解调等)就行了。 常规电阻应变测量使用的应变仪,它的输入回路叫做应变电桥 ① 应变电桥:以应变片作为其构成部分的电桥。 ② 应变电桥的作用:能把应变片阻值的微小变化转换成输出电压的变化。 U ))((U 432142310?++-= R R R R R R R R )--KU(4 1][4U U 4321443322110εεεε+=?-?+?-?=R R R R R R R R 常用电桥连接方法有三种: (1)单臂半桥接法: R1作为应变片 (2)半桥接法:R1、R2作为应变片 (3)全桥接法: R1、R2、R3、R4均为应变片 电桥的和差特性:电桥的输出电压与电阻(或应变)变化的符号有关。即相邻臂电阻或应变变化,同号相减,异号相加;而相对臂则相反,同号相加,异号相减。 利用桥路的和差特性可以提高电桥灵敏度、补偿温度影响,从复杂应力状态中测取某一应力、消除非测量应力。 本实验采用单臂半桥接法,得到金属梁的拉应变与供桥电压和输出电压之间的关系为: KU 4U 0M =ε 得到作用在梁上的弯矩为:EW M M ε= 四、实验主要仪器及耗材 DH5923动态电阻应变仪(DH5923动态信号测试分析系统)、电阻应变片、应变适调器、矩形梁、电烙铁、万用变、小螺丝刀、连接导线、502胶、丙酮、棉花、镊子、焊锡、酒精等。 五、实验步骤 1、粘贴应变片 (1) 去污:用砂轮(本实验采用砂纸代替)除去构件表面的油污、漆、锈斑等,并用细纱布交叉打磨出细纹以增加粘贴力,用浸有酒精和丙酮的纱布片或脱脂棉球擦洗。

塑料应力测试方法及判定标准

三:常用塑料: 1. PA、PVC、PMMA、PC、POM、PE、PP、ABS、PS、EVA以及一些混合物。 2. 常用塑料特征、性能: 2.1.PA(尼龙):8026上盖、532支撑体、049D内芯等。 ①原色为乳白、微褐,燃烧缓慢,离火后慢熄,火焰呈上黄下蓝,熔融滴落,起泡,有特殊的羊皮或指甲烧焦气味。 ②较好的物理、机械性能, ③应力测试:正丙烷、乙无开裂、裂纹。 2.2.PVC:聚氯乙烯 ①原色为无色透明,难燃离火即灭,火焰上黄下绿,白烟,燃烧变软有刺激性酸味。紫外线下,使PVC产生浅蓝、紫白的莹光。软的PVC发蓝或蓝白的荧光。②根据增剂的不同分为硬质和软质,硬质PVC采用分子量小的树脂,不含5%的曾剂,机械强度好,耐腐蚀、耐阳光、耐燃烧,软质PVC采用分子量较大的树脂,加入30%-70%增剂制成柔韧性好,抗化学药品性强。 2.3.PMMA:有机玻璃、压克力①原色为无色透明、易燃、离火后继续燃烧,火焰上黄下浅蓝,熔融滴落,加热到120°C可自由弯曲,不自浊,冒出特有的压克力臭,易熔于丙酮、苯。②高透明性耐光折射率高,用丙酮、氯仿等溶剂自体粘结,制品成型收缩率0.1-0.8%,料粒的吸湿性可导致制品起泡。③应力测试:乙醇或异丙醇,十秒无开裂、裂痕。

2.4.POM:聚甲醛 ①原色为浅黄或白色,慢燃,离火后继续燃烧,火焰上黄下蓝,熔融滴落,强烈鱼腥臭。 ②较强机械性能,缺点不耐酸,强碱和不耐日光紫外线的辐射,长期在大气中暴晒会老化,粘合性差。 ③应力测试:12-18%盐酸溶液浸泡2H,无变形、裂纹。 2.5.PE:聚乙烯①原色为半透明——腊色,易燃,火焰上黄下蓝,边熔边滴落,有石腊气味,常温下不熔于溶剂,加热时可溶于丙酮、苯、甲醛。②根据加工方法,可分为高密度PE和低密度PE 高密度PE为半透明腊状固体,质地坚韧,不透水性,耐磨性,抗化学药品性较好。缺点:受热后因应力消失而发生尺寸减少,柔韧性、耐剧冷热差。低密度PE为无色无味无毒的固体,低温仍能保持柔曲特性,抗水性,化学稳定性较强。③应力测试:硬脂酸钠或肥皂水,无变形、裂纹、断裂。 2.6.ABS:丙烯腈、丁乙烯和苯乙烯三种单体的三元共聚物①原色为乳白或白色,不透明,燃烧缓慢,离火后继续燃烧,火焰呈黄色,黑烟,软化烧焦,溶于丙酮、苯、甲苯。 ②丙烯腈具有拉伸强度、热稳定性、化学稳定性,丁二烯具有韧性、抗冲击能力以及低温性能,苯乙烯具有良好的光泽性、刚性和加工性;调节三者之间比例,可调节高冲击型、中冲击型、通用型、特殊耐热型ABS。缺点:耐热性不够高,易老化,不耐燃不透明。③应力测试:95%以上醋酸浸泡30秒,无变形、裂纹、断裂。 2.7.PP:聚丙烯①原色为半透明腊色,易燃,离火燃烧,火焰上黄下蓝,有少量黑烟,熔融滴落,发出石油气味。②密度0.9m/cm3,是密度最小的塑料之一,熔

ICT测试不良及常见故障的分析方法

ICT測試不良及常見故障的分析方法 本文主要介绍ICT测试的不良品之常见故障的分析方法,旨在帮助检修人员能够对常见的不良现象进行快速而准确的判断与分析,同时本说明书也可以作为学习的参考数据。 1.开路不良 所谓开路不良就是指在某一个短路群中,各个测试点之间本来应该是短路,但却出现了某个测试点对其所在短路群的其它测试点是开路的。 出现开路不良的可能原因有如下几个方面: (1)PCB Open; (2)零件造成的;它又包括如下几个方面: A.立件与漏件; B.空焊; C.零件不良 (3)测试点有问题 A.探针未接触到; B.测试点氧化; C.测试点有东西挡住; D.测试点在防焊区 【说明】在平常出现比较多的情况是立件于漏件,空焊,PCB Open和零件不良。对于立件和漏件可以通过目检查出;PCB Open只要细心查看两测试点之间的线路,看在测试点之间是否有断线的情况发生,零件不良造成的开路不良通常是由于电阻,电感等零件损坏而造成的其本体开路。如果将一块好的PCB板与之比较发现没有差异(通常比较的是电阻),则表明测试点有问题,需检查PCB板上的测试点是否有问题或检查治具上的测试针是否有问题。 2.短路不良 所谓短路不良是指存在于不同的短路群中的测试点在正常情况下应该是开路的,但却出现了短路的情况。出现短路的原因有以下几个方面: (1)零件短路(由于在零件两端存在有锡丝而造成短路) (2)零件不良,本体短路(通常是由于零件损坏了的缘故): (3)PCB短路(存在比较多的情况是:出现短路不良的两个测试点的步线十分靠近,由于印刷的原因在某处出现了短路,尤其是在印有字迹的地方要 特别注意,绝大部分多数的PCB短路都发生在这里。 (4)BGA短路(可能是BGA下方的锡球短路,也有可能是BGA本体短路),这比较麻烦,必须有90%以上的把握时才能拆BGA。 【说明】对于零件短路可以通过重新焊过该零件当可解决短路不良的情况,对于

表面残余应力测试方法

表面残余应力测试方法 由于X射线的穿透深度极浅,对于钛合金仅为5μm,所以X射线法是一种二维平面残余应力测试方法。现在暂定选择钛靶,它与钛合金的晶面匹配较好。(110)晶面 一、试样的表面处理 X射线法测定的是试件的表面应力,所以试件的表面状况对测量结果也有很大的影响。试件表面不应有油污、氧化皮或锈蚀等;测试点附近不应被碰、擦、刮伤等。 (1)一般可以使用有机溶剂(汽油)洗去表面的油泥和脏污。 (2)去除氧化皮可以使用稀盐酸等化学试剂(根据试样选择合适浓度,如Q235钢用10%的硝酸酒精溶液浸蚀5min)。 (3)然后依据测试目的和测试点表面实际情况,正确进行下一步的表面处理。如果测量的是切削、磨削、喷丸、光整、化铣、激光冲击等工艺之后的表面应力,以及其它表面处理后引起的表面残余应力,则绝不应破坏原有表面不能进行任何处理,因上述处理会引起应力分布的变化,达不到测量的目的。必须小心保护待测试样的原始表面,也不能进行任何磕碰、加工、电化学或化学腐蚀等影响表面应力的操作。对于粗糙的表面层,因凸出部分释放应力,影响应力的准确测量,故对表面粗糙的试样,应用砂纸磨平,再用电解抛光去除加工层,然后才能测定。 (5)若被测件的表面过于粗糙,将使测得的应力值偏低。为了提高试件的表面光洁度,又不产生附加产力,比较好的办法是电解抛光法。该法还可用于去除表面加工层或进行试件表层剥除。 (6)若单纯为了进行表层剥除,亦可以用更为简单的化学腐蚀法,较好的腐蚀剂是浓度为40%的(90%H202+10%HF)的水溶液。但化学腐蚀后的表面光洁度不如电解抛光。为此可在每次腐蚀前用金相砂纸打磨试件表面,但必须注意打磨的影响层在以后的腐蚀过程中应全部除去。 二、确定测量材料的物相,选定衍射晶面。 被测量的衍射线的选择从所研究的材料的衍射线谱中选择哪一条(hkl)面干涉线以及相应地使用什么波长的X射线是应力测定时首先要决定的。当然事先要知道现有仪器提供的前提条件:一是仪器配置了哪几种靶材的x射线管,它决定了有哪几个波长的辐射可以选用;二是测角仪的2θ围。一般选用尽可能高的衍射角,使得⊿θ的增大可以准确测得。 在一定的应力状态下具有一定数值的晶格应变εφ,ψ对布拉格角θ0值越大的线条造成的衍射线角位移d(2θ)φ.ψ必也越大,因此测量的准确度越高。同时,在调整衍射仪时不可避免的机械调节误差对高角线条的角位置2θ的影响相对地也比较小。正因为如此X射线应力测定通常在2θ>90°的背反射区进行,并尽量选择多重性因子较高的衔射线。举例来说,对铁基材料常选用Cr靶的Ka线,α—Fe的(211)晶面的衍射线。 若已知X射线管阳极材料和Ka线波长,利用布拉格方程可计算出各条衍射线的2θ值,从中选择出高角线条。可以从《材料中残余应力的X射线衍射分析和作用》的附录中查得常用重要的金属材料和部分瓷材料在Cu,Co,Fe,Cr四种Kal线照射下的高角度衍射线。由于非立方晶系材料受波长较短的X射线照射时出现较多的衍射线,因此最好选择那些弧立的、不与其它线条有叠合的高角衍射线作为测量对象。

工艺不良分析

主要之不良成形及其原因 (主要為聚苯乙烯射出成型之場合) 充填不良 (a)射出壓力過低 (b)壓出缸中溫度過低 (c)壓出缸及噴嘴堵阻 (d)噴嘴過小 (e)材料供給過少 (f)儲料斗堵阻 (g)射出速度形成過遲 (a)澆口位置不适當 (b)結合方法不良 (c)流道過狹 (d)型模溫度過低 (e)冷卻殘渣對流道及澆口堵阻 (f)成形品有肉厚特薄之處 (a)流動性惡 (b)潤滑劑不足 气泡﹑條紋﹑ 斑點 (a)射出壓力不足 (b)射出速度形成過早 (c)射出斷續 (d)加壓(保壓,開模)時間 不足 (a)澆口位置不适當 (b)結合方法不良 (c)成形品厚度不均一 (d)流道過狹 (e)成形品在型模內受 必要以上之冷卻 (a)流動性惡 (b)有吸濕性 (c)含有揮發性物質 表面光澤不良 (a)壓力缸中加熱不均一 (b)噴嘴一部分堵阻 (c)噴嘴徑過大 (a)電鍍不良 (b)澆口及流道過狹 (c)冷卻殘渣儲穴欠缺 (a)有吸濕性 (b)含有揮發物質 (c)异質物混入污

(d)成形品超過成形機之能量 (e)壓力缸中壓力過低 (f)材料供應量不足(d)型模表面為水及油 污染 (e)型模溫度過低 (f)結合方法不良 染 熔合線(a)噴嘴溫度過低 (b)射出壓力不足 (c)射出壓力形成過遲 (a)澆口﹐流道過小 (b)澆口位置不适當 (c)型模溫度過低 (d)結合方法不良 (a)材料固化過 速 (b)有吸濕性 (c)潤滑不良 磨邊生成(a)射出壓力過高 (b)開模壓力不足 (c)成形材料供給量過多 (d)加壓時間(保壓,開模) 過長 (a)型模未能緊密密合 (b)型模中有异物及毛 刺等附著﹐不能完全關 合 (c)型穴設計不良﹐邊緣 部份材料容易擠出 (d)投影面積相應机械 為過大 (a)材料流動性 過大 缺凹(a)射出壓力不足 (b)加熱溫度過高 (c)射出速度形成過遲 (d)材料供應兩量不足 (e)成形品超過成形機之 (a)型模溫度過高﹐并且 不均一 (b)澆口過狹 (c)流道過狹 (d)成形品厚度不均一 (a)材料過軟

塑料内应力检测方法和内应力消除方法的

塑料内应力检测方法和内应力消除方法的资料 最近公司产品客户投诉有不明原因的开裂现象,个人怀疑是内应力集中所致。 以下资料中遗憾的是没有PP和PVC及PE 塑料注射成形零件由于结构设计,模具设计和工艺的局限性,在注塑和冷却过程中总会同时伴有压力和拉力的产生,而较高的残余应力(表面拉力)将会导致零件过早失效。为了有效规避零部件产生这种失效,更合理的设计和工艺是必需的。同时,快速而有效的检测在研发和生产过程中可以帮助我们及时发现缺陷,并可避免问题的扩散。 目前评估塑料注射成形零件表面及附近区域残余应力的方法之一是溶剂沉浸测试法。沉浸后,高应力集中区域会有相应的裂纹产生,以此我们就可以快速有效地对设计和工艺进行评 估和改进。 以下部分是主要树脂生产商GE和Bayer推荐的适合于各自主要产品的溶剂测试法。我们需 要在供应商品质控制流程中加入该检测结果。 GEP Lexan/Cycoloy系列塑料 Lexan 系列(PC):常用于手机镜片,导光板,机壳。 Cycoloy系列(PC+ABS):常用于手机机壳。 对于用Lexan和Cycoloy系列塑料成形的零件,内应力的检查都可以采用以下方法: 1.醋酸沉浸法: (1)将零件完全浸入24摄氏度的冰醋酸中30秒; (2)取出后立即清洗,后晾干检查表面; (3)仔细观察外观,若有细小致密的裂纹,说明此处有应力存在,裂纹越多,应力越大; (4)重复上述操作,在冰醋酸中浸2分钟,再检查零件,若有深入塑料的裂纹,说明此处 有很高的内应力,裂纹越严重,内应力越大。 2.甲乙酮 + 丙酮沉浸法:将零件完全浸入21摄氏度的1:1的甲乙酮 + 丙酮的混合液中,取出后立即甩干,依上法检查,有应力的零件应在60-75摄氏度下加热2-4小时以清除应力, 也可在25%的丙酮中浸泡30分钟去除应力。

工程建设中不良地基基础处理方法分析

工程建设中不良地基基础处理方法分析 发表时间:2018-05-31T17:00:16.000Z 来源:《基层建设》2018年第10期作者:陈万良 [导读] 摘要:在建筑工程的实施过程当中,形成不良地基的原因有很多方面,其中最主要的原因是因为天然的地质条件所形成的比较大的缺陷性,不能充分的满足工程建设中,对保证建筑体稳定性的需要。 山东省振华建筑基础工程有限公司山东省济南市 250001 摘要:在建筑工程的实施过程当中,形成不良地基的原因有很多方面,其中最主要的原因是因为天然的地质条件所形成的比较大的缺陷性,不能充分的满足工程建设中,对保证建筑体稳定性的需要。建筑工程在修建的过程中受到不良地基的影响非常大,严重的影响到了我国建筑工程行业的顺利稳定发展。在出现不良地基状况的时候,我们需要对其中所出现的问题进行相应的分析,并且积极有效的提出基本解决问题的方案,让地基的建设有效的保证建筑工程发展的需要,通过这种方式可以有效的保证建筑工程工程施工质量得以保证。 关键词:工程建设;基础处理;方法 1不良地基对建筑工程施工产生的主要影响 首先出现不良地基的主要原因是自然方面的因素,由于地质地形方面的因素,对地面产生比较严重的不平整性,造成了地表面上一部分的建筑体在稳定性方面受到了比较明显的影响。建筑工程在实际的设计和施工过程当中,受到了不良地基的影响比较的明显。在进行建筑工程施工之前,首先需要对地质施工的状况进行分析和勘察,对其中可能存在的隐患进行分析;其中对地基的抗滑稳定的评估是非常重要的,其中地基的抗滑稳定性的系数和设计中的参数相比有着明显的差异性,那么这就会造成地基的不稳定性。尤其是在地表下面有着比较明显的岩石层,就会直接影响到建筑工程的结构所能承受的最大限度;从不同的角度分析可以带来不同的破碎带、裂缝之后产生的比较弱的抗压性,和上半部分所具有的抗滑的稳定性不相符。在地基的部分会产生一种整体性的损坏现象。在地基的最大的容许渗水的范围之内,形成这种在结构带上出现的不能有效渗水的效果,比如在一些地下水比较丰富的地区,建筑工程的地基在出现沉降的过程中会受到了比较严重的损坏,使得建筑体出现形变的状况,不能有效的保证地基整体的稳定性和承载能力。因为受到震动因素方面的影响,出现的液化的效果相对比较的明显,建筑体当中产生不平衡性可以明显的影响到地基的稳定性。 2建筑工程中地基基础设计要点 首先,在实际的施工过程当中没我们需要依照工程整体的承载力和建筑的形变度来准确的计算出建筑工程中的地基具体面积,然后将建筑工程中的地基和形变处的高度进行准确的测量,为了有效的保证建筑工程当中的地基基础的数据计算的准确程度,在实际的计算过程当中,我们需要通过切割或者是冲切的方式来确定它的工作要求,最后再依照弯管部分的建筑体对基础性的配筋进行计算。在基础的建筑工程的地基设计工作当中,要是出现箱型基础空间的范围非常大的状况下,技术人员可以通过其中比较有效的建筑地基出现不均匀性的沉降,来对建筑工程中的箱型形变的基础上进行施工,所出现的实际的墙体的厚度和建筑体顶板与底板的实际厚度可以达到基本刚性程度的要求,这方面的工作可以通过防水方面的设计的具体确定。在这其中,对于底板来讲,需要依照施工图纸当中正截面的弯度承载力来加以确定,并且和其中建筑的横截面所受到的基础应力计算,保证最终的分析结果和图纸中的设计要求相一致,保证建筑工程充分符合施工规范,确保建筑地基的稳定性。 3建筑工程中对不良地基的处理方式 为了有效的解决不良地基对建筑工程带来的诸多不良的影响,我们需要依照不同类型的地基特点,采取针对性的施工方式,有效的提升建筑施工中建筑地基的稳定性和强度。 3.1液化土层的处理方式 液化处理土层的方式,在具备黏土土层和非粘性土层的土质上,而且感受到了震动产生的影响,会形成相对应的静力分化的作用,造成地下整体的压力不断的加大,并且还会出现抗应力效果失效的状况。其中对土层的液化产生的地质的稳定性的状况会严重的影响到地基的质量。所以说,要想将液化过程中的土层进行及时性的清除,就需要采取渗透性比较高的材料,直接放入到地基的土质层当中,有效的提升土层的稳定性。通过对震动方式的有效运用,将其中分层的材料在高密度的地质层当中进行夯实,对压实之后的土层对不良地基的解决方式有着非常明显的效果。通过对混凝土构件围墙的使用,对封闭层中土层流动性的分析,在液化土质层当中设置固定的桩体,通过这种方式可以有效的达成对液化土层流动性的效果,并且对地基的稳定性起到了稳固的作用。 3.2渗水性较强的地基土层的处理方式 首先,在建筑体修建完成之后需要对其实施周期性的维护处理,尤其是在砂石等方面具有比较强的透水性能,通过这种方式可以有效的避免渗水状况出现进一步的加重。并且还可以达到防止管涌现象的发生。在压力不断的上升的过程中,对建筑体产生的稳定性的影响,需要对其实施比较特殊性的防渗漏的施工措施。运用黏土的方式对其进行处理之后可以形成一种空隙性部分来对其实施回填工作,可以对其构建的水墙进行监理,这种方式会对混凝土的回填形成一种防渗漏状况的体现。高压喷射形式造成的混凝土的防渗漏强可以为地基产生比较强的巩固效果。通过对水泥地和黏土的有效运用,对其中的帷幕灌浆进行对应的回填;在堤坝前方使用混凝土或者是黏土来对其进行铺设工作,让其渗透的直径更加长,在之后的工程施工过程中实施排水加压工作,并且对其进行反复性的设置,通过这种施工方式,不但可以方式建筑地基当中的土质含水量过多,同时还降低了施工的难度,从整体上保证了建筑体的稳定性。 3.3深层覆盖处理技术 在地下水比较丰富和活跃的地质中,建筑地基在沉降冲击力的作用下,会造成大量的沉淀物,这些沉淀物如果没有得到及时的处理,将会对地基的稳定性产生非常大的影响。因为沉积物的聚集表现为松散型比较的明显,并且具有比较高的渗透性。所以说,出现沉淀物的地基实际抗滑和抗稳定性都比较的差。通常状况下,对深埋覆盖层的处理方式,在实际的施工过程当中可以采用夯实的方法来对混凝土实施振捣处理,将土质层表面上进行压实处理的方式,或者是通过高压喷浆的方式来进行防渗墙的修建;在建筑体前面修建防渗漏铺盖,使用沉重桩或者是摩擦性较大的桩体,不断的将地基的稳定性进行提升,保证了建筑体的整体稳定性。 3.4建筑体膨胀地基的处理方式 在建筑工程当中出现膨胀地基结构的变化过程中,其中主要的因素包含了内部因素和外部因素两种形式,作为地基中土质本身的特性或者是地基中的水分转移,我们在对膨胀地基进行处理的过程中,需要从两个方面来加以充分的考虑:①对地基本身的土质特性进行全方面的勘察,并且对其中土质物质组成和空间结构的部分特性进行分析,充分的明确膨胀地基中对其含水量的控制;②在出现高温或者低温

塑胶件成型主要不良分析及对策

塑胶件成型主要不良分析及对策 目的: 主要针对目前成型品产生不良有原因加以分析判断,在成型机,模具及原料方面提供参考因素从而有效的控制不良的产生,降低生产成本。 内容: 1 起疮:(银色条纹) 成品表面,以CATE为中心,有很多银白色的条痕,基本上是顺着原料的流动方向产生。这种现象是许多不良条件累积后发生的,有时要抓住真正的原因很困难。 1.1 原料中如果有水分或其他挥发成分,未充分烘干,则表面上就会产生很多银条。 1.2 原料中偶然混入其它原料时,也会形成起疮,其形状呈云母状或针点状,容易与其它原因造成的起疮分别。1.3 原料或料管不清洁时,也容易发生这种情况。 1.4 射出时间长,初期射入到模穴内的原料温度低,固化的结果,使挥发成分不会排除,尤其对温度敏感的原料,发常会出现这种状况。 1.5 如果模温低,则原料固化快也容易发生(1。4)之状况,使挥发成分不会排出除。 1.6 模具排气不良时,原料进入时气体不易排除,会产生起疮,像这种状况,成品顶部往往会烧黑。 1.7 模具上如果附着水分,则充填原料带来的热将其蒸发,与熔融的原料融合,形成起疮,呈蛋白色雾状。 1.8 胶道冷料窝有冷料或者小,射出时,冷却的原料带入模穴内,一部分会迅速固化形成薄层,刚开始生产时模温低也会开成起疮。 1.9 原料在充填过程中,因模穴面接触部分急冷形成薄层,又被后面的原料融化分解,形成白色或污痕状,多见於薄壳产品。 1.10 充填时,原料成乱流状能,使原料流径路线延长,并受模穴内结构的影响产生磨擦加之充填速度比原料冷却速度快,GATE位置处于筋骨处或者小容易产生起疮,成品肉厚急剧化的地方也容易产生起疮。 1.11 GATE以及流道小或变形,充填速度快,瞬间产生磨擦使温度急升造成原料分解。 1.12 原料中含有再生料,未充分烘干,射出时分解,则产生起疮。 1.13 原料在料管中停留时间久,造成部分过热分解。 1.14 背压不足,卷入空气(压缩比不足)。 起疮:表一

注塑件常见不良分析及处理措施

塑胶注塑不良的分析以及处理措施 注塑成型部分 注塑定型时发生不良现象的原因 *模具的缺陷 *塑料树脂的缺陷 *不适合的成型条件 *产品设计上的问题 *对成型机性能的过大评价 *周围环境的变化 1. 破裂白化 广义的破裂包括破裂及细微破裂的Crazing。按产生的原因可以分为机械性破裂与化学应力破裂。 [1]机械性破裂(Mechanical Crack) 作用于塑料上的物理性作用力比塑料固有物性及结构上的支持力大的时候,因承受不了而产生破裂。为了防止破裂的产生,在进行产品设计时,须引起注意。设计时,选好所使用的材料与型号后,应考虑到作用于物体上的外力,设计出既可反映稳定率又可以分散作用力的结构。提高结构上的支持力时,可加大产品的厚度或加固Rib,也可设计成Round结构以分散作用力。 [2]化学应力破裂(ESC Crack) 化学应力破裂(ESC:Environmental Stress Crack)是指因化学药品的作用,塑料膨胀,从而加重了内部应力,致使总应力值高出塑料的破坏强度而产生的破裂。 化学应力破裂在成型品的装配过程中,使用润滑剂﹑洗剂等时,其所含有的一部分物质可诱发产品破裂。根据产品的脆弱结构﹑残留应力标准,是否产生破裂存在一定的差异,受温度﹑压力等的影响。因化学药品造成的破裂,其破裂面很干净,有时会产生光泽,可轻易得到确认。 为了防止因化学应力引起的破裂,工艺上应禁止使用可诱发破裂的化学药品。在用户的使用条件下,会形成问题的配件应通过改变材料等方法作到防患于未燃。引发化学应力破裂的化学药品如下:冰乙酸﹑增塑剂(DOP等)﹑酒精类﹑石蜡系列的油脂﹑酯﹑过多的硅系列脱模剂﹑汽油石油等油类﹑豆油等食用油﹑溶剂类等。 2. 熔接线 成型品表面形成细线的现象。 熔接线发生在注塑成型时熔融树脂合流的地方。熔融树脂填充凝固后,树脂互相遇合的界面显示在表面上,致使强度及外观降低。出现在具有两个以上Gate的产品中或Hole﹑厚度

残余应力检测方法

关于构件的残余应力检测(盲孔法检测) 一、前言 (1)应力概念 通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。 按照德国学者马赫劳赫提出的分类方法,内应力分为三类: 第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。 第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。 第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。 在工程上通常所说的残余应力就是第Ⅰ类内应力。到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。 (2)应力作用 机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。 (3)应力的产生 在机械制造中,各种工艺过程往往都会产生残余应力。但是,如果从本质上讲,产生残余应力的原因可以归结为: 1.不均匀的塑性变形; 2.不均匀的温度变化; 3.不均匀的相变 (4)应力的调整 针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。 通常调整残余应力的方法有: ①自然时效 把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。但由于时效时间过长,一般不采用。 ②热时效 热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500~650℃进行较长时间的保温后再缓慢冷却至室温。在热作用下通过原子扩散及塑性变形使内应力消除。从理论上讲采用热时效,只要退火温度和时间适宜,应力

相关文档
最新文档