用二次函数最值推导点到直线的距离公式

用二次函数最值推导点到直线的距离公式
用二次函数最值推导点到直线的距离公式

用二次函数最值推导点到直线的距离公式(QG ) 题目:点),,(000y x P 直线0=++C By Ax ,请推导点到直线的距离d 公式

解:由B C x B A y --=,可设),(B

C x B A x P --为直线上的任一点,由两点间距离公式,得 20022200202220022022222

20022

020*******)222(12222)()()()(||y y B C B

C x x y B A B AC x x B A y B C xy B A x B

AC y B C x B A x xx x y B

C x B A x x y B C x B A x x PP ++++++-++=+++++++-=+++-=---+-=)( 这是关于x 的二次函数。而)0(2≠++a c bx ax 在R x ∈的最小值的是a b ac 442

-,于是 2

2002

22

002

200002202202220200020222220220202202202022222022

22

00200222022222

0202002220222

min

02||)(222)/()]222(22[)()2()1(4)222()2)(1(4||B A C By Ax d B A C By Ax B A BCy ACx y ABx C y B x A B A y B C A y ABx ACx y A B

C A x B y B BCy C x B y A y B C A B

C A x A B A Ay B AC Bx y y B C B C x B A B

A y

B A B A

C x y y B C B C x B A PP d +++=∴+++=++++++=++--++-+++++++=+++--++++=+++--++++==)(

*推导过程用到的代数公式:

bc ac ab c b a c b a b ab a b a 222222222

22+++++=++++=+)()(

点到直线的距离公式教案

点到直线的距离公式教案 江苏省无锡市惠山区长安中学徐忠 一、教案背景 1.教材。 本课时选自江苏教育出版社的中等职业学校国家审定教材《数学》第7章解析几何第2节两直线的位置关系中的一节,是直线形解析几何内容的最后一个知识点。点到直线的距离公式是解析几何中计算距离的两个重要的基础公式之一。相对于另一个距离公式也就是两点间的距离公式,它需要有更强的综合知识的能力和计算能力,它既是学习曲线形解析几何内容的必备条件,也是直线形解析几何内容的难点。同时,本公式也体现了解析几何中的数学美,以及解析几何在解决数学问题中所展现的逻辑美。 2.学生。 本课时的教学对象是职业高中学生。作为中考成绩最差的一部分,这些学生学习能力弱,对基础知识的掌握和数学能力的运用方面都有很大的缺陷。他们的学习意志也不坚定,遇到困难很容易放弃。但他们对于能够理解和掌握的知识会表现出很大的兴趣。 二、课时分析 针对以上分析,对本课时作如下定位。 1.教学目标: (1)掌握点到直线的距离公式,初步使用公式解相关习题。 (2)锻炼学生的计算能力,培养良好的学习习惯。 (3)体会公式中的数学美;培养学生“数形结合”的数学思想。 2.重点:点到直线的距离公式。 3.难点:点到直线的距离公式的初步应用。 三、教学方法 1.教法。本课教法以讲授为主。采用“提出问题——解决问题”的过程来设计教学。通过 从简单到复杂,从特殊到一般,循序渐进,逐步深入地使学生理解本课主题。对基础比较薄弱的学生来说,这也是最容易接受的教学方式。 2.学法。本课学法以练习为主。在学生取得初步印象后,随时通过学生练习来加深理解, 巩固知识。学生练习是职高学生理解、掌握知识的重要途径,也是锻炼能力、培养良好学习习惯的有效方法。 四、教学过程 (一)知识准备 1.两点间的距离公式。 2.直线方程的一般形式。 3.两直线平行,则____;两直线垂直,则____。 4.点与直线的位置关系;两相交直线的交点坐标。 设计目标:复习已有知识,为新课作准备。 (二)问题提出 什么是点到直线的距离? 设计目标:理解点到直线的距离的几何意义,使学生重温“垂线段”这个名词。 (三)问题解决 1.当直线平行于坐标轴时的情况。例:求点A(2,-3)到下列直线的距离d: (1) y=7;(2) x +1=0. =7

二次函数公式(精华)

★二次函数知识点汇总★ 1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质 (1)抛物线2ax y =) (0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴;③0

空间点到直线的距离公式

空间点到直线的距离公式 y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)空间点到直线距离点(x0, y0, z0),直线L(点向式参数方程):(x-xl)/m=(y-yl)/n=(z- zl)/p=t。 (1)式(1)的注释:点(xl, yl, zl)是直线上已知的一点,向 量(m, n, p)为直线的方向向量,t为参数方程的参数。空间直线 的一般式方程(两个平面方程联立)转换为点向式方程的方法, 请参考《高等数学》空间几何部分。设点(x0, y0, z0)到直线L 的垂点坐标为(xc, yc, zc)。因为垂点在直线上,所以有:(xc-xl)/m=(yc-yl)/n=(zc-zl)/p=t (2)式(2)可变形为:xc=m*t+xl, yc=n*t+yl, zc=p*t+zl、 (3)且有垂线方向向量(x0-xc, y0-yc, z0-zc)和直线方向向量(m, n, p)的数量积等于0,即:m*(x0- xc)+n*(y0-yc)+p*(z0-zc)=0 (4)把式(3)代入式(4),可消去未知 数“xc, yc, zc”,得到t的表达式:t=[m*(x0-xl)+n*(y0- yl)+p*(z0-zl)]/(m*m+n*n+p*p) (5)点(x0, y0, z0)到直线的距离d就是该点和垂点(xc, yc, zc)的距离:d=√[(x0-xc)^2+(y0-yc)^2+(z0-zc)^2] (6)其中xc, yc, zc可以用式(3)和式(5)代入消去。 第 1 页共 1 页

初三二次函数常见题型及解题策略

二次函数常见题型及解题策略 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物 线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下:

已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法

点到直线的距离公式应用

点与直线问题 (1)点P (x 0,y 0)到直线Ax +By +C=0 的距离 (运用本公式要把直线方程变为一般 式) (2)两条平行线 之 间的距离 (运用此公式时要注意把两平行线方程 x 、y 前面的系数变为相同的) (3)点 P (x ,y )关于Q (a ,b )的对称点为P'(2a -x ,2b -y ) (4)直线关于点对称:在已知直线上任取两点A 、B,再分别求出A 、B 关于P 点的对称点A′、B′,然后由两点式可得所求直线方程. (5)点关于直线的对称点,要抓住“垂直”和“平分” 设 P (x 0,y 0),l :Ax +By +C=0(A 2+B 2≠0),若P 关于l 的对称点的坐标Q 为(x ,y ),则l 是PQ 的垂直平分线,即①PQ ⊥l ;②PQ 的中点在l 上, 解方程组可得 Q 点的坐标 例1 求点P = (–1,2 )到直线3x = 2的距离 解:22 |3(1)2|5330d ?--= =+ 例2 已知点A (1,3),B (3,1),C (–1, 0),求三角形ABC 的面积. 解:设AB 边上的高为h ,则 221 ||2||(31)(13)22 ABC S AB h AB =?=-+-=V AB 边上的高h 就是点C 到AB 的距离. AB 边所在直线方程为31 1331 y x --= -- 即x + y – 4 = 0. 点C 到x + y – 4 = 0的距离为h 2|104|5112 h -+-==+, 因此,15225 22S ABC =??= 例3 求两平行线 l 1:2x + 3y – 8 = 0 l 2:2x + 3y – 10 =0的距离. 解法一:在直线l 1上取一点P (4,0),因为l 1∥l 2,所以P 到l 2的距离等于l 1与l 2的距离,于是 22|243010|21313 23 d ?+?-==+ 解法二: 直接由公式22 |8(10)|21313 23d ---= =+ 例 4、求直线3x -y -4=0关于点P (2,-1)对称的直线l 的方程

二次函数常用公式、结论及训练

初中函数问题涉及到的常用公式或结论及其训练 一、 常用公式或结论 (1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。 纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。 (2)点轴距离: 点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。 (3)两点间的距离公式: 若A (x 1,y 1),B(x 2,y 2), 则 AB=221212()()x x y y -+- (4)点到直线的距离: 点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为: 002 2 Ax By C d A B ++= + (5)中点坐标公式: 若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212,2 2 x x y y ++) (6)直线的斜率公式: 若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:12 12 =AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论: 已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1//l 2,则k 1=k 2;②若k 1=k 2,且b 1 ≠b 2,则 l 1//l 2。 (8)两直线垂直的结论: 已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ①若l 1┴l 2,则k 1?k 2 =-1;②若k 1?k 2 =-1,则l 1┴l 2

(9)直线与抛物线(或双曲线)截得的弦长公式: 【初高中数学重要衔接内容之一,设而不求的思想】 直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )截得的弦长公式是:AB=2121x x k -?+=2122124)(1x x x x k -+?+ 证明如下: 设直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )交于A (x 1, y 1), B (x 2, y 2)两点,由两点间的距离公式可得: AB=221221)()(y y x x -+-,因为A (x 1, y 1),B (x 2, y 2)两点是直线y=kx+n 与抛物线抛物线y=ax 2+bx+c (或双曲线y=m/x )的交点,所以 A (x 1, y 1),B (x 2, y 2)两点也在直线y=kx+n 上, ∴y 1=kx 1+n, y 2=kx 2+n, ∴y 1-y 2=(kx 1+n )—(kx 2+n )=kx 1-kx 2=k (x 1-x 2), ∴AB=2212221)()(x x k x x -+-=2212))(1(x x k -+=2121x x k -?+ =2122124)(1x x x x k -+?+ 而x 1, x 2显然是直线y=kx+n 与抛物线y=ax 2+bx+c (或双曲线y=m/x )组成方程组后,消去y (用代入法)所得到的那个一元二次方程的两根,从而运用韦达定理x 1+x 2 , x 1?x 2可轻松求出,进而直线与抛物线(或双曲线)截得的弦长就很容易计算或表示出来。 (10)由特殊数据得到或联想的结论: ①已知点的坐标或线段的长度中若含有23、等敏感数字信息,那很可能有特殊角出现。 ②在抛物线的解析式求出后,要高度关注交点三角形和顶点三角形的形状,若有特殊角出现,那很多问题就好解决了。

二次函数公式汇总

2.抛物线c bx ax y ++=2中,b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴 左侧;③ 0

点到直线的距离公式的七种推导方法

点到直线的距离公式的七种推导方法(转载) 很有用哦 已知点 00(,)P x y 直线:0(0,0)l Ax By C A B ++=≠≠求点P 到直线 l 的距离。(因为特殊直线很容易求距离,这里只讨论一般直线) 一、 定义法 证:根据定义,点P 到直线 l 的距离是点P 到直线 l 的垂线段的长,如图1, 设点P 到直线l 的垂线为 'l ,垂足为Q ,由 'l l ⊥可知 'l 的斜率为 B A 解得交点22 00002222 ( ,)B x ABy AC A y ABx BC Q A B A B ----++ 22222 000000 2222 222200002222 2222200000022222222||()()()()()()()()()B x ABy AC A y ABx BC PQ x y A B A B A x ABy AC B y ABx BC A B A B A Ax By C B Ax By C Ax By C A B A B A B ----=-+-++------=+++++++++=+= ++ +|PQ ∴= 二、 函数法 证:点P 到直线 l 上任意一点的距离的最小值就是点P 到直线l 的距离。在l 上取任意点 (,)Q x y 用两点的距离公式有,为了利用条件0Ax By C ++=上式变形一下,配凑系数处理得: 22220022222222000022 0000220000()[()()] ()B ()()B ()[()B()][()B()][()B()](B )(B 0)A B x x y y A x x y y A y y x x A x x y y A y y x x A x x y y Ax y C Ax y C +-+-=-+-+-+-=-+-+-+-≥-+-=++++= 当且仅当00()B A y y x -=-(x ) 时取等号所以最小值就是d = 三、不等式法 证:点P 到直线 l 上任意一点Q (,)x y 的距离的最小值就是点P 到直线l 的距离。由柯西不 等式:222222 000000()[()()][()B()](B )A B x x y y A x x y y Ax y C +-+-≥-+-=++ B 0,Ax y C ++=≥ 当且仅当00()B A y y x -=-(x ) 时取等号所以最小值就是d = 四、转化法 证:设直线 l 的倾斜角为 α过点P 作PM ∥ y 轴交l 于M 11(,) x y 显然 10 x x =所以 01Ax C y b +=- x

点到直线的距离公式

课 题:7.3两条直线的位置关系(四) ―点到直线的距离公式 教学目的: 1. 2. 会用点到直线距离公式求解两平行线距离王新敞 3. 认识事物之间在一定条件下的转化,用联系的观点看问题王新敞 教学重点:点到直线的距离公式王新敞 教学难点:点到直线距离公式的理解与应用. 授课类型:新授课王新敞 课时安排:1课时王新敞 教 具:多媒体、实物投影仪王新敞 内容分析: 前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P 到直线l 的距离. 在引入本节的研究问题:点到直线的距离公式之后,引导学生分析点到直线距离的求解思路,一起分析探讨解决问题的各种途径,通过比较选择其中一种较好的方案来具体实施,以培养学生研究问题的习惯,分析问题进而解决问题的能力. 在解决两平行线的距离问题时,注意启发学生与点到直线的距离产生联系,从而应用点到直线的距离公式求解王新敞 教学过程: 一、复习引入: 1.特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行; (2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直王新敞 2.斜率存在时两直线的平行与垂直: 两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之, 如果它们的斜率相等,则它们平行,即21//l l ?1k =2k 且21b b ≠ 已知直线1l 、2l 的方程为1l :0111=++C y B x A , 2l :0222=++C y B x A )0,0(222111≠≠C B A C B A

二次函数顶点坐标公式

函数在数学中占有很大的比例,但是函数的学习却很复杂。其考察的内容有很多方面,开口方向、对称轴及坐标公式都是考察的重点。下面为大家整理了二次函数顶点坐标的相关公式,希望能帮到大家。 一、基本简介 一般地,我们把形如y=ax²+bx+c(其中a,b,c是常数,a0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。 主要特点 变量不同于未知数,不能说二次函数是指未知数的最高次数为二次的多项式函数。未知数只是一个数(具体值未知,但是只取一个值),变量可在一定范围内任意取值。在方程中适用未知数的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数关系。 二次函数图像与X轴交点的情况 当△=b²-4ac;0时,函数图像与x轴有两个交点。 当△=b²-4ac=0时,函数图像与x轴只有一个交点。 当△=b²-4ac0时,函数图像与x轴没有交点。 二、二次函数图像 在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。 轴对称 二次函数图像是轴对称图形。对称轴为直线x=-b/2a

对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。 特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。 a,b同号,对称轴在y轴左侧. a,b异号,对称轴在y轴右侧. 顶点 二次函数图像有一个顶点P,坐标为P ( h,k )即(-b/2a, (4ac-b²/4a).当 h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x- h)²+k。 h=-b/2a,k=(4ac-b²)/4a。 开口方向和大小 二次项系数a决定二次函数图像的开口方向和大小。 当a;0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则二次函数图像的开口越小。 决定对称轴位置的因素折叠 一次项系数b和二次项系数a共同决定对称轴的位置。 当a;0,与b同号时(即ab;0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要大于0,所以a、b要同号 当a;0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a;0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab;0),对称轴在y轴左;当a 与b异号时(即ab0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:

新人教版初三数学二次函数公式及知识点总结

新人教版 初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。 4. ()2 y a x h k =-+的性质:

三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数—配方法

二次函数图像和性质(5) 学习目标: 1.配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 2.熟记二次函数y =ax 2+bx +c 的顶点坐标公式; 3.会画二次函数一般式y =ax 2+bx +c 的图象. 学习重点:配方法或公式法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习难点:配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习过程: 一、复习引入 1、()k h x a y +-=2 的图像和性质填表: 2.抛物线()1222 ++=x y 的开口向 ,对称轴是 ;顶点坐标是 , 当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 是由抛物线2 2x y =先向 平移 个单位,再向 平移 个单位得到的。 二、自主探究 探究一:配方法求顶点坐标、对称轴 (1)问题:你能直接说出函数222++=x x y 的图像的对称轴和顶点坐标吗? (2)你有办法解决问题①吗? 222++=x x y 222++=x x y 的对称轴是 ,顶点坐标是 . (3)像这样我们可以把一个一般形式的二次函数用 的方法转化为 式, 从而直接得到它的图像性质. (4)用配方法把下列二次函数化成顶点式: ①222+-=x x y ②232 ++=x x y ③ y =12 x 2-6x +21 对称轴 对称轴 对称轴 顶点 顶点 顶点 ④4322 +-=x x y ⑤232 ++-=x x y ⑥x x y 22 --= 对称轴 对称轴 对称轴 顶点 顶点 顶点

探究二:用公式法求顶点坐标、对称轴 c bx ax y ++=2 = 对称轴 顶点坐标 用公式法把下列二次函数的顶点坐标、对称轴: ①4322 +-=x x y ②232 ++-=x x y ③x x y 22 --= 三、合作交流 根据c bx ax y ++=2的图象和性质填表: 四、精讲点拨 1、抛物线2 2()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n , B .()m n -, C .()m n -, D .()m n --, 2、二次函数2 365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18), C .(12)-, D .(14)-, 3、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为 A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 4、抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D . 2 3 6、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+ B .22(1)y x =- C .221y x =+ D .221y x =- 7、抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9) 8、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 9、把抛物线2 y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .2 (1)3y x =--- B .2 (1)3y x =-+- C .2(1)3y x =--+ D .2 (1)3y x =-++

二次函数一般式与顶点坐标公式练习

已知函数 ()4 12- + =x y. (1)该抛物线经过怎样的平移能经过原点. (2)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0. 1、二次函数 k h x a y+ - =2) ( 的图像和 2 ax y= 的图 像之间的关系。 2.二次函数y=a(x-h)2+k的性质: 问题一:将一般式转化为顶点式 试将下列函数转化为顶点式,并说出其对称轴,顶点坐标。

(1)262y x x =-- (2)2124 y x x =--+ (3) 2 961y x x =-+ 问题二:顶点坐标公式 将2y ax bx c =++转化为顶点式: 222222 22222424y ax bx c b c a x x a a b b b c a x a a a a b ac b a x a a =++??=++ ?? ???????=+?+-+?? ? ????????? -??=++ ?? ? 22,24,24y ax bx c b x a b a c b a a =++=-??-- ???因此,二次函数的图像是 一条抛物线,它的对称轴是直线顶点是 利用顶点坐标公式填写下列表格:

问题三:y=a(x-2)(x+3)与x轴的交点坐标是,二次函数图象的顶点坐标,对称轴,开口方向。 例1当x= 时,二次函数y=x2+2x-2有最小值. 例2、若抛物线y=-x2+4x+k的最大值为3,则k= 试一试: 1、函数 2 1 26 2 y x x =+- 的顶点坐标为,当x= 时,y取最值为.与坐标轴的交点坐标,分析增减性,用5点作图法完成作图。 2、当x为实数时,代数式x2-2x-3的最小值是

点到直线的距离公式

教学设计:点到直线的距离公式 一、教材分析 点到直线的距离公式是高中解析几何课程中最重要的也是最精彩的公式之一,它是解决点与直线、直线与直线位置关系的基础,也是研究直线与圆、圆与圆的位置关系的重要工具,同时为后面学习圆锥曲线做准备。教材试图让学生通过学习、探究点到直线的距离公式的思维过程,深刻领会蕴涵于其中的数学思想和方法;逐步学会利用数形结合、算法、转化、函数等数学思想方法来解决数学问题;充分体验作为学习主体进行探究、发现和创造的乐趣。 二、学情分析 我上课的班级是淮北一中的实验班,从总体上看,本班学生的数学基础比较好,平时肯思考问题,钻研精神强,有较好的自主学习和探究学习能力,同时,学生已掌握直线的方程和平面上两点间的距离公式,具备了探讨新问题的一定的基础知识。但学生大容量的自主探究,对课堂教学过程的控制带来一定的难度。 三、教学目标 (1)经历点到直线的距离公式探索过程,抽象出求点到直线距离的步骤;理解用数形结合、算法、转化、函数等数学思想来研究数学问题的方法; (2)会利用点到直线的距离公式求点到直线的距离。 (3)通过自主探究、合作交流等方式,培养学生勇于探索、自主探究和发散思维能力和合作互助的团队精神。 (4)通过解题方法的多样性,展现数学思维的灵活性和开阔性,使学生体会解析几何的魅力。 四、教学重点 点到直线的距离公式的探究过程及公式的简单应用。 五、教学难点 点到直线的距离公式的探究。 六、教学方法 以“学生为主体,教师为主导,问题解决为主线,能力发展为目标”的教学思想为指导,采用“问题探究”的教学方法。通过创设问题情景,引导学生在自主探究与合作交流中构建新知识。 课堂实录: 师:同学们!我们知道,数学像文学作品一样,来源于生活,高于生活,并指导生活。那么,在你的生活中,听说过以下问题吗?它们又是怎样的数学问题? (多媒体演示) 如图,在铁路的附近,有一座仓库,现要修建一条公路使之 连接起来,那么怎样设计能使公路最短? 最短路程又是多少? 生1:我们可以从仓库向铁路做垂线,沿垂线段铺设公路可使 其最短。 师:很好!将来你肯定是一个合格的工程师。再来看下一个: (多媒体演示) 报道:9月15号13号台风“珊珊”从太平洋出发以近 直线型路线运动,如图,台风波及区域约直径100海里,请 预测台北人民是否需要做台风来临前的相关工作?

(完整版)二次函数公式汇总.docx

1. 求抛物线的顶点、对称轴:顶点是( b4ac b2b ,). 2a4a,对称轴是直线 x2a 2. 抛物线y ax 2bx c 中,b和a共同决定抛物线对称轴的位置. 由于抛物线y ax 2bx c 的对 称轴是直线x b 0 时,对称轴为 b 0(即a、 b 同号)时,对称轴在y 轴,故:① b y 轴;② 左侧;③ b2a a 0(即a、 b 异号)时,对称轴在y 轴右侧.(同左异右)a 3.用待定系数法求二次函数的解析式 ( 1)一般式: y ax 2bx c .已知图像上三点或三对x 、y的值,通常选择一般式. ( 2)顶点式: y a x h 2k .已知图像的顶点或对称轴,通常选择顶点式. ( 3)交点式:已知图像与x 轴的交点坐标 x1、 x2,通常选用交点式: y a x x1 x x2. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即b24ac 0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 4. 抛物线与x轴两交点之间的距离:若抛物线y ax 2bx c 与 x 轴两交点为 A x ,0 , B x ,0,由于 12 x1、 x2是方程 ax 2bx c0 的两个根,故 x1x2b , x1 x2c a a 2 b 2 AB x1x2x1x22x1x224x1x2b4c4ac a a a a 5.点 A 坐标为( x1,y1)点 B 坐标为( x2,y2)则 AB间的距离,即线段 AB的长度 为x1x22y1y22 6.直线斜率:y2y1 k tan x1 x2 7. 对于点 P( x0, y0)到直线滴一般式方程ax+by+c=0 滴距离有 by0 c ax0 d a2b2 8.平移口诀:上加下减,左加右减

二次函数公式汇总

1.求抛物线的顶点、对称轴:顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 2.抛物线c bx ax y ++=2中,b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③ 0

点到直线的距离公式

§7向量应用举例 7.1点到直线的距离公式 7.2向量的应用举例 [学习目标] 1.了解直线法向量的概念.2.会用向量方法解决某些简单的平面几何问题、力学问题及一些实际问题.3.进一步体会向量是一种处理几何问题、物理问题等的工具. [知识链接] 1.向量可以解决哪些常见的几何问题? 答(1)解决直线平行、垂直、线段相等、三点共线、三线共点等位置关系. (2)解决有关夹角、长度及参数的值等的计算或度量问题. 2.用向量方法解决平面几何问题的“三步曲”是怎样的? 答(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,距离,夹角等问题; (3)把运算结果“翻译”成几何关系. [预习导引] 1.直线的法向量 (1)直线y=kx+b的方向向量为(1,k),法向量为(k,-1). (2)直线Ax+By+C=0(A2+B2≠0)的方向向量为(B,-A),法向量为(A,B). 2.点到直线的距离公式 设点M(x0,y0)为平面上任一定点,则点M到直线Ax+By+C=0(A2+B2≠0)的距离d=|Ax0+By0+C| A2+B2 . 3.向量方法在几何中的应用 (1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:a∥b(b≠0)?a=λb ?x1y2-x2y1=0. (2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,a⊥b?a·b=0?x1x2+y1y2=0. (3)求夹角问题,往往利用向量的夹角公式cosθ=a·b |a||b|= x1x2+y1y2 x21+y21x22+y22 .

点到直线的距离公式

点与直线 直线方程 一. 教学容: 点到直线的距离; 点关于点、关于直线的对称点; 直线关于点、关于直线的对称直线; 直线方程复习; 二. 知识点: 1. 点到直线距离公式及证明 d Ax By C A B = +++|| 0022 关于证明: 根据点斜式,直线PQ 的方程为(不妨设A ≠0) y y B A x x -= -00(), 即,Bx Ay Bx Ay -=-00 解方程组 Ax By C Bx Ay Bx Ay ++=-=-?? ? 00, 得,x B x ABy AC A B =--+20022 这就是点Q 的横坐标,又可得 x x B x ABy AC A x B x A B -= ----+02002020 22 =- +++A Ax By C A B () 0022 , y y B A x x B Ax By C A B -=-=-+++000022 ()(), 所以, d x x y y Ax By C A B =-+-= +++()()()0202 00222

= +++|| Ax By C A B 0022 。 这就推导得到点P (x 0,y 0)到直线l :Ax+By+C=0的距离公式。 如果A=0或B=0,上式的距离公式仍然成立。 下面再介绍一种直接用两点间距离公式的推导方法。 设点Q 的坐标为(x 1,y 1),则 Ax By C y y x x B A A 11101000++=--=??? ??, ()≠, 把方程组作变形, A x x B y y Ax By C B x x A y y ()()()()()10100010100-+-=-++---=?? ? ,①② 把①,②两边分别平方后相加,得 ()()()()A B x x B A y y 2210222102+-++- =++()Ax By C 002 , 所以, ()()()x x y y Ax By C A B 102 102 00222 -+-=+++, 所以, d x x y y =-+-()()102102 = +++|| Ax By C A B 0022 此公式还可以用向量的有关知识推导,介绍如下: 设,、,是直线上的任意两点,则P x y P x y l 111222()() Ax By C Ax By C 112 200++=++=?? ?③④ 把③、④两式左右两边分别相减,得 A x x B y y ()()12120-+-=, 由向量的数量积的知识,知

相关文档
最新文档