汞的用途及其炼制

汞的用途及其炼制
汞的用途及其炼制

汞的用途及其炼制

汞(Hg),又称水银,在各种金属中,汞的熔点是最低的,只有-38.87℃,也是唯一在常温下呈液态并易流动的金属。比重13.595,蒸气比重6.9。它的化学符号来源于拉丁文,原意是“液态银”。

有关金属汞的生产很多,例如汞矿的开采与汞的冶炼,尤其是土法火式炼汞,空气、土壤、水质都有污染;制造。

校验和维修汞温度计、血压计。流量仪、液面计、控制仪、汞整流器等,尤其用热汞法生产危害更大;制造荧光灯、紫

外光灯、电影放映灯、X线球管等;化学工业中作为生产汞

化合物的原料,或作为催化剂如食盐电解用汞阴极制造氯

气等;以汞齐方式提取金银等贵金属以及镀金、馏金等;口腔

科以银汞齐填补龋齿;钚反应堆的冷却剂,等等。

汞的无机化合物如硝酸汞(Hg(NO3)2)、升汞(HgCl2)、

甘汞(HgCl)、溴化汞(HgBr2)、砷酸汞(HgAsO4)、硫化汞(HgS)、硫酸汞(HgSO4)、氧化汞(HgO)、氰化汞(Hg(CN)2)等,用于汞化合物的合成,或作为催化剂、颜料、涂料等;

有的还作为药物,口服、过量吸入其粉尘及皮肤涂布时均

可引起中毒。此外,雷汞(Hg(ONC)2.1/2H2O)用于制造雷

管等。

元素用途:常用于制造科学测量仪器(如气压计、温

度计等)、药物、催化剂、汞蒸气灯、电极、雷汞等。

汞冶炼有火法和湿法两种。火法炼汞是在不太高温度下(450~800℃),将汞矿石或精矿进行焙烧,直接将汞还

原呈气态分离出来,而后冷凝成液态汞。火法炼汞工序

较简单,技术经济指标较高,为国内外传统的炼汞方法。常用的焙烧设备有回转窑、多膛炉、液态化焙烧和机械

蒸馏炉等。湿法炼汞是用硫化钠或次氯酸盐溶液浸出汞

精矿,浸出液净化后用电解或置换等方法获得金属汞。

湿法能减少汞的污染,但流程复杂,技术经济指标不如

火法,因而未被广泛应用。美国还研究出一种从辰砂矿

石中提取汞的电氧化法,汞的回收率为90%~99%,但

未见有生产报道。

我国炼汞目前多采用浮选精矿-蒸馏炉工艺。贵州汞矿

还建有双层单稀相流态化焙烧炉,用来处理含汞0.1%以

下的低品位粉碎矿。有些地区的小矿仍使用老式高炉处

理原矿,对环境污染严重。

从开采矿石提炼出来的汞金属,称为原生汞,纯度通

常大于99.9%,且具有纯净而明亮的外观,在工业上有

许多用途。某些特殊用途,如电子技术方面要求汞的纯

度在99.9999%以上,称为高纯汞。它是将精汞在真空或充满惰性气体的气氛下进行蒸馏或电解而制取的。我国

汞矿山生产的精汞,一般含汞在99.99%以上。贵州汞矿、务川汞矿和铜仁汞矿还可生产出高纯汞。

PP材料性能和用途

PP材料性能和用途 聚丙烯成型工艺 PP聚丙烯 典型应用范围 汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如剪草机和喷水器等)。 注塑模工艺条件 干燥处理:如果储存适当则不需要干燥处理。熔化温度:220~275C,注意不要超过275C。 模具温度:40~80C,建议使用50C。结晶程度主要由模具温度决定。注射压力:可大到1800bar。 注射速度:通常,使用高速注塑可以使内部压力减小到最小。如果制品表面出现了缺陷,那么应使用较高温度下的低速注塑。 流道和浇口:对于冷流道,典型的流道直径范围是4~7mm。建议使用通体为圆形的注入口和流道。所有类型的浇口都可以使用。典型的浇口直径范围是1~1.5mm,但也可以使用小到0.7mm的浇口。对于边缘浇口,最小的浇口深度应为壁厚的一半;最小的浇口宽度应至少为壁厚的两倍。PP材料完全可以使用热流道系统。 化学和物理特性: PP是一种半结晶性材料。它比PE要更坚硬并且有更高的熔点。由于均聚物型的PP温度高于0C以上时非常脆因此许多商业的PP材料是加入1~4%乙烯的无规则共聚物或更高比率乙烯含量的钳段式共聚物。聚物型的PP材料有较低的热扭曲温度(100C)、低透明度、低光泽度、低刚性,但是有有更强的抗冲击强度。PP的强度随着乙烯含量的增加而增大。PP的维卡软化温度为150C。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。通常,采用加入玻璃纤维、金属添加剂或热塑橡胶的方法对PP进行改性。PP的流动率MFR范围在1~40。低MFR的PP材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚物型的强度比均聚物型的要高。由于结晶,PP的收缩率相当高,一般为1.8~2.5%。并且收缩率的方向均

金属材料材质分类及用途

金属材料材质 铜有很多种 纯铜:又称紫铜含铜量在99.5%以上比如电线丝 铜锌合金:又称黄铜一般铜占60% 锌占40% 阀门锁芯 铜锡合金:又称青铜有些轴承套 铜镍合金:又称白铜银状比如钥匙(一般钥匙黄色的是黄铜白色的是白铜)最常用的就这几种 铜主要分为纯铜和合金铜 纯铜有T2,另有无氧铜系列C10100;C10200、磷脱氧铜TP1\TP2 合金铜分; 1、简单黄铜铜-锌合金; 2、复杂黄铜铜+锌+其他金属; 3、青铜:分铁青铜、磷青铜、铝青铜、铍青铜等(铜中加入除锌、镍以外的金属) 4、白铜:普通白铜、锌白铜、铁白铜、铝白铜等等(铜中加入镍为主和其他金属)

铝材的分类 (1)按有无合金成分,铝材分为纯铝及铝合金。铝合金按合金系列又分为Al-Mn合金、Al-Cu 合金、Al-Si合金和Al-Mg合金等。 (2)按压力加工能力,可分为变形铝和非变形铝(例如:铸铝)。 (3)按能否热处理强化,铝合金又分为非热处理强化铝和热处理强化铝。铝没有同素异构体,纯铝、铝锰合金、铝镁合金等不可能通过热处理相变来提高强度。但是,铝铜和铝镁硅等合金可通过固溶时效析出强化相提高强度,称为可热处理强化铝。不能通过固溶时效析出强化相提高强度的称为不可热处理强化铝。 铝合金分为: 1系:特点:含铝99.00%以上,导电性有好,耐腐蚀性能好,焊接性能好,强度低,不可热处理强化. 应用范围:高纯铝(含铝量99.9%以上)主要用于科学试验,化学工业及特殊用途. 2系:特点::以铜为主要合元素的含铝合金.也会添加锰、镁、铅和铋为了切削性。如:2011合金,在熔练过程中要注意安全防护(会产生有害气体)。2014合金用天航空工业,强度高。2017合金比2014合金强度低一点,但比较容易加工。2014可热处理强化。缺点:晶间腐蚀倾向严重。应用范围:航空工业(2014合金),螺丝(2011合金)和使用温度较高的行业(2017合金)。 3系:特点:以锰为主要合金元素的铝合金,不可热处理强化,耐腐蚀性能好,焊接性能好。塑性好。(接近超铝合金)。缺点:强度低,但可以通过冷加工硬化来加强强度。退火时容易产生粗大晶粒。应用范围:飞机上使用的导油无缝管(3003合金),易拉罐(3004合金)。4系:以硅为主,不常用。部分4系可热处理强化,但也有部分4系合金不可热处理化。hr 5系:特点:以镁为主。耐耐性能好,焊接性能好,疲劳强度好,不可热处理强化,只能冷加工提高强度。应用范围:割草机的手柄、飞机油箱导管、防弹衣。 6系:特点:以镁和硅为主。Mg2Si为主要强化相,目前应用最广泛的合金。6063、6061用的最多、其它6082、6160、6125、6262、6060、6005、6463。6063、6060、6463在6系中强度比较低。6262、6005、6082、6061在6系中强度比较高。特性:中等强度,耐腐蚀性能好,焊接性能好,工艺性能好(易挤压出成形)氧化着色性能好。应用范围:交能工具(如:汽车行李架、门、窗、车身、散热片、间箱外壳) 7系:特点:以锌为主,但有时也要少量添加了镁、铜。其中超硬铝合金就是含有锌、铅、镁和铜合金接近钢材的硬度。挤压速度较6系合金慢,焊接性能好。7005和7075是7系中最高的档次,可热处理强化。应用范围:航空方面(飞机的承力构件、起落架)、火箭、螺旋桨、航空飞船。

最新生物技术的发展和应用

生物技术地发展和应用 自2001年初,生物技术产业便显现出一片诱人地前景。人类基因组草图地即将完成,带动各生物技术地不断飚升。人们普遍认为这将导致医学与药物研究地繁荣,并会带来滚滚地财富。随着基因组测序地完成,许多科学家和投资者开始把目光投向生物技术向个学科地渗透,如今生物技术已经在芯片、医学等领域都取得丰硕地成果。下面对生物芯片、基因治疗及微生物地研究地基本问题作简单地介绍。 (一)生物芯片 20世纪90年代初开始实施地人类基因组计划取得了人们当初意料不到地巨大进展,而由此也诞生了一项类似于计算机芯片技术地新兴生物高技术———生物芯片。 生物芯片主要是指通过微加工和微电子技术在固体芯片表面构建微型生物化学分析系统,以实现对生命机体地组织、细胞、蛋白质、核酸、糖类以及其他生物组分进行准确、快速、大信息量地检测。目前常见地生物芯片分为三大类:即基因芯片、蛋白芯片、芯片实验室或称微流控芯片等。生物芯片主要特点是高通量、微型化和自动化。生物芯片上高度集成地成千上万密集排列地分子微阵列,能够在很短时间内分析大量地生物分子,使人们能够快速准确地获取样品中地生物信息,检测效率是传统检测手段地成百上千倍。使用基因芯片分析人类基因组,可找出癌症、

糖尿病由遗传基因缺陷引起疾病地致病地遗传基因。生物医学研究人员可以在数秒钟内鉴定出导致癌症地突变基因。借助一小滴测试液,医生们能很快检测病菌对人体地感染。利用基因芯片分析遗传基因,可以使糖尿病地确诊率达到50%以上。生物芯片在疾病检测诊断方面具有独特地优势,它可以在一张芯片上同时对多个病人进行多种疾病地检测。仅用极小量地样品,在极短时间内,向医务人员提供大量地疾病诊断信息,这些信息有助于医生在短时间内找到正确地治疗措施。对肿瘤、糖尿病、传染性疾病、遗传病等常见病和多发病地临床检验及健康人群检查,具有十分重要地应用价值。 (二)基因治疗 众里盼她千百度,如今,基因治疗已近走出实验室,进入实践阶段,如:癌症地基因治疗,肿瘤地基因治疗属于一种生物治疗手段,是一大类治疗策略地总称。根据治疗机理不同,目前至少可以分为以下几方面: (1)免疫基因治疗:指地是通过基因修饰地瘤苗或抗原呈递细胞体内回输,或者免疫基因地直接体内导入,激发或增强人体地抗肿瘤免疫功能,达到治疗肿瘤地目地,它也是一大类治疗地总称。治疗基因包括肿瘤相关抗原基因、细胞因子基因或者MHC基因等。

黄铜的主要牌号、性能及用途

黄铜的主要牌号、性能及用途: 1)H62普通黄铜:有良好的力学性能,热态下塑性好,冷态下塑性也可以,切削性好,易钎焊和焊接,耐蚀,但易产生腐蚀破裂。此外价格便宜,是应用惯犯的一个普通黄铜品种。用于各种深引伸和弯折制造的受礼零件,如销钉、铆钉、垫圈、螺母、导管、气压表弹簧、筛网、散热器零件等。 2)H65普通黄铜:性能介于H68和H62之间,价格比H68便宜,也有较高的强度和塑性,能良好地承受冷、热压力加工,有腐蚀破裂倾向。用于小五金、日用品、小弹簧、螺钉、铆钉和机械零件。 3)H68普通黄铜:有极为良好的塑性(是黄铜中最佳者)和较高的强度,切削加工性能好,易焊接,对一般腐蚀非承安定,但易产生开裂。是普通黄铜中应用最为广泛的一个品种。用于复杂的冷冲件和深冲件,如散热器外壳、导管、波纹管、弹壳、垫片、雷管等。 4)H70普通黄铜:有极为良好的塑性(是黄铜中最佳者)和较高的强度,切削加工性能好,易焊接,对一般腐蚀非承安定,但易产生开裂。用于复杂的冷冲件和深冲件,如散热器外壳、导管、波纹管、弹壳、垫片、雷管等。 5)H75普通黄铜:有相当好的力学性能、工艺性能和耐蚀性能。能很好地在热态和冷态下压力加工。在性能和经济上居于H80、H70之间。用于低载荷耐蚀弹簧。 6)H80普通黄铜:性能和H85相似,但强度较高,塑性也较好,在大气、淡水及海水中有较高的耐蚀性。用于造纸网、薄壁管、波纹管及房屋建筑用品。 7)H85普通黄铜:具有较高的强度,塑性好,能很好地承受冷、热压力加工,焊接和耐蚀性能也都。用于冷凝和散热用管、虹吸管、蛇形管、冷却设备制件。 8)H90普通黄铜:性能和H96相似,但强度较H96稍高,可镀金属挤途敷珐琅。用于供水及排水管、奖章、艺术品、水箱带以及双金属片。 9)H96普通黄铜:强度比紫铜高(但在普通黄铜中,她是最低的),导热、导电性好,在大气和但是中有高的耐蚀性,且有良好的塑性,易于冷、热压力加工,易于焊接、锻造和镀锡,无应力腐蚀破裂倾向。在一般机械制造中用作导管、冷凝管、散热器管、散热片、汽车水箱带以及导电零件等。 10)HA177-2铝黄铜:是典型的铝黄铜,有高的强度和硬度,塑性良好,可在热态冷态下进行压力加工,对海水及盐水有良好的耐蚀性,并耐冲击腐蚀,但有脱锌及腐蚀破裂倾向。

不锈钢管的材质种类与用途

不锈钢在近20年来,世界各国的不锈钢管生产有了很大发展,工艺技术和装备水平都有很大提高,近年来在新建和改扩建的不锈钢无缝管车间、焊管车间和冷轧冷拔车间里,出现了很多卓有成效的新工艺和高效率的新设备。我国不锈钢管生产经过40多年的发展,尤其是近20年来,无论是不锈钢无缝管还是焊管的生产技术都有了长足的进步,产量、质量和品种不断增加和提高,少数产品的质量达到了国际先进水平:下面笔者就带领大家了解一下不锈钢管的材质种类与用途。 一、不锈钢钢管的分类 1、按生产方法分类: (1)无缝管——冷拔管、挤压管、冷轧管。 (2)焊管: (a)按工艺分类——气体保护焊管、电弧焊管、电阻焊管(高频、低频)。 (b)按焊缝分——直缝焊管、螺旋焊管。 2、按断面形状分类: (1)圆形钢管; (2)矩形管。 3、按壁厚分类——薄壁钢管、厚壁钢管 4、按用途分类: (1)民用管分圆管、矩管、花管,一般用于装饰、建筑、结构等方面;

(2)工业管:工业配管用钢管、一般配管用钢管(饮用水管)、机械构造/流体输送管、锅炉热交换管、食品卫生管等。一般应用于工业的各个领域如:石油化工、造纸、核能、食品、饮料、医药等行业对流体介质要求较高管道。 二、不锈钢管材质区分 1、钢材的概念:钢材是钢锭、钢坯或钢材通过压力加工制成我们所需要的各种形状、尺寸和性能的材料。钢材是国家建设和实现四化必不可少的重要物资,不锈钢管材质化分应用广泛、品种繁多,根据断面形状的不同、钢材一般分为型材、板材、管材和金属制品四大类、为了便于组织钢材的生产、订货供应和搞好经营管理工作,又分为重轨、轻轨、大型型钢、中型型钢、小型型钢、钢材冷弯型钢,优质型钢、线材、中厚钢板、薄钢板、电工用硅钢片、带钢、无缝不锈钢管钢材、焊接不锈钢管、金属制品等品种。 2、钢材的生产方法大部分钢材加工都是钢材通过压力加工,不锈钢管材质化分使被加工的钢(坯、锭等)产生塑性变形。根据钢材加工温度不钢材同以分冷加工和热加工两种。钢材的主要加工方法有:轧制:将钢材金属坯料通过一对旋转轧辊的间隙(各种形状),因受轧辊的压缩使材料截面减小,长度增加的压力加工方法,这是生产钢材最常用的生产方式,主要用来生产钢材型材、板材、管材。分冷轧、热轧。锻造钢材:利用锻锤的往复冲击力或压力机的压力使坯料改变成我们所需的形状和尺寸的一种压力加工方法。一般分为自由锻和模锻,常用作生产大型材、开坯等截面尺钢材寸较大的

40Cr材料性能及用途(20201113093748)

基本信息 根据标准 GB/T 3077-1999 对应国外标准:JIS G4053 ASTM A29/ ISO 683-18:1996[1] 化学成分 力学性能 40Cr 圆棒 试样毛坯尺寸(mm ): 25 热处理: 第一次淬火加热温度(C ): 850;冷却剂:油 第二次淬火加热温度(C ):- 回火加热温度(C ): 520;冷却剂:水、油 抗拉强度((T b/MPa :三980 屈服点((T s/MPa :三785 断后伸长率(5 5/% :三9 断面收缩率(? /% :三45 冲击吸收功(Aku2/J ):三47 布氏硬度(HBS100/3000 (退火或高温回火状态): 40cr 介绍 40Cr 三 207[3]

【参考对应钢号】 1.17035/1 我国GB的标准钢号是40Cr、德国DIN标准材料编号 045、德国DIN标准钢号41C4/42G 4、英国EN标准钢 &英国BS标准钢号41C 4、法国AFNOR标准钢号42 4、法国NF标准钢号38Cr4/41C 4、意大利UNI标准钢号41C 4、比利时NBN标准钢号42C 4、瑞典SS标准钢 245、美国AISI/SAE/ASTM标准钢 140、日本JIS标准钢号SCr440(H)/SC 40、美国AISI/SAE/ASTM标准钢 140、国际标准化组织ISO标准钢号41C 4。 【临界点温度】 (近似值) Acm=780C 【正火规范】 温度850~870C,硬度179~229HBS 【冷压毛坯软化处理规范】

温度740~760C,保温时间4~6h,再以5~10C /h的冷速,降温到<60皿, 出炉空冷。 处理前硬度<217HB,软化后硬度<163HBS 【生铁屑保护摆动回火规范】 (670± 10 CX 2h随炉升温,(710士10 CX 2h随炉降温, (670士10 C X 2h随炉升温,(710士10 C X 2h再随炉降温, (670士10 C X 2h随炉升温,(710士10 C X 2h随炉降温,共3个循环,再降温至550C,出炉空冷。处理后硬度153HBS 【调质处理规范】 淬火温度850C 士1C,油冷;回火温度520C 士1C,水、油空冷。[4] 40Cr调质硬度 40Cr调质以后的硬度大概在HRC32-36之间,也就是说大概HB330-380之间. 40Cr--830-860C 油淬-->55HRC 150C 回火--55HRC 200C 回火--53HRC [5][6] 300C 回火--51HRC 400C 回火--43HRC 500C 回火--34HRC 550C 回火--32HRC 600C 回火--28HRC 650C 回火--24HRC 40cr特性及用途

生物芯片技术研究进展

生物芯片技术研究进展 张智梁 摘要:随着DNA测序技术的发展和几种同时监测大量基因表达的新技术出现,人类基因组DNA序列分析可能很快完成,并由此产生了生物信息学,而DNA芯片技术应运而生。生物芯片主要是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,是近些年来发展迅速的一项高新技术。生物芯片主要包括基因芯片、蛋白质芯片、组织芯片等。 关键词:生物芯片;研究进展;应用 生物芯片是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,其实质就是在面积不大的基片(玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)表面上有序地点阵排列一系列已知的识别分子,在一定条件下,使之与被测物质(样品)结合或反应,再以一定的方法(同位素法、化学荧光法、化学发光法、酶标法等)进行显示和分析,最后得出被测物质的化学分子结构等信息。因常用玻片/硅片等材料作为固相支持物,且制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。这项技术是由美国旧金山以南的的一个新兴生物公司首先发展起来的。S.P.AForder及其同事于90年代初发明了一种利用光刻技术在固相支持物上光导合成多肽的方法,并在此基础上于l993年设计了一种寡核苷酸生物芯片,直至l996年制造出世界上第一块商业化的DNA芯片。在此期间国际上掀起了一片DNA芯片设计的热潮,出现了多种类型的DNA芯片技术。DNA芯片在产生的短短几年时间内技术不断,现已经显现出在基因诊断、基因表达分析和新基因的发现、蛋白组学方面的应用、基因组文库作图等生物医学领域中的应用价值。 l、生物芯片的分类 目前常见的生物芯片分为3类:第1类为微阵列芯片,包括基因芯片、蛋白芯片、细胞芯片和组织芯片;第2类为微流控芯片(属于主动式芯片),包括各类样品制备芯片、聚合酶链反应(PCR)芯片、毛细管电泳芯片和色谱芯片等;第3类为以生物芯片为基础的集成化分析系统(也叫“芯片实验室”,是生物芯片技术的最高境界)。“芯片实验室”可以完成如样品制备、试剂输送、生化反应、结果检测、信息处理和传递等一系列复杂工作。这些微型集成化分析系统携带方便,可用于紧急场合、野外操作甚至放在航天器上。 2、生物芯片的应用 2.1基因测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速,具有十分诱人的前景。芯片技术能辨别单核苷酸多态性(SNPs),当基因组序列中的单个核苷酸发生突变,就会引起基因组DNA序列变异。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCAl基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性为83.5%~98.2%,提示了二者在进化上的高度相似性。Check 等通过运用DNA微集阵列分析研究与早期心血管疾病相关的候选基冈一丁SP基冈家族,结果发现TSP-1和TSP-4基因错义变异与早期冠状动脉疾病相关,它们在m液凝固和动脉修复中起重要作用,而丁SP一2基冈非编码区的突变却在心脏病的发生过程有一定的保护作用。在卵巢癌发展过程中,基因TP53起到临界

大班社会特殊用途的车

大班社会特殊用途的车 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 大班社会:特殊用途的车 活动目标 1、知道特殊功能的车与人们之间密不可分的生活关系。 2、了解特殊用途的车的用途及基本装备。 3、通过情景游戏,了解在紧急情况下打电话时清楚表达的重要性。 活动准备 1、消防车救火、救护车救人、警车抓坏人的视频。 2、不同的紧急情境的图片,如家里着火了、奶奶晕倒了、家里入小偷了等。 活动过程 一、情景导入。 音乐游戏导入活动。 ——教师引导幼儿在《我是汽车小司机》的音乐声中进入活动室。 二、开拓视野。 1、了解特殊用途车的用途和基本装备。

教师播放特殊用途车的声音请幼儿听一听,说一说它们是谁。 ——师:你在哪里见过这些车?它们是做什么用的? ——教师依次播放消防车救火、救护车救人、警车抓坏人的视频,请幼儿观看,了解特殊用途的车和基本设备。 ——师:这些车有什么特殊的标志?有什么特殊装备?这些车子为什么要这样设计? ——教师引导幼儿从声音、外形、颜色、标志说一说它们的特殊性。 ——教师引导幼儿了解特殊车辆的装备,知道这些装备与其用途有关。 消防车作用及特点:消防车是救火用的汽车。车身是红色的,车头上有一个警报器或警钟,车身是急用储水箱,两旁有吸水管和水带,车上有升降梯子和灭火器等救火用具。 救护车作用及特点:救护车是专门护送危急病人到医院的专用汽车,一般是白色,车身两旁和后面车门上都有红十字标志,车头或车顶上装有警钟或警报器。车门在车厢的后面,便于担架的进出。 2、了解特殊的车可以“闯红灯”。

常用材料特性及主要用途

常用材料特性及主要用途 常用印刷材料有:BOPP、KOP、MATOPP、NY、PET、PVC(收缩膜及扭结膜)、VMPVC(扭结)、PCO、PL 一、BOPP:中名为双向拉伸聚丙烯,它是经过双向拉伸后形成的薄膜,没有热封性能, 常用作印刷材料,特性如下: 1.透明度很高,故单层胶水袋及R袋常用材料; 2.抗拉强度、冲击强度、挺度优异; 3.耐寒性、耐热性优良,一般的冷冻食品可用此材料,使用温度范围是-40℃—120℃; 耐高温比PET差,所以制袋时容易出现起皱、翘边的现象; 4..隔水蒸汽的性能比PET材料好,隔氧性比PET材料差; 5..常用厚度为:20—40um,密度是:0.92g/c㎡ 6.用途:因其有优越性的防湿性能,适用于易吸潮的饼干、凉果、膨化食品、瓜子等表 层印刷材料。 7..燃烧及气味:OPP燃烧时没有烟,灭后有白烟,并有酸味; 二、KOP:中文名为涂改层双向拉伸聚丙烯,客观存在是OPP表层涂了一层约1—2um的聚 偏二氯乙烯(PVDC,也叫k涂层),所以KOP既有OPP的性能,又有PVDC的优点; 1.外观呈微黄色,具有优异有隔水蒸汽及隔氧性能; 2.具有良好的耐药品性能; 3.阻止异味透过性能好; 4.常用厚度为21—22um,密度为0.99 g/c㎡ 5.用途:常用于月饼、香肠等含有油性及脂肪的食品。 6.注:MB777或MB21中在KOP基础上再涂上一层亚加力,其具有KOP的性能,同时又 比KOP更进一步。 7.KOP膜纵横都没有拉伸强度; 8.燃烧:KOP燃烧时有白烟; 9.KOP透水、透氧、保香性能都很好; 10.其他:K涂层量:4.5g/㎡—5g/㎡,属水性,水即可溶解其。 三、MATOPP:中文名为双向拉伸聚丙烯消光膜,它是以消光材料和聚丙烯,通过共挤出方 式,并经双向拉伸而生产的具有消光效果的薄膜;反光度小,呈半透明状,是一种 新型的包装材料。 1.具有很好的雅光效果; 2.隔水、隔氧的性能比OPP好; 3.没有热封性能,故不能作复合材料; 4.常用厚度为20um,密度为0.92 g/c㎡ 5.用途:常用于膨化食品、月饼、纸巾、化妆品的包装: 四、PET:中文名为聚酯膜,是由对苯二甲酸乙醇酯的薄膜材料,和OPP一样,是 在纵向拉伸后进横向拉伸的二级双向拉伸薄膜,或纵横同时拉伸,而后热固定的拉 伸膜。性能及用途如下: 1.抗张力:因是双向拉伸薄膜,故具有很强的抗张力,而在印刷、复合等加工过

特殊用途化妆品的九大分类与含义

特殊用途化妆品的九大分类与含义 1.育发化妆品?? 功用有助于毛发生长,减少脱发和断发。 配制多以中草药复配,如生姜、辣椒、川椒、侧柏、羌活、首乌等,以乙醇或溶剂提取而得。另还有选用美国药典中允许使用的敏乐啶与中草药复配而成。?? 原理通过刺激局部血液循环,营养毛囊而起到一定的促进毛发生长的作用。?? ?? 禁忌使用醋酸铅的染发剂有较大的毒性?? 3.烫发化妆品(多为两剂型,一为烫发剂、一为直发剂)?? 功用改变头发弯曲度,并维持相对稳定的美化作用?? 配制用巯基乙酸胺或半胱氨酸。定型剂为氧化剂。??

原理通过流基乙酸胺是毛发蛋白质的氢键、盐键、二巯键处于被切断状态,用发夹和发卷将头发固定成一定的形状,用氧化剂修复二巯键和盐键,使头发有持久性的波浪。直发剂的原理 与之相同。?? 4.脱毛化妆品?? 功用减少或消除体毛?? 配制多以碱土金属的硫化物或巯基乙酸盐为原料?? 原理利用对角脘有溶解作用的化学物质使人体腋下、腿上或其他部位的毛发在较短时间 禁忌 配制 原理 7.除臭化妆品?? 功用用于消除腋臭。?? 配制一种以乌洛托品、对羟基苯磺酸锌、硫酸铝、氯化铝等化合物为原料;另一种是采用广木香、丁香、霍香、蛇麻子、荆疥等中草药为原料?? 原理抑制大汗腺的分泌、抑菌、收敛??

禁忌对人体亦有一定的刺激性和致敏性。?? 8.祛斑化妆品?? 功用减轻皮肤表皮色素沉着。?? 配制中草药(白芨、白术、白僵蚕、白茯苓、白瓜籽、当归、薏米)配合维生素C、E、胎盘、SOD等制成,也有用曲酸生产祛斑类产品的。(国外以氢醌为原料,因其的刺激性和强漂 白作用,中国禁用)。 原理暂无定论。

泡棉材料的分类及使用

EV A、吸音棉、不织布、泡棉基本常识 一.EV A垫设计常识 根据设计的需要,EV A垫的密度也有所不同,其对应的硬度也响应变化,一般硬度的数值在150~~~650之间,硬度的公差一般为±3°, EV A垫是环保型材料,属第六类 EV A垫的使用最高温度一般为80~1200,使用时请注意 EV A垫的使用湿度一般在45%~95%之间 EV A垫的公差一般较大,一般硬度较大的公差可小一些,为±0.3,硬度较小的公差可大一些 EV A垫多在背面涂胶,胶的类型为3212油胶,上胶厚度:0.04mm EV A垫的用途多为前后壳体间的密封,或较硬的材料制作成箱体底面的小支撑脚。 二.吸音棉 防火吸音棉为雅康宁公司新产品,产品采用进口高级纤维材料精制而成。公司拥有生产高级弹力吸音棉及无纺布之进口机械生产设备,由欧、美、台三地引进符合环保等诸多要求的生产工艺。其中生产的波浪型吸音棉具世界专利产品。 防火吸音棉产品结构为垂直成型,直立式纤维网为具专利的制造方式,便产品更具弹性及吸音效果。波浪间排均匀,输入输出音律时音质均匀,循环一致,音律不混浊,音质自然,永久不变。 吸音棉本身具备阻燃功效,在生产过程中不用添加任何化学药剂。本产品已通过英国防火认证(认证:TXT542808)与美国加州防火认证(认证号:TXT536672)及瑞士环保认证。防火吸音棉特性:环保可再生、无毒、防虫、防潮、吸音效果佳。 产品规格: 密度厚度密度厚度 70-80g/y2 1.5-2.0cm 500g/y2 2.0-3.5cm 100g/y2 1.5-2.0cm 600g/y2 2.0-3.5cm 125g/y2 1.5-2.5cm 700g/y2 2.5-3.5cm 150g/y2 1.5-2.5cm 800g/y2 2.5-3.5cm 200g/y2 1.5-2.5cm 900g/y2 2.5-3.5cm 250g/y2 2.0-3.0cm 1000g/y2 2.5-3.5cm 300g/y2 2.0-3.0cm 1200g/y2 2.5-3.5cm 350g/y2 2.0-3.0cm 1300g/y2 2.5-3.5cm 400g/y2 2.0-3.5cm 1400g/y2 2.5-3.5cm 误差:重量+/-7%密度+/-3mm 注:可根据客户要求生产三种防火标准的产品:普通防火,英国防火,美国加州防火。 吸音棉材料音响专用 1.长纤维纯羊毛

离型膜的性能与用途

离型膜的性能与用途 PET离型膜是热转印常用到的一种材料,底材是PET,经过涂布硅油而成所以也叫硅油膜。常规厚度从12um至100um。有冷热撕和光哑面之分,经过防静电和防划伤处理,产品具有很好的吸附性和贴合性。 PET离型膜:又称热转印膜、剥离膜、隔离膜、打滑膜、天那纸、硅油膜、防粘膜、硅油离型纸、硅油纸、掩孔膜、PET离型膜也叫PET转移膜,这种转移膜的特点是拉伸强度高,热稳定性好、热收缩率低,表面平整光洁、剥离性好,可多次反复使用。 离型膜性能: 1、没有迁移现象,消除了硅树脂离型膜转移到其所紧贴的材料上去的危险; 2、离型膜单面或双面涂层单位面积重量的允差非常小; 3、基膜具有优异的机械强度和化学性能; 4、在极端条件天气下有很高的稳定性,在较长时间内耐高温性可以达到130℃左右,在1个小时内可以达到180℃左右; 5、较长的保存限期; 6、背胶类离型PET以硅的移动性和加热后的剥离力的变化分为轻剥离型、中剥离型、重剥离性,并可根据要求控制离型力,耐热性能良好。 离型膜有不同的厚度可供客户需要选择,一般应用厚度:12UM/19UM/25UM/30UM/36UM/38UM/50UM/75UM/100UM.产品有轻、中、重离型之分,不同离型力适用于贴合不同粘性的胶带或薄膜 用途: PET薄膜用于IT电子、半导体、家电制造、印刷、包装、绝缘、软性线路印刷、显示器屏保PET、薄膜开关、薄膜视窗、印刷胶片、拼版片基、不干胶底纸、涂胶、涂硅、应用于各种离型、粘接、膜、硅化学、氟化学、无纺纤维、表面处理、光学、微結構表面、精密塗層、电机垫片、电缆带、仪表面板、电容绝缘、家具剥膜、窗口胶片等行业 不同材质的离型膜的具体用途 HDPE(低压聚乙烯)单面离型膜:用于封缄胶带防水卷材等。 LDPE(高压聚乙烯)单面隔离膜:用于自粘性防水卷材、防腐材料、卫生护理用品等,有白色、灰色等不同颜色。 抗晒膜: HDPE银色涂布膜防水卷材面膜,具有优异的防晒降温效果,屋面施工性能极好。 红/绿色PE双面离型膜:用于泡棉胶带。 PET(拉伸聚酯)单双面离型膜:用于广告喷绘材料背胶保护、反光材料背胶保护、防水卷材等。 PET氟塑离型膜:广泛应用于硅胶系胶带复合;PET绿色高温胶带上覆上PET氟塑离型膜具有良好的离型效果;模切冲型等用途。关于保护膜生产工艺以及所用的设备因胶粘剂的种类 关于保护膜生产工艺以及所用的设备因胶粘剂的种类、基材的种类不同而有所不同,一般包括:制胶、涂布、干燥、卷取、分切、包装等工艺。 所谓的保护膜、胶粘剂的涂布工艺就是指专门设计的涂布机将胶粘剂均匀地涂布于基材上的工艺过程。为了生产高质量的保护膜产品,除了选择合适的胶粘剂、基材、底涂剂和隔离剂材料外,最重要的就是设计最恰当涂布工艺以及相应的设备。设计原则不仅在于保证胶层的厚度和保护膜外观等质量稳定不变,而且还要获得较高的涂布操作速度,以及绝对的安全可靠性。生产保护膜关键是根据保护膜涂布性能以及对保护膜具体要求选择合适的涂布方法和涂布机,并决定涂布机操作的各种工艺参数。 保护膜胶粘剂的粘度及其它流变特性是影响保护膜涂布行为最重要性能,根据粘度随切变速度的依赖性,流体可以区别为牛顿流体、膨胀体和假塑体三种,而按照粘度切变时间的变化情况,流体又有牛顿流体,触变体和流变体之分,胶粘剂的流变性能偏离牛顿流体越大,在涂布操作中就越容易出现种种质量问题,尤其是当胶粘剂呈现膨胀体的性质时,由于涂布过程中它的粘度会随着涂布速度的增加而迅速增加,必须用较大的机械力才能使胶粘剂展开,因而涂布速度越快越不易得到均一的涂层,还常常会因力过大而拉断基材,甚至损坏刮刀,当胶粘剂呈现触变性能时,涂布时胶层的流平性就很差,因而也很难得到平整光滑的胶粘层。

常用钢材的分类及用途汇总(超全面)

常用钢材的分类和用途 1、钢材的概念:钢材是钢锭、钢坯或钢材通过压力加工制成我们所需要的各种形状、尺寸和性能的材料。 钢材是国家建设和实现四化必不可少的重要物资,应用广泛、品种繁多,根据断面形状的不同、钢材一般分为型材、板材、管材和金属制品四大类、为了便于组织钢材的生产、订货供应和搞好经营管理工作,又分为重轨、轻轨、大型型钢、中型型钢、小型型钢、钢材冷弯型钢,优质型钢、线材、中厚钢板、薄钢板、电工用硅钢片、带钢、无缝钢管钢材、焊接钢管、金属制品等品种。 2、钢材的生产方法 大部分钢材加工都是钢材通过压力加工,使被加工的钢(坯、锭等)产生塑性变形。根据钢材加工温度不钢材同以分冷加工和热加工两种。钢材的主要加工方法有: 轧制:将钢材金属坯料通过一对旋转轧辊的间隙(各种形状),因受轧辊的压缩使材料截面减小,长度增加的压力加工方法,这是生产钢材最常用的生产方式,主要用来生产钢材型材、板材、管材。分冷轧、热轧。锻造钢材:利用锻锤的往复冲击力或压力机的压力使坯料改变成我们所需的形状和尺寸的一种压力加工方法。一般分为自由锻和模锻,常用作生产大型材、开坯等截面尺钢材寸较大的材料。 拉拨钢材:是将已经轧制的金属坯料(型、管、制品等)通过模孔拉拨成截面减小长度增加的加工方法大多用作冷加工。 挤压:是钢材将金属放在密闭的挤压简内,一端施加压力,使金属从规定的模孔中挤出而得到有同形状和尺寸的成品的加工方法,多用于生产有色金属材钢材 一、黑色金属、钢和有色金属在介绍钢的分类之前先简单介绍一下黑色金属、钢材钢与有色金属的基本概念。 1、黑色金属是指铁和铁的合金。如钢、生铁、铁合金、铸铁等。钢和生铁都是以铁钢材为基础,以碳为主要添加元素的合金,统称为铁碳合金。 生铁是指把铁矿石放到高炉中冶炼而成的产品,主要用来炼钢和钢材制造铸件。把铸造生铁放在熔铁炉中熔炼,即得到铸铁(液状),把液状铸铁浇铸成铸件钢材,这种铸铁叫铸铁件。 铁合金是由铁与硅、锰、铬、钛等元素组成的合金,铁合金是炼钢的原料之一,在钢材炼钢时做钢的脱氧剂和合金元素添加剂用。 2、把炼钢用生铁放到炼钢炉内按一定工艺熔炼,即得到钢。钢的产品有钢锭、连铸坯和直钢材接铸成各种钢铸件等。通常所讲的钢,一般是指轧制成各种钢材的钢。钢材钢属于黑色金属但钢

解读“特殊医学用途配方食品”

解读“特殊医学用途配方食品” 在新食品安全法中,特殊医学用途配方食品与保健食品、婴幼儿配方食品一起纳入“特殊食品”。一直以来按药品实施注册管理的特殊医学用途配方食品,作为“食品”的法律地位终获明确。业内人士普遍认为,新食品安全法明确特殊医学用途配方食品法律地位,是一个具有里程碑意义的历史性的进步。受制于不食不药、又食又药的尴尬身份,一直都被看好、但市场迟迟未能启动的特殊医学用途配方食品产业,如今可以憧憬一下未来了。 什么是特殊医学用途配方食品? 特殊医学用途配方食品是为了满足进食受限、消化吸收障碍、代谢紊乱或特定疾病状态人群对营养素或膳食的特殊需要,专门加工配制而成的配方食品。该类产品必须在医生或临床营养师指导下,单独食用或与其他食品配合食用。 当目标人群无法进食普通膳食或无法用日常膳食满足其营养需求时,特殊医学用途配方食品可以作为一种营养补充途径,起到营养支持作用。同时针对不同疾病的特异性代谢状态,对相应的营养素含量提出了特别规定,能更好的适应特定疾病状态或疾病某一阶段的营养需求,为患者提供有针对性的营养支持。 但此类食品不是药品,不能替代药物的治疗作用,产品也不得声称对疾病的预防和治疗功能。

国际法规、标准现状 国际食品法典委员会发布了针对婴儿使用的产品标准CODEX STAN 72 –1981《婴儿配方食品及特殊医学用途婴儿配方食品标准》;发布了CODEX STAN 180-1991《特殊医学用途食品标签和声称法典标准》,对FSMP的定义和标签标识进行了详细规定。 2011年第34届CAC大会通过了特殊医学用途食品中允许使用的添加剂名单,并进一步明确FSMP的定义:特殊加工或配方的,用于病人的膳食调节/管理,可能只能在医学监督下使用的特殊用途食品。用于摄入、消化、吸收或者代谢普通食品或其所含营养成分的能力有限或者能力降低的 病人,或者有其他特殊医疗目的的营养素需要的人(其膳食管理仅依靠正常膳食、其他特殊膳食用途食品或者二者组合产品的调节无法达到目的),作为这些人群唯一或者部分营养来源的食品。 欧盟 1989年欧盟首次颁布了“特殊营养目的用食品”标准( Foodstuffs intended for particular nutritional uses, 89/398/EEC, PARNUS) ,特殊医学目的用食品(Food for Special Medical Purpose) 也被纳入其中进行管理,并在其1999年的增补条款中明确要求制定相应的FSMP标准。受欧盟委托,食品科学委员会(Scientific Committee of Food ,SCF)于1996年完成了制定该标准的科学技术评

密封材料的种类及用途

密封材料的种类及用途 一、密封的分类密封可分为相对静止接合面间的静密封和相对运动接合面间的动密封两大类。静密封主要有点密封、胶密封和接触密封三大类。根据工作压力,静密封由可分为中低压静密封和高压静密封。中低压静密封常用材质较软,垫片较宽的垫密封,高压静密封则用材料较硬,接触宽度很窄的金属垫片。动密封可以分为旋转密封和往复密封两种基本类型。按密封件与其作用相对运动的零部件是否接触,可以分为接触式密封和非接触式密封。 一般说来,接触式密封的密封性好,但受摩擦磨损限制,适用于密封面线速度较低的场合。非接触式密封的密封性较差,适用于较高速度的场合。 二、密封的选型对密封的基本要求是密封性好,安全可靠,寿命长,并应力求结构紧凑,系统简单,制造维修方便,成本低廉。大多数密封件是易损件,应保证互换性,实现标准化,系列化。 三、密封材料3、1 密封材料的种类及用途密封材料应满足密封功能的要求。由于被密封的介质不同,以及设备的工作条件不同,要求密封材料的具有不同的适应性。对密封材料的要求一般是:1)材料致密性好,不易泄露介质;2)有适当的机械强度和硬度;3)压缩性和回弹性好,永久变形小;4)高温下不

软化,不分解,低温下不硬化,不脆裂;5)抗腐蚀性能好,在酸,碱,油等介质中能长期工作,其体积和硬度变化小,且不粘附在金属表面上;6)摩擦系数小,耐磨性好;7)具有与密封面结合的柔软性;8)耐老化性好,经久耐用;9)加工制造方便,价格便宜,取材容易。 橡胶是最常用的密封材料。除橡胶外,适合于做密封材料的还有石墨等,聚四氟乙烯以及各种密封胶等。3、2 通用的橡胶密封制品材料通用的橡胶密封制品在国防,化工,煤炭,石油,冶金,交通运输和机械制造工业等方面的应用越来越广泛,已成为各种行业中的基础件和配件。 四、橡胶密封制品常用材料如下:1 硅橡胶硅橡胶具有突出的耐高低温,耐臭氧及耐天候老化性能,在-70~260℃的工作温度范围内能保持其特有的使用弹性及耐臭氧,耐天候等优点,适宜制作热机构中所需的密封垫,如强光源灯罩密封衬圈,阀垫等。由于硅橡胶不耐油,机械强度低,价格昂贵,因此不宜制作耐油密封制品。 2 丁腈橡胶丁腈橡胶具有优良的耐燃料油及芳香溶剂等性能,但不耐酮,酯和氯化氢等介质,因此耐油密封制品以及采用丁腈橡胶为主。 3氯丁橡胶氯丁橡胶具有良好的耐油和耐溶剂性能。它有较好的耐齿轮油和变压器油性能,但不耐芳香族油。氯丁橡胶还具有优良的耐天候老化和臭氧老化性能。氯丁橡胶的交联断裂温度

40Cr材料性能及用途

40Cr 40Cr圆棒 试样毛坯尺寸(mm):25 热处理: 第一次淬火加热温度(℃):850;冷却剂:油 第二次淬火加热温度(℃):- 回火加热温度(℃):520;冷却剂:水、油 抗拉强度(σb/MPa):≧980 屈服点(σs/MPa):≧785 断后伸长率(δ5/%):≧9 断面收缩率(ψ/%):≧45 冲击吸收功(Aku2/J):≧47 布氏硬度(HBS100/3000)(退火或高温回火状态):≦207[3]

【参考对应钢号】 我国GB的标准钢号是40Cr、德国DIN标准材料编号1.17035/1.7045、德国DIN标准钢号41Cr4/42Gr4、英国EN标准钢号18、英国BS标准钢号41Cr4、法国AFNOR标准钢号42C4、法国NF标准钢号38Cr4/41Cr4、意大利UNI标准钢号41Cr4、比利时NBN标准钢号42Cr4、瑞典SS标准钢号2245、美国AISI/SAE/ASTM标准钢号5140、日本JIS标准钢号SCr440(H)/SCr440、美国AISI/SAE/ASTM标准钢号5140、国际标准化组织ISO标准钢号41Cr4。 【临界点温度】 (近似值)Acm=780℃ 【正火规范】 温度850~870℃,硬度179~229HBS。 【冷压毛坯软化处理规范】 温度740~760℃,保温时间4~6h,再以5~10℃/h的冷速,降温到 ≤600℃,出炉空冷。 处理前硬度≤217HBS,软化后硬度≤163HBS。 【生铁屑保护摆动回火规范】 (670±10)℃×2h,随炉升温,(710±10)℃×2h,随炉降温,(670±10)℃×2h,随炉升温,(710±10)℃×2h,再随炉降温, (670±10)℃×2h,随炉升温, (710±10)℃×2h,随炉降温,共3个循环,再降温至550℃,出炉空冷。处理后硬度153HBS。 【调质处理规范】 淬火温度850℃ ±10℃,油冷;回火温度520℃±10℃,水、油空冷。 [4] 40Cr调质硬度 40Cr调质以后的硬度大概在HRC32-36之间,也就是说大概HB330-380之间. 40Cr--830-860C油淬-->55HRC 150C回火--55HRC 200C回火--53HRC [5][6] 300C回火--51HRC 400C回火--43HRC 500C回火--34HRC 550C回火--32HRC 600C回火--28HRC 650C回火--24HRC

【2019年整理】生物芯片技术的发展历史

注:蓝字是建议使用的素材,别的你们也可以看一下选用哦世界发展史 进入21世纪,随着生物技术的迅速发展,电子技术和生物技术相结合诞生了半导体芯片的兄弟——生物芯片,这将给我们的生活带来一场深刻的革命。这场革命对于全世界的可持续发展都会起到不可估量的贡献。 生物芯片技术的发展最初得益于埃德温·迈勒·萨瑟恩(Edwin Mellor Southern)提出的核酸杂交理论,即标记的核酸分子能够与被固化的与之互补配对的核酸分子杂交。从这一角度而言,Southern杂交可以被看作是生物芯片的雏形。弗雷德里克·桑格(Fred Sanger)和吉尔伯特(Walter Gilbert)发明了现在广泛使用的DNA测序方法,并由此在1980年获得了诺贝尔奖。另一个诺贝尔奖获得者卡里·穆利斯(Kary Mullis)在1983年首先发明了PCR,以及后来再此基础上的一系列研究使得微量的DNA可以放大,并能用实验方法进行检测。 生物芯片这一名词最早是在二十世纪八十年代初提出的,当时主要指分子电子器件。它是生命科学领域中迅速发展起来的一项高新技术,主要是指通过微加工技术和微电子技术在固格体芯片表面构建的微型生物化学分析系统,以实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。美国海军实验室研究员卡特(Carter)等试图把有机功能分子或生物活性分子进行组装,想构建微功能单元,实现信息的获取、贮存、处理和传输等功能。用以研制仿生信息处理系统和生物计算机,从而产生了"分子电子学",同时取得了一些重要进展:如分子开关、分子贮存器、分子导线和分子神经元等分子器件,更引起科学界关注的是建立了基于DNA或蛋白质等分子计算的实验室模型。 进入二十世纪九十年代,人类基因组计划(Human Genome Project,HGP)和分子生物学相关学科的发展也为基因芯片技术的出现和发展提供了有利条件。与此同时,另一类"生物芯片"引起了人们的关注,通过机器人自动打印或光引导化学合成技术在硅片、玻璃、凝胶或尼龙膜上制造的生物分子微阵列,实现对化合物、蛋白质、核酸、细胞或其它生物组分准确、快速、大信息量的筛选或检测。 ●1991年Affymatrix公司福德(Fodor)组织半导体专家和分子生物学专家共同研制出利用光蚀刻光导合成多肽; ●1992年运用半导体照相平板技术,对原位合成制备的DNA芯片作了首次报道,这是世界上第一块基因芯片; ●1993年设计了一种寡核苷酸生物芯片; ●1994年又提出用光导合成的寡核苷酸芯片进行DNA序列快速分析; ●1996年灵活运用了照相平板印刷、计算机、半导体、激光共聚焦扫描、寡核苷酸合成及荧光标记探针杂交等多学科技术创造了世界上第一块商业化的生物芯片; ●1995年,斯坦福大学布朗(P.Brown)实验室发明了第一块以玻璃为载体的基因微矩阵芯片。 ●2001年,全世界生物芯片市场已达170亿美元,用生物芯片进行药理遗传学和药理基因组学研究所涉及的世界药物市场每年约1800亿美元; ●2000-2004年的五年内,在应用生物芯片的市场销售达到200亿美元左右。2005年,仅美国用于基因组研究的芯片销售额即达50亿美元,2010年有可能上升为400亿美元,这还不包括用于疾病预防及诊治及其它领域中的基因芯片,部分预计比基因组研究用量还要大上百倍。因此,基因芯片及相关产品产业将取代微电子芯片产业,成为21世纪最大的产业。 ●2004年3月,英国著名咨询公司弗若斯特·沙利文(Frost &Sulivan)公司出版了关于全球芯片市场的分析报告《世界DNA芯片市场的战略分析》。报告认为,全球DNA生物芯片

相关文档
最新文档