汽轮机课程设计 设计说明书

汽轮机课程设计 设计说明书
汽轮机课程设计 设计说明书

1引言

1.1汽轮机简介

汽轮机是以蒸汽为的旋转式热能动力机械,与其他原动机相比,它具有单机功率大、效率、运行平稳和使用寿命长等优点。

汽轮机的主要用途是作为发电用的原动机。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用汽轮机为动力的汽轮发电机组。汽轮机的排汽或中间抽汽还可用来满足生产和生活上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以应用各种类不同品位的热能得以合理有效地利用。由于汽轮机能设计为变速运行,所以还可用它直接驱动各种从动机械,如泵、风机、高炉风机、压气机和船舶的螺旋桨等。因此,汽轮机在国民经济中起着极其重要的作用。

1.2 600MW汽轮机课程设计的意义

电力生产量是衡量一个国家经济发展水平的重要标志之一。电力工业为国民经济各个领域和部门提供电能,它的发展直接影响着国民经济的发展速度,因此,必须超前发展。装机容量从1949年占世界第25位,到如今的世界前列。电力事业发展的宏伟目标,要求汽轮机在容量和效率方面都要上一个新的台阶,在今后的一段时间内,我国火电的主力机组将是300MW—600MW亚临界机组,同时要发展超临界机组。

1.3汽轮机课程设计要求:

1)汽轮机为基本负荷兼调峰运行

2)汽轮机型式:反动、一次中间再热、凝汽式

1.4设计原则

根据以上设计要求,按给定的设计条件,选取有关参数,确定汽轮机通流部分尺寸,力求获得较高的汽轮机效率。汽轮机总体设计原则为在保证机组安全可靠的前提下,尽可能提高汽轮机的效率,降低能耗,提高机组经济性,即保证安全经济性。承担基本负荷兼调峰的汽轮机,其运行工况稳定,年利用率高。设计中的计算采用电子表格来计算,绘图采用手绘图,计算表格和附图统一见附录。

2 汽轮机结构与型式的确定

2.1汽轮机参数、功率、型式的确定

2.1.1 汽轮机初终参数的确定

常规超临界机组的主蒸汽和再热蒸汽温度为538℃~560℃,典型参数为24.2MPa/566℃/566℃,对应的发电效率约为41%。参考《汽轮机原理》(中国电力出版社)P152表7-2石洞口二厂D4Y454汽轮机和GB/T-754-2007 《发电用汽轮机参数系列》选定参数如下:(1)主蒸汽及再热蒸汽压力、温度

主蒸汽压力 24.2MPa

主蒸汽温度 565 ℃

再热蒸汽汽压力 3.703MPa

再热蒸汽温度 565 ℃

(2)汽轮机排汽参数

汽轮机高压缸排气压力 Pa=4.114MPa排气温度Ta=306.78℃

汽轮机中压缸排气压力 Pb=1.082MPa排气温度Tb=379.62℃

汽轮机低压缸排气压力 Pc=5kPa 排气温度Tc=32.8℃

2.1.2汽轮机设计功率的确定

表1

2.1.3汽轮机型式的确定

由设计任务书及已经选取的相关参数可确定汽轮机型式为:

N600-24.2/565/565型、反动式、一次中间再热、水冷凝汽式、基本负荷兼调峰运行汽轮机2.2 汽轮机转速和调节方式的确定

我国电网调波为50Hz,发电机最高转速为3000rpm,故选取汽轮机转速为:3000rpm(偏差为±3转)。转速n=3000 r/min。

电网中带基本电荷的机组,可以采用喷嘴调节方式,也可以采用节流调节方式,电网中的调峰机组应该采用喷嘴调节方式。喷嘴调节方式是为了发挥机组的经济性,且目前我国制造的汽轮机绝大多数都采用喷嘴调节方式,所以综合考虑来说,我们选择喷嘴调节方式。

汽轮机机组热力设计基本参数的选取

2.3汽轮机热力过程线拟定

2.3.1各缸进排汽参数及压损的确定

(1)各缸进排汽参数见下表:

表3

(2)压损的确定

主汽门调节阀中的节流损失ΔP0=0.03* P0=0.04*24.2=0.968 MPa;

调节级前压力P

=24.2-0.968=23.232 MPa

排汽管中的压损ΔP

r =0.02*P

c

=0.03*4.198=0.127 MPa;P

r

‘=4.241-0.127=4.114 MPa

中间再热及连通管压损ΔP

r =0.1*P

r

=0.0.4114 MPa; P

r

‘’=4.114-0.4114=3.7026 MPa

中压、快速截止阀和调节阀压损ΔP

r =0.02*P

r

=0.07405 MPa(中压调节阀全部打开)

P

r

‘’’=3.6285

中低压缸连通管中的损失ΔP

a =0.02*P

s

=0.02*1.0824(中压排汽压力)=0.0216MPa

低压缸进气压力P

s

=1.0388MPa

对于大容量机组可以忽略低压缸排气损失。

2.3.2各缸内效率的估定及热力过程线

对照国内同类机组,估定各缸的内效率:高压缸88%;中压缸91%;低压缸89% 。热力过程线请详见附录。

3 回热系统初步拟定

3.1 相关参数确定

3.1.1主蒸汽流量G 0

对一般的凝汽式汽轮机,其进汽量可按下式估算:

0 3.6ec mac t i

m g

P D m D H

ηηη=

+?? (t/h )

m ——考虑回热抽汽使进汽量增大的系数,它与回热级数、给水温度、功率有关,结合一设

计机组的相关参数,取m=1.4;

D ?——考虑轴封漏汽、门杆漏汽所需的新汽量,一般D ?≤2%D ,这里取为1%D ;?H mac t ——全机理想焓降(kJ/kg )

由H-S 图上查得各个点的参数,可得

mac t H H H H ?=?+?+?中低高=3395.68-2910.74+3597.22-3188.13+3219.66-2251.03 kJ/kg =1851.66kJ/kg

t η——汽轮机相对内效率,根据相关指标取为: t η=90%

m η——机械效率,参照国内同类型机组,可取为:m η=99% g η——发电机效率,参照国内同类型机组,取:g η=98%

代入公式计算得: 解得D 0=1896.849t/h

3.1.2 除氧器、高、低加参数,凝汽器参数及加热器温升分配

(1)除氧器出口工作压力和温度的确定

由于本机组设计为中间再热机组,一般采用高压式除氧器,设计工况下,对该汽轮机取为1.06MPa ,由此查得饱和水和饱和水蒸汽热力性质表,可求得: t cy =182℃。给水温度与进入汽轮机的参数和高压加热器的个数有关,由设计任务书的要求,汽轮机进汽压力为24.2MPa ,参考同类型机组得:给水温度为280℃。

查得在5kPa 的背压下饱和水温度为32.88℃,为计算方便,取给水温度为280.88℃。 (2)凝汽器出口压力和温度

较大容量汽轮机的排汽管都设计为具有一定的扩压能力,使排汽的余速动能最大限度地转化为压力能,用以补偿蒸汽在其中的压力损失。良好情况下,可使排汽压力c p 与凝汽器出口压

力'

c p 接近相等。由于本机组为600MW 机组,蒸汽流量大,所以本机组的排汽初步设计为四排汽,

但在实际计算过程中发现由于流量太大导致低压缸最后几级喷嘴和动叶高度太大,于是改为六个低压缸,为六排气。凝汽器设计为双壳体,为了提高机组经济性采用双背压、单流程,可在机组最大出力工况下长期进行。参照同类机组,低压凝汽器出口压力P C 低=0.0049MPa ,高压凝汽器

出口压力c p '高=0.0059MPa 。由凝汽器出口压力查饱和蒸汽热力性质表可得:当c p ‘低=0.0049MPa 时,

t =32.52℃,当c p ‘

=0.0059MPa 时,t =35.85℃。 (3)高低加参数及加热器温升分配

给水回热的经济性主要取决于给水的最终温度和回热级数,给水温度越高、回热级数越多,循环热效率也越高。当加热级数一定时,给水温度有一最佳值,加热级数越多,最佳给水温度越高。当给水温度fw t 一定时,随着回热级数Z 的增加,附加冷源热损失将减小,汽轮机内效率i η相应增高。以做功能力法分析,有限级数的回热加热,在回热加热器中必引起有温差r t ?的换热,从而产生回热过程的r E ?及相应的附加冷源热损失。但随着级数Z 的增加,r t ?减小,不利于影响减弱。工程上级数Z 增加,汽轮机抽汽口与回热加热器增加会使投资增加,从技术经济角度考虑经济性提高与投资增加间的合理性,本设计选取:回热系统有8级非调整抽汽,分别供给3台高压加热器、1台除氧器和4台低压加热器。其中第7、8号低压加热器为单壳体组合式加热器,布置在凝汽器喉部,各加热器的疏水逐级自流,不设疏水泵。最后一级高压加热器疏水至除氧器最后一级低压加热器疏水进入凝汽器。

加热器温升分配:加热器和除氧器采用温升分配(280.88-3288)/8=31℃

3.1.3分级参数确定

根据前面拟定热力过程线,调节级按高压缸理想焓降的20%且不超过100kJ/kg 的原则,高压缸剩余9个压力级按等焓降分配,中、低压缸也按等焓降分配,热力过程线近似为直线,参数如下表所示:

3.1.4 各抽汽参数确定

根据初步拟定的热力过程线和分级参数,初步估算回热抽汽流量和各加热器给水流量,如下

3.2 调节级设计

调节级型式及焓降确定调节级的主要参数

(1)调节级的选型

调节级有单列和双列之分,取决于经济功率下调节级理想焓降的大小。由于本设计机

组为高参数、大容量超临界机组,并在电网中承担基本负荷,要有尽量好的经济性,这种汽

轮机的进汽量或容积流量很大,经前轴填充的漏气量通常不超过总进汽量的1%,且前几个

压力级的叶片容易设计成具有较大的高度,在这种情况下,采用单列调节级是最合理的。虽

然机组的结构复杂、成本较高,但提高了经济性,以及合理的技术经济指标。

(2)调节级焓降的选择

目前,国产大功率汽轮机调节级(单列)的理想焓降约为:70~100kJ/kg ,据此,本设计中采用单列调节级,经济功率下的级调节级理想焓降取为:95 kJ/kg 。

调节级主要参数的选取 表6

3.3 调节级详细计算 3.3.1(1)最佳部分进气度的确定

由于1

sin n

n m A l e d πα=

可见,在其他参数不变的条件下,叶高n l 与部分进气度e 成反比。叶高

越小,叶高损失越大,但部分进气度越小。部分进气度损失可分为两种:一种为鼓风式、损失,另一种为斥汽损失。部分进气度 e 越小,则鼓风损失和斥汽损失越大,从而部分抵消了由于叶高增大二提高的效率,为了使调节级获得较高的效率,确定调节级的叶高和部分进气时须使δh t 与Δhe 之和为最小。 经分析可得e=0.65 (2)速比、平均直径的确定

现取适当的速度比值,以保证调节级的效率。由于调节级都为部分进气,所以其最佳速度比

要比全周进气的小,一般在额定工况下,单列级 x a =0.4~0.45,或者更小。本设计中取小值,即:x a =0.40。

平均直径:调节级的平均直径选取范围为:对于高压及超高压以上机组(整体转子),d m =900~1100mm 。对于单列调节级的焓降较大可取直径的上限值。由于一个级的焓降、速比、平均直径三者中只有两个是独立变量,故:平均高直径由公式计算:

m a

a d n

u x C π==

由此可计算得平均直径d m =1805.11mm (3)反动度的确定

参考《汽轮机原理》调节级反动度取值范围0.02~0.05,选取Ωm=0.05。

(4)叶型的选择

当调节级采用单列级时,其工作马赫数大多在亚音速范围内,一般选用亚音速叶栅。单列级即使气流出口速度超音速,但由于超音速叶栅的变工况特性较差,加工复杂,且亚音速叶栅可利用斜切部分膨胀得到超音速气流。综全考虑各种因素,本设计选用亚音速喷嘴叶栅,其型号为:TC-1A,有关参数为相对节距n t 为0.74~0.90 ,进气角 0α=70°~100°,出气角1α=10°~14°;动叶栅选用型号TP-1A ,有关参数为:进气角1β=18°~23°,出气角2β=16°~19°,相对节距b t =0.60~0.70。

3.3.2(1)气流出口角1α和2β的选择

喷嘴和动叶的进气出口角1α和2β的大小对级的通流能力、做功能力及级效率都有直接影响。在高压级中,由于级的容积流量G v 一般较小,为了端部损失,不应使叶片高度太小,往往选取出口角1α较小的叶型,通常1α取=11°~14° ;在汽轮机的中低压部分容积流量较大,为了减缓叶片高度的急剧增大,往往选择出口角较大的叶型,通常取1α=13°~17°,但考虑到制造和维修,同一级中选取相同的叶型。

(2)叶片数和叶片高度

根据喷嘴叶型TC-1A ,并根据安装角,可根据叶栅气动特性曲线查得相对节距n t =0.868mm ;由于级的平均直径m d = 1852mm 。所以片数,其中:m t t b =。同理,动叶则根据动叶

叶型TP-1A ,动叶片数也是用式m d z t

π=

计算。

3.3.3调节级详细计算

(1)级的等熵滞止焓降

根据进口参数0P 和0t ,查焓熵图,而且由于调节级进口气流速度很小,所以近似地认为*0P =0P ,

*0h =0h 。 故 △h t =95kJ/kg ,△h t *

=△h t +0=95kJ/kg

△h n= △h n

*

=(1-Ωm )×△h t *

=90.25kJ/kg

(2)调节级进气量G 0

G 0=D 0-D v =1896.849t/h=526.90kg/s ; 其中D v 就是前面估算的总的漏气量;

(3)喷嘴出口速度C 1t

1t C =

424.853m/s ;

11t C C ?=?=412.107m/s

(4)喷嘴等熵出口参数1t h 、1t v 、P 。

首先由0h =3395.68kJ/kg 求出喷嘴等熵出口焓值1t h =0h -Δn h =3305.43kJ/kg ; 由H-S 图,从进口状态P ,0h 等熵膨胀到1t h ,查得等熵出口比容1t v =0.017724m 3

/kg

求出出口压力1P =17.538Pa ;

(5)喷嘴出口角1α

根据喷嘴叶型表选择TC-1A喷嘴,出汽角1α=12° (6)喷嘴实际出口焓1h

1h =0h - C 12

/2000= 3310.76 kJ/kg

(7)动叶等熵出口参数2t h ,2t v

2t h =1h —*m t h Ω?= 3306.01 kJ/kg ,查H-S 得2t v = 0.018006 m

3

/kg

(8)喷嘴损失n h δ

2*

(1)n n h h δ?=-?= 5.333775 kJ/kg

(9)喷嘴出口面积n A

11n t n n t

G v A C μ?=

?= 0.023139m 2

(10)喷嘴高度n l

1

sin n

n m A l e d πα=

= 0.054528m

(11)动叶高度b l

b n t r l l l l =+?+?= 0.057528 m

(12)求动叶进气气流相对速度1w 和进气角1β

1w =260.59m/s,11

11

sin arcsin

C w αβ?= =18.17° (13)动叶前蒸汽参数 由1h 和1P 查焓熵图得到1s 和1v

(14)动叶理想比焓降b h ?和动叶理想比焓降*

b h ? b m t

h h ?=Ω??=4.75 kJ/kg ;*

1b b w h h h δ?=?+ (15)动叶出口气流相对速度2w

2t w =

99.15m/s ;22t w w ψ== 96.17296 m/s

(16)动叶损失b h δ

2

2

2

(1)2

t b w h δψ=-= 0.280725 kJ/kg

(17)动叶出口面积b A

22

()b b G v A w ?=

= 0.098649 m 2

;因考虑叶顶漏气,故b G =n G (18)动叶出口气流角2β

2β约比1β小3°至6°,选2β=15°

根据动叶的进出口气流角和动叶叶型表选取动叶型为TP-1A (19)动叶出口气流绝对速度2C 和出汽角2α

2C =

95.26 kJ/kg ;22

22

sin arcsin

w C βα== 49.01° (20)余速损失2c h δ

22

2

2(1)2

c C h δψ=-= 4.536778 kJ/kg

(21)轮周有效比焓降u h ?

*

2u t n b c h h h h h δδδ?=?---= 84.85 kJ/kg

(22)级消耗的理想能量0E

*

012t c E h h μδ=?-= 95 kJ/kg,其中1μ为余速利用系数,对于调节级取1μ=0

(23)叶高损失t h δ

*2()t t n b c n

a

h h h h h l δδδδ=

?---=2.489704 kJ/kg ;a 取1.6,这时不需要对扇形损失做另外的计算。

(24)叶轮摩擦损失f h δ

23

21.07(

)/()100

f b u h d G v δ=??= 0.410697 kJ/k

g ;b G 取为与n G 相等,忽略漏汽 (25)部分进气损失e

h δ

2*[

()(1)]2e h n e e t a m a

B e S u u

h e C h e C d e C δ=?--+???= 3.042125874 kJ/kg 式中,由于一般不使用护罩,故h e =0;e C 取0.0012;e B 取0.15; 喷嘴组数n S 取为4。

(26)隔板汽封损失p h δ和额定漏气损失t h δ

p p i n

G h h G δ?=

?=0;

忽略漏汽t

t i n

G h h G δ?=

?=0 p G ?为隔板漏汽量,n G 为通过本级的蒸汽流量。

(27)级的有效比焓降i h ?

i u h h h δ?=?-∑= 81.95 kJ/kg

(28)级的相对内效率i η

i

i h E η?=

= 0.893482 (29)级的内功率i P

i i P G h =??= 43178.78kW

4非调节级设计及回热系统校正

影响汽轮机机组效率的主要因素之一是流过该级的蒸汽容积流量的大小。而按这个大小可以将其分成三个不同的级段:高压段,中压段,低压段;但是实际中,根据机组容量的大小这三个段可以同时出现,也有可能只出现其中的一部分。而且这三段的界线也不是绝对明显的。 在热力设计中,通流部分的通常采用以下三种流通部分形状,由于本设计机组是基本负荷运行的机组兼调峰运行,基于以上特点结合现有技术,采用整段转子,故本设计机组采用(a )图所示的通流部分形状

(a) (b) (c)

4.1非调节级的级数的确定

4.1.1全机第一非调节级平均直径1

m d 的确定

(1)全机第一非调节级平均直径1m d 和全机末级平均直径z

m d 的确定

通流部分各级直径的选择还要考虑使整个通流部分平滑变化,以便利用余速,使机组有较高的效率。其中第一非调节级直径大小对通流部分的成型影响较大,由于调节级是部分进气,与第一非调节级不同,因此这两级的不能相等,否则就不能保证第一非调节级进气均匀,一般两个直

径之差不小于50-100mm 。由于调节级平均直径已确定,这里选取 1

m d =1.06m 。

(2)末级动叶出口的连续方程22sin z z

c z m

b G V d l C πα=,适当变化后,得:

z

m

d =α2期望取90度,mac t h ?为全机总焓降1851.66kj/kg

2c ξ………………余速损失系数。在0.015~0.03之间,取0.02。

z V ………………排汽比容,查得大概为26 m

3

/kg 。

θ………………径角比,根据机组容量大小选择,取2.45。

c G ………………末级蒸汽流量,是新蒸汽量扣除各级回热抽汽量总和后的数值。

1161.62t/h

对于关键直径的拟定见表。

汽轮机各关键平均直径的拟定 表7

(3)各缸非调节级级数的确定

汽轮机非调节级的确定,可以采用图解法。要确定非调节级通流部分平均直径的变化规律。具体的做法就是在坐标纸上,横坐标BD 表示本汽缸第一和最后一级之间的中心距离,BD 的长度可以任意选择,一般可以取25cm 左右;纵坐标一AB表示本缸第一级的平均直径,CD表示本汽缸各级平均直径。用一条逐渐上升的光滑曲线打A ,C 两点连接起来,该曲线就表示本汽缸各级的平均直径的变化规律。

4.1.2各缸非调节级的确定 1)高压缸

1高压缸平均直径的确定

高压缸各级平均直径的拟定 表8

(11)(22) (2)

m AB CD

d m +-+-++=

+=1113mm

2高压缸非调节级级数的确定 级的理想焓降可用下式确定:

22211()()22260a m t a a

C d n u h x x π?===;

2

a

a x x m ∑=

+=0.655

22

1.1131

2.3245(

)12.3245()35.630.655m t a

d h x ?=== kj/kg

(10.07)(41693.2)9.4935.63mac

tz t

h Z V h α?+-==≈高(1+) 重热系数α取0.07.

参照同类机组,高压缸非调节级为9级。 3 高压缸各级焓降的分配

在求到级数Z 后,将BD 分为Z-1等分,在原假定的汽管平均直径变化直线AC 上读出每级的平均直径和速比,以直径和速比为准,分配焓降。并对焓降进行修正。

高压缸各级平均直径的修正 表9

根据以上高压缸相关参数对高

缸进行焓降的分配:

高缸非调节级平均直径及焓降分配 表10

2)中压缸

1中压缸平均直径的确定

中压缸各级平均直径的拟定 表11

(11)(22) (2)

m AB CD

d m +-+-++=

+ = 1427mm

2中压缸非调节级级数的确定

级的理想焓降可用下式确定:

22211()()22260a m t a a

C d n u h x x π?====568.82 kJ/kg ;

2

a

a x x m ∑=

+=0.665 22

1.4271

2.3245(

)12.3245()56.82/0.665m t a

d h kj kg x ?===

(10.06)341656.82mac

tz t

h Z V h α?+==≈中(1+)(级) 重热系数α取0.06.

3 中压缸各级焓降的分配

在求到级数Z 后,将BD 分为Z-1等分,在原假定的汽管平均直径变化直线AC 上读出每级的平均直径和速比,以直径和速比为准,分配焓降。并对焓降进行修正

中压缸各级平均直径的修正 表12

根据以上中压缸相关参数对中压缸进行焓降的分配:

中压缸非调节级焓降分配表 表13

3)低压缸

1低压缸平均直径的确定

低压缸各级平均直径的拟定 表14

(11)(22) (2)

m AB CD

d m +-+-++=

+ = 2291mm

2低压缸非调节级级数的确定 级的理想焓降可用下式确定:

22211()()22260a m t a a

C d n u h x x π?====136.04kj/kg

2

a

a x x m ∑=

+=0.690 22

2.29112.3245(

)12.3245()136.04/0.690m t a

d h kj kg x ?===

(10.045)9787136.1mac

tz t

h Z V h α?+==≈中(1+)(级) 重热系数α取0.045.

3 低压缸各级焓降的分配

在求到级数Z 后,将BD 分为Z-1等分,在原假定的汽管平均直径变化直线AC 上读出每级的平均直径和速比,以直径和速比为准,分配焓降。并对焓降进行修正

低压缸各级平均直径的修正 表15

根据以上低压缸相关参数对低压缸进行焓降的分配:

低压非调节级平均直径与焓降分配 表16

4.2中压缸非调节级热力计算表17

汽轮机课程设计说明书..

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

汽轮机课程设计设计任务书指导书091--26

汽轮机课程设计任务书 汽轮机缺级运行工况下的经济性和安全性核算 班级:热动091(热电) 指导教师:胡爱娟钱焕群杨冬 时间:2012.6

一、设计题目:汽轮机缺级运行工况下的经济性和安全性核算 有一台50MW汽轮机发电机组,其某级因动叶振动特性不良或动静部分碰磨而损坏,需拆除该级后继续运行。为保证汽轮机的安全运行,必须对机组进行限制出力的计算,即确定其最大允许负荷,并分析其经济性和安全性。 二、设计时间:2周 三、原始资料: 1、N50-8.82/535型汽轮机热力计算数据汇总表(设计工况) 2、设计工况热力过程线 3、N50-8.82/535型汽轮机设计工况轴向推力计算数据 4、回热系统简图 5、N50-8.82/535型汽轮机热平衡计算基本数据 6、N50-8.82/535型汽轮机组热经济指标 7、变工况计算所需数据和图表 详见参考资料 8、其他数据 背压Pc: 第一组:Pc=0.006MPa 第二组:Pc=0.0055MPa 第三组:Pc=0.005MPa 第四组:Pc=0.0045MPa 第五组:Pc=0.004MPa 第六组:Pc=0.0035MPa 第七组:Pc=0.003MPa 所缺级数分别为16、17、18、19级 四、具体任务和计算步骤如下: 1、估计允许最大负荷下的新蒸汽流量; 2、确定各抽汽点的压力和焓值; 3、初步拟定全机热力过程线,并确定末级排汽状态点与排汽焓; 4、各级流量的确定; 5、汽轮机热力核算(功率和效率计算) 最末级详细计算 危险级详细计算

中间级近似计算 调节级详细计算 6、危险级的强度校核计算 7、轴向推力核算及推力瓦安全性核算 8、确定汽轮机允许的最大功率; 9、编写课程设计计算说明书 五、成果。 设计计算书一份。 要求:内容完整、书写清楚整洁、文字通顺、数据表格要整齐、装订整齐,不少于30页。 内容包括:封面、目录、摘要、原始资料、正文、参考文献、设计小结、附录。

汽轮机课程设计指导书

汽轮机课程设计指导书

目录 一、课程设计的目的与意义 (1) 二、设计题目及已知条件 (2) 2.1 机组概况 (2) 2.2 本次设计与改造的基本要求 (4) 三、设计过程 (6) 3.1 汽轮机的热力总体任务 (6) 3.2 汽轮机变工况热力核算的方法介绍 (6) 3.3 本课程设计的基本方法 (7) 3.3.1 级的变工况热力核算方法——倒序算法 (8) 3.3.2 级的变工况热力核算方法——顺序算法 (17) 3.4 上述计算过程需要注意的问题 (22) 四、参考文献: (23) 附:机组原始资料 (23)

汽轮机课程设计 一、课程设计的目的与意义 汽轮机是按照经济功率设计的,即根据给定的设计要求如功率、蒸汽初参数、转速以及汽轮机所承担的任务等,确定机组的汽耗量、级数、通流部分的结构尺寸、蒸汽参数在各级的分布以及效率、功率等。汽轮机在设计条件下运行称为设计工况。由于此工况下蒸汽在通流部分的流动与结构相适应,使汽轮机有最高的效率,所以设计工况亦称为经济工况。 由于要适应电网的调峰以及机组实际运行过程中运行参数的偏差等原因,汽轮机不可能始终保持在设计条件下,即负荷的变化不可避免的,蒸汽初终参数偏离设计值,通流部分的结垢、腐蚀甚至损坏,回热加热器停用等在实际运行中也时有发生等等。汽轮机在偏离设计条件下的工作,称为汽轮机的变工况。在变工况下,蒸汽量、各级的汽温汽压、反动度、比焓降等可能发生变化,从而引起汽轮机功率、效率、轴向推力、零件强度、热膨胀、热应力等随之改变。 通过本课程设计加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的位置与作用。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的[1-4]。

汽轮机课程设计书

汽轮机课程设计 指导老师: 学生姓名: 学号: 所属院系: 专业: 班级: 日期:

课程设计任务书 1.课程设计的目的及要求 任务:N10-4.9/435 冷凝式汽轮机组热力设计 目的:①系统总结巩固已有知识 ②对汽轮机结构、通流部分、叶片等联系 ③对于设计资料的合理利用 要求:①掌握汽轮机原理的基本知识 ②了解装置间的相互联系 2. 设计题目 设计原则:⑴安全性:采用合理结构、安全材料、危险工况校核 ⑵经济性:设计工况效率高 ⑶可加工性:工艺、形状、材料有一定要求 ⑷新材料、新结构选用需进行全面试验 ⑸节省贵重材料的用量与消耗 3. 热力设计内容 ⑴调节级计算速比选用0.35-0.44 d m=1100 mm 双列级承担的比焓降 160-500 kj/kg 单列级承担的比焓降 70-125 kj/kg ⑵非调节级热降分配 ⑶压力级的热力计算 ⑷作h-s 热力过程线,速度三角形 ⑸整理说明书,计算结果以表格呈现 4. 主要参数 ⑴P0=4.9Mpa t0=435℃ ⑵额定功率P e=10000 kw ⑶转速 n=3000 rad/min ⑷背压P C=8kPa ⑸汽轮机相对内效率ηri(范围为:82%~88%) 选取某一ηri值,待各级详细计算后与所得ηri进行比较,直到符合要求为止。机械效率:这里取ηm= 94%~99% 发电效率:这里取ηg=92%~97%

设计参数的选择 1.基本数据:额定功率Pr=10000kW,设计功率P e=10000kW,新汽压力P0=4.9MPa,新汽温度t0=435℃,排汽压力P c=0.008MPa。 2.速比选用0.40 3.d m=1100 mm 4.转速 n=3000 rad/min 5.汽轮机相对内效率ηri=86% 6.机械效率ηm= 98% 7.发电效率ηg= 95% 详细设计内容 图1—多级汽轮机流程图 1.锅炉 2.高压回热加热器 3.给水泵 4.混合式除氧器 5.低压回热加热器 6.给水泵 7.凝汽器 8.汽轮机

汽轮机课程设计zhong

汽轮机课程设计 第一部分:设计题目与任务 题目:汽轮机热力计算与设计 根据给定的汽轮机原始参数来进行汽轮机热力计算与设计: 1、分析与确定汽轮机热力设计的基本参数,这些参数包括汽轮机的容量、进汽参数、转速、排汽压力或冷却水温度、回热加热级数及给水温度、供热汽轮机的供热蒸汽压力等; 2、分析并选择汽轮机的型式、配汽机构形式、通流部分形状及有关参数; 3、拟订汽轮机近似热力过程线和原则性回热系统,进行汽耗率及热经济性的初步计算; 4、根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比烩降、叶型及尺寸等: 5、根据通流部分形状和回热抽汽点要求,确定压力级即非调节级的级数和排汽口数,并进行各级比焙降分配; 6、对各级进行详细的热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程线; 7、根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求,并修正回热系统的热平衡计算; 8、根据需要修正汽轮机热力计算结果. 第二部分:设计要求 1)运行时具有较高的经济性; 2)不同工况下工作时均有高的可靠性; 3)在满足经济性和可靠性要求的同时,还应考虑汽轮机的结构紧凑、系统简单、布置合理、成本低廉、安装和维修方便及零部件通用化、系列标准化等因素。 第三部分:设计内容 一、汽轮机热力计算与设计原始参数 主蒸汽压力3.43Mpa,主蒸汽温度435℃;

冷却水温度20℃,给水温度160℃; 额定功率e P :23MW,调节级速比a x :0.24 二、汽轮机设计基本参数确定 1、汽轮机容量 额定功率e P :23MW 2、进气参数 汽轮机初压P 0=3.43Mpa 汽轮机初温t0=435℃ 3、汽轮机转速n=3000rad/min 4、排气压力 汽轮机排气压力Pc=0.005Mpa 冷却水温tc1= 20℃ 5、回热级数及给水温度 给水温度tfw=160℃ 回热级数Z=3级 三、选型、配汽及流通部分的设计计算 1、汽轮机型号 由排气压力和冷却水温可知汽轮机为:凝气式汽轮机。 型号:N23-3.43/435 2、配汽方式 汽轮机的配汽机构又称调节方式,与机组的运行要求密切相关。通常的喷嘴配汽、节流配汽、变压配汽以及旁通配汽四种方式。喷嘴配汽是国产汽轮机的主要配汽方式,由已知参数以及设计要求选用喷嘴配汽方式。 四、拟定汽轮机近似热力过程曲线和原则性热力系统,进行汽耗量、回热系统 热平衡及热经济性的初步计算 1、近似热力过程曲线的拟定 (1)进排汽机构及连接管道的各项损失 蒸汽流过各阀门及连接管道时,会产生节流损失和压力损失。下表列出这些 损失通常的取值范围。

汽轮机课设心得总结

汽轮机课设心得总结 经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握

整个汽轮机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了

汽轮机课程设计说明书——参考

课程设计说明书设计题目:N25-3.5/435汽轮机通流部分热力设计 学生姓名:xxx 学号:012004006xxx 专业班级:热能与动力工程xxx班 完成日期:2007年12月2日 指导教师(签字): 能源与动力工程学院 2007年12月

已知参数: 额定功率:p r =25MW , 设计功率:p e =20MW , 新蒸汽参数:p 0=3.5MP ,t 0=435℃, 排汽压力:p c =0.005MPa , 给水温度:t fw =160~170℃, 冷却水温度:t w1=20℃, 给水泵压头:p fp =6.3MPa , 凝结水泵压头:p cp =1.2MPa, 额定转速: n e =3000r/min , 射汽抽汽器用汽量: △D ej =500kg/h , 射汽抽汽器中凝结水温升: △t ej =3℃, 轴封漏汽量: △D 1=1000kg/h , 第二高压加热器中回收的轴封漏汽量: △D 1′=700kg/h 。 详细设计过程: 一、气轮机进气量D 0热力过程曲线的初步计算 1.由p 0=3.5MP ,t 0=435℃确定初始状态点“0”,0h =3304kJ/kg ,0v =0.090 m 3/kg 估计进汽机构压力损失⊿p 0=4%p 0=4%×3.5MPa =0.14MPa , 排汽管中压力损失c p ?=0.04c p =0.0002M P a ' 0.0052z c c c p p p p M Pa ==+?= p 0′=p 0-⊿p 0=3.5MPa -0.14MPa =3.36MPa ,从而确定“1”点。过“0”点做定熵线与Pc=0.0050MPa 的定压线交于“3’”点,在h-s 图上查得, 3'h =2122kJ/kg,整机理想焓降为:m ac t h ?=0h -3'h =1182kJ/kg 2.估计 汽轮机相对内效率ηri =0.830 , 发电机效率ηg =0.970 (全负荷), 机械效率ηax =0.99 得m ac i h ?=ηri m ac t h ?=981.06kJ/kg , 从而确定“3”点。排汽比焓为,3h =0h -m ac i h ?=2331.2kJ/kg 3.用直线连接“1”、“3”两点,求出中点“2′”,并在“2′”点沿等压线向下移25kJ/kg 得“2”点,过“1”、“2”、“3”点作光滑曲线即为汽轮机的近似热力过程曲线。 二、整机进汽量估计 0D ri g ax D ηηη+??e mac t 3600p m = h (kg/h ) 取m =1.20,⊿D =4%D 0,ηm =0.99,ηg =0.97, ηri =0.83 003600 1.15 D D t ?20?1006.335?0.97?0.987?0.97 ?= =88.599/h 三、调节级详细计算 1.调节级型式:复速级 理想焓降:⊿h t =250kJ/kg

汽轮机课程设计报告

汽轮机课程设计报告 姓名: 学号: 班级: 学校:华北电力大学

汽轮机课程设计报告 一、课程设计的目的、任务与要求 通过设计加深巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握设计方法。并通过设计对汽轮机的结构进一步了解,明确主要零件的作用与位置。具体要求就是按给定的设计条件,选取有关参数,确定汽轮机通流部分尺寸,力求获得较高的汽轮机效率。 二、设计题目 机组型号:B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 新汽压力:8.8300Mpa 新汽温度:535.0℃ 排汽压力:0.9810Mpa 额定功率:25000.00kW 转速:3000.00rpm 三、课程设计: (一)、设计工况下的热力计算 1.配汽方式:喷嘴配汽 2.调节级选型:单列级 3.选取参数: (1)设计功率=额定功率=经济功率 (2)汽轮机相对内效率ηri=80.5% (3)机械效率ηm=99.0% (4)发电机效率ηg=97.0% 4.近似热力过程线拟定 (1)进汽节流损失ΔPo=0.05*Po 调节级喷嘴前Po'=0.95*Po=8.3885Mpa (2)排汽管中的压力损失ΔP≈0 5.调节级总进汽量Do的初步估算 由Po、to查焓熵图得到Ho、So,再由So、Pc查Hc。 查得Ho=3474.9375kJ/kg,Hc=2864.9900kJ/kg 通流部分理想比焓降(ΔHt(mac))'=Ho-Hc=609.9475 kJ/kg Do=3.6*Pel/((ΔHt(mac))'*ηri*ηg*ηm)*m+ΔD Do=3.6*25000.00/(609.9475*0.805*0.970*0.990)*1.05+5.00=205.4179(kJ/kg) 6.调节级详细热力计算 (1)调节级进汽量Dg Dg=Do-Dv=204.2179t/h (2)确定速比Xa和理想比焓降Δht 取Xa=0.3535,dm=1100.0mm,并取dn=db=dm 由u=π*dm*n/60,Xa=u/Ca,Δht=Ca^2/2

汽轮机课程设计报告书

军工路男子职业技术学院课程设计报告书 课程名称:透平机械原理课程设计 院(系、部、中心):能源与动力工程学院 专业:能源与动力工程 班级:2013级 姓名:JackT 学号:131141xxxx 起止日期:2016.12.19---2017.1.6 指导教师:万福哥

我校研究的透平机械主要是是以水蒸汽为工质的旋转式动力机械,即汽轮机,常用于火力发电。汽轮机通常与锅炉、凝汽器、水泵等一些列的设备、装置配合使用,将燃煤热能通过转化为高品质电能。与其它原动机相比,汽轮机机具有单机功率大、效率高、运转平稳和使用寿命长等优点,但电站汽轮机在体积方面较为庞大。 汽轮机的主要用途是作为发动机的原动机。与常规活塞式内燃机相比,其具有输出功率稳定、功率大等特点。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用以汽轮机为原动机的汽轮发电机组,这种汽轮机具有转速一定的特点。汽轮机在一定条件下还可变转速运行,例如驱动各种泵、风机、压缩机和船舶螺旋桨等,我国第一艘航母“辽宁号”就是以汽轮为原动机。汽轮机的排汽或中间抽气还可以用来满足工业生产(卷烟厂、纺织厂)和生活(北方冬季供暖、宾馆供应热水)上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以用各种类型的工业汽轮机(包括发电、热电联供、驱动动力用),使用不同品位的热能,使热能得以合理且有效地利用。 汽轮机与锅炉(或其他蒸汽发生装置,比如核岛)、发电机(或其他被驱动机械,比如泵、螺旋桨等)、凝汽器、加热器、泵等机械设备组成成套装置,协同工作。具有一定温度和压力的蒸汽可来自锅炉或其他汽源,经主汽阀和调节汽阀进入汽轮机内,依次流过一系列环形安装的喷嘴栅(或静叶栅)和动叶栅而膨胀做功,将其热能转换成推动汽轮机转子旋转的机械功,通过联轴器驱动其他机械,如发电机。膨胀做功后的蒸汽由汽轮机的排汽部分排出。在火电厂中,其排气通常被引入凝汽器,向冷却水或空气放热而凝结,凝结水再经泵输送至加热器中加热后作为锅炉给水,循环工作。

汽轮机课程设计(调节级强度)

能源与动力工程学院汽轮机课程设计 题目:600MW超临界汽轮机调节级叶片强度核算时间:2006年11月13日-2006年12月4日 学生姓名:杨雪莲杨晓明吴建中单威李响梅闫指导老师:谭欣星 热能与动力工程036503班

2006-12-4 600MW超临界汽轮机调节级叶片强度核算 [摘要]本次课程设计是针对600MW超临界汽轮机调节级叶片强度的校核, 并主要对第一调节阀全开,第二调节阀未开时的调节级最危险工况对叶片强度的校核。 首先确定了最危险工况下的蒸汽流量。部分进汽度选择叶型为HQ-1型,喷嘴叶型HQ-2型。根据主蒸汽温度确定叶片的材料为Cr12WmoV马氏体-铁素体钢。 其次,计算了由于汽轮机高速旋转时叶片自身质量和围带质量引起的离心力和蒸汽对叶片的作用力。 选取了安全系数,计算屈服强度极限、蠕变强度极限和持久强度极限,三者中的最小值为叶片的许用用力,叶片拉弯应力的合成并校核,确定叶片是否达到强度要求。 最后,论述了调节级的变化规律即压力-流量之间的关系。 一、课程设计任务书 课程名称:汽轮机原理 题目:600MW超临界汽轮机调节级叶片强度核算 指导老师:谭欣星 课题内容与要求 设计内容: 1、部分进汽度的确定,选择叶型 2、流经叶片的蒸汽流量计算蒸汽对叶片的作用力计算 3、叶片离心力计算 4、安全系数的确定 5、叶片拉弯合成应力计算与校核 6、调节级后的变化规律 设计要求: 1、运行时具有较高的经济性 2、不同工况下工作时均有高的可靠性 已知技术条件与参数: 1、600MW 2、转速:3000r/min 3、主汽压力:24.2Mpa; 主汽温度:566C 4、单列调节级,喷嘴调节 5、其他参数由高压缸通流设计组提供 参考文献资料: 1、汽轮机课程设计参考资料冯慧雯,水利电力出版社,1998 2、汽轮机原理翦天聪,水利电力出版社 3、叶轮机械原理舒士甑,清华大学出版社,1991

汽轮机课程设计

第一章23 MW凝汽式汽轮机设计任务书 1.1设计题目:23MW凝汽式汽轮机热力设计 1.2设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整 机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MR 新汽温度:435 C 排汽压力:0.005MR 冷却水温:22 C 机组转速:3000r/mi n 回热抽汽级数:5 给水温度:168 C 1.4设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1汽轮机各阀门及连接管道中节流损失和压力估取范围 s

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图 2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p o 、t o ,可得汽轮机进汽状态点0,并查得初比焓 h °=3304.2kj/kg 。由前所得,设进汽机构的节流损失 △ P °=0.04 R=0.1372 MPa 寻到调 节级前压力R = P 0 - △ P °=3.2928MPa 并确定调节级前蒸汽状态点1。过1点作等 比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 (少罟)=h ° -h 2t =330422228=11764j 2kg 。由上估计进汽量后得到的相对内效率 n ri =83.1%,有效比焓降△ ht mac = ( A ht mac f n 『=1176X 0.831=977.3kj/kg ,排汽比 接1、Z 两点,在中间3'点处沿等压线下移21?25 kj/kg Z 点,得该机设计工况下的近似热力过程曲线,如图 2-2所示 3.43Mpa 焓 h z =0「hT 二:3304.^-99863 2231kj/872 ,在h-s 图上得排汽点乙用直线连 得3点,用光滑连接1、3、 h ° =3304.2kJ/kg 2t h 2t =2152.1kj/kg 3.2928Mp K 3 747 *1 435 C 0.005Mpa

中温中压冷凝式汽轮机课程设计说明书

中温中压冷凝式汽轮机课程设计说明书

目录 一.总述 1.课程设计的目的及要求 2.设计题目 3.热力设计内容 4.主要参数 二.热力设计内容 ㈠回热系统计算 ㈡调节级 ㈢中间级焓降分配及级数确定 ㈣压力级计算 ㈤汽封漏气量、叶顶漏汽量计算 ㈥末级扭叶片叶型 附:上述计算程序详见相关文件

一.总述 1.课程设计的目的及要求 任务:N25-3.43/435 冷凝式汽轮机组热力设计 目的:①系统总结巩固已有知识 ②对汽轮机结构、通流部分、叶片等联系 ③对于设计资料的合理利用 要求:①掌握汽轮机原理的基本知识 ②了解装置间的相互联系 2.设计题目 本次课程设计采用的基本数据为上海汽轮机厂数据设计题目:中温中压冷凝式汽轮机课程设计 设计原则:⑴安全性:采用合理结构、安全材料、危险工况校核 ⑵经济性:设计工况效率高 ⑶可加工性:工艺、形状、材料有一定要求 ⑷新材料、新结构选用需进行全面试验 ⑸节省贵重材料的用量与消耗 3.热力设计内容 ⑴调节级计算速比选用0.23/0.26 ⑵非调节级热降分配 ⑶压力级的热力计算 ⑷作h-s 热力过程线,速度三角形 ⑸整理说明书,计算结果以表格呈现 4.主要参数 ⑴ P0=3.43Mpa t0=435℃ ⑵额定功率 Nm=25000 kw 承担尖峰负荷工况 经济负荷 Ne=0.8—0.85Nm ⑶转速 n=3000 rad/min ⑷背压Pk=4.9kPa ⑸冷却水温 tw=20℃

二.热力设计内容 ㈠回热系统计算: 1.基本参数: Ne t0 p0 pc 2.设计工况的确定 中温中压,取设计工况为额定工况的80% 3.回热系统说明 ⑴已知参数: t fw=160.4℃加热器端差θ=6℃抽汽压损△p=4%p0 ⑵型式:两高两低一除氧 除氧室压设计:压力pN=0.118Mpa (定压) ⑶给水泵压力为 0.272Mpa 凝水泵压力为 1.176Mpa ⑷作过程线 ⑸热平衡计算 取加热器温升为 25℃±5℃,计算结果见热平衡图 ㈡调节级 采用喷嘴调节的汽轮机在运行时,主汽门全开。当负荷发生变化时,依次开启或关闭若干个调节阀,改变调节级的通流面积,以控制进入汽轮机的蒸汽量。调节级的喷嘴分成若干个独立的组,通常每个调节阀控制一组喷嘴。因此调节级为部分进汽。 对于参数不高的中小功率汽轮机,宜采用热降较大的双列调节级,可使整个机组级减小,结构紧凑,造价降低,且负荷适应性好,但效率低,所以宜应用于带尖峰负荷的机组上。 1.双列级主要参数选取见表一 2.调节级计算见表二 3. 调节级热力过程线见附图

汽轮机课设心得总结

汽轮机课设心得总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

汽轮机课设心得总结经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮

机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽轮机课

汽轮机课程设计

15 第二部分 使用说明书 一、软件简介 汽轮机课程设计教学软件《设计宝典Xp 》是由蚂蚁虫工作室马唯唯开发的。适合热动及相关专业汽轮机课程设计使用。设计汽轮机级数不超过12级。 软件特点: 1.查焓熵图由计算机查取,快速,准确。输入输出采用了OLE 高级拖放技术,自动截取数据,无需手动输入。(参见《焓熵查表通》介绍) 2.《新视图1.0》包含了设计中的所有视图,可以直接打印,可以查取各个系数。 3.可以自动生成设计报告。 4.可以随时查看每一步或者每一级的详细计算过程。 5.可以模拟组装汽轮机通流部分。 6.支持dbf 到 xls 文件格式转换。 7.强大的数据逻辑性检测将大大减少人为的错误。 8.可以设计个性化界面。 9.可以播放背景音乐。 软件安装最低要求: 1.中央处理器为80486或更高。 2.已设虚拟内存的计算机要求内存在4MB 以上, 未设虚拟内存的计算机内存

至少要16MB内存,安装后不少于15MB的自由空间。 3.与windows配套的鼠标。 《新视图1.0》介绍 (1)《新视图1.0》中包含了课程设中使用的各幅图,每一幅图中的符号都有解释,只需鼠标移到符号上即可。 (2)系数采用鼠标移动查取。当鼠标移动时,横纵坐标值会变化。 (3)压力级平均直径确定采用作图法,Array采用计算机作图,快速准确。点击详细过程 可以看到每一段的长度,改变比例尺寸后会 从新量取。 《焓熵查表通》介绍 理论来源: 焓熵查表采用国际公式化委员会(IFC) 提供的标准计算公式。 软件特点; (1)计算和输出可采用国际单位和工程 单位。系统默认已知参数为国际单位。 (2)查出来参数与水/水蒸气性质表上 的数据有所误差。误差均小于1/100。 (3)采用了自动对位数字输入,系统会 自动切换成英文状态输入小数。 (4)可以判断在计算机范围内的两个性 质参数对应的状态。 (5)可以根据焓值来判断熵值的大小范 围。 (6)数据可以手动输入也可以使用拖放 技术。 操作说明: (1)焓、熵、压力、比容、一般取4位小数,温度和干度一般取2位小数进行计算。 (2)如果想计算另一种单位制下的结果,选择单位制后一定要点确定才能生效。 (3)建议查焓熵图时采用拖放技术,它可以自动截取有效数据,减少人为判断。设计经常要使用焓熵查表通,你可以点击就可以缩小为一个标题栏大小,它悬浮在主界面上,要展开只需点一下“焓熵查表通”这几个字。在数据上点击并按住鼠标左 键,数据上显示一只表示系统已抓取该数据,按住鼠标左键实现拖动。 16

25MW汽轮机课程设计计算书

汽轮机课程设计 汽轮机参数: 容量:25MW 蒸汽初参数:压力:3.43Mpa 温度:435℃ 排汽参数:冷却水温20℃背压:0.005~0.006Mpa (取0.005 Mpa) 前轴封漏汽与轴封加热器耗汽量为0.007D○,轴封加热器焓升21KJ/Kg 加热器效率ηjr=0.98 设计功率:Pr=25MW 最大功率P=25*(0.2~0.3) 1.近拟热力过程图 在焓熵图上选取进口参数P0=3.43MP a,t0=435℃,可得 h0=3304kJ/Kg.设进汽机构的节流损失△P0=0.04P0,可得调节级 压力=3.3 MP a,并确定调节级前蒸汽状态点1(3.3 MP a, 435℃) 过1点作等比熵线向下交P Z线于2点,查得h2t=2128KJ/Kg,整 机理想比焓降(△h t mac)’=h0-h2t=3304-2128=1176KJ/Kg.选取汽 轮机的效率η=0.85,有效比焓降△h i mac=(△h t mac)’*ηri=999.6

KJ/Kg,排气比焓和h z=2304kj/kg.在焓熵图上得排汽点Z,用直线连接1,Z,去两点的中点沿等压线下移21-25Kj/Kg,用光滑曲线连接1,3两点,得热力过程曲线的近似曲线见图1, 图1 选取给水温度T=160℃回热级数:5 效率η=0.85 主汽门和调节阀中节流损失△P0=(0.03~0.05)PO 排汽管中压力损失△P C=(0.02~0.06)P C 回热抽汽管中的压力损失△P E=(0.04~0.08)P E 2.汽轮机进汽量D○ ηm=0.99 ηg=0.97 m=1.15 △D=0.03D O D0=/ h i macηmηg*m+△D=3.6*20000*1.15/(93*0.99*0.97)

汽轮机课程设计说明书

目录 一、课程设计的目的和要求 (2) 二、设计题目 (2) 三、设计工况汽轮机进汽量的确定 (2) 1、设计工况的功率 (2) 2、设计工况汽轮机进汽量的近似量 (2) 四、调节级热力计算 (3) 1、调节级部分相关参数的确定 (3) 2、喷嘴部分计算 (4) 3、第一列动叶部分计算 (5) 4、导叶部分计算 (7) 5、第二列动叶部分计算 (8) 6、各项损失计算 (10) 7、调节级焓降及功率 (11) 五、压力级热力计算 (12) 1、压力级级数的确定 (12) 2、压力级的部分相关参数的确定 (12) 3、反作用度的选取及喷嘴部分计算 (12) 4、动叶部分计算 (13) 5、各项损失计算 (14) 5、压力级焓降及功率 (15) 六、功率校核 (15) 七、总结分析 (16) 附:数据汇总表 (17)

一、课程设计的目的和要求 课程设计是一个综合性的学习过程。目的在于总结和巩固已学得的基础理论,培养查阅资料、进行工程计算、识图和绘图能力,并在实践过程中吸取新的知识。具体要求是按照给定的设计条件,选取相关参数,进行详细的调节级和压力级的热力计算,确定汽轮机流通部分的尺寸,以求达到较高的汽轮机效率。 二、设计题目 机组型号:B50-8.82/3.43 机组型式:多级冲动式背压汽轮机 新汽压力:8.82 Mpa 新汽温度:535.0℃ 排汽压力:3.43 Mpa 额定功率:25MW 转速:3000 rpm 三、设计工况汽轮机进汽量的确定 1、设计工况的功率 汽轮机设计工况的选取,一般按其在电网或热网中承担的负荷的性质决定。 本课设设计汽轮机承担基本负荷,故其设计工况的功率Ne为额定功率,以便在运行过程中获得最高的平均效率。 2、设计工况汽轮机进汽量计算 1、配汽方式:喷嘴调节 2、调节级型式:双列级。 3、参数选取 (1)设计功率=额定功率=经济功率=25 MW =70.00% (2)汽轮机相对内效率η ri =99% (3)机械效率η m

汽轮机课件设计

15 ..第二部分 使用说明书 一、软件简介 汽轮机课程设计教学软件《设计宝典Xp 》是由蚂蚁虫工作室马唯唯开发的。适合热动及相关专业汽轮机课程设计使用。设计汽轮机级数不超过12级。 软件特点: 1.查焓熵图由计算机查取,快速,准确。输入输出采用了OLE 高级拖放技术,自动截取数据,无需手动输入。(参见《焓熵查表通》介绍) 2.《新视图1.0》包含了设计中的所有视图,可以直接打印,可以查取各个系数。 3.可以自动生成设计报告。 4.可以随时查看每一步或者每一级的详细计算过程。 5.可以模拟组装汽轮机通流部分。 6.支持dbf 到 xls 文件格式转换。 7.强大的数据逻辑性检测将大大减少人为的错误。 8.可以设计个性化界面。 9.可以播放背景音乐。 软件安装最低要求: 1.中央处理器为80486或更高。 2.已设虚拟内存的计算机要求内存在4MB 以上, 未设虚拟内存的计算机内存

至少要16MB内存,安装后不少于15MB的自由空间。 3.与windows配套的鼠标。 《新视图1.0》介绍 (1)《新视图1.0》中包含了课程设中使用的各幅图,每一幅图中的符号都有解释,只需鼠标移到符号上即可。 (2)系数采用鼠标移动查取。当鼠标移动时,横纵坐标值会变化。 (3)压力级平均直径确定采用作图法,Array采用计算机作图,快速准确。点击详细过程 可以看到每一段的长度,改变比例尺寸后会 从新量取。 《焓熵查表通》介绍 理论来源: 焓熵查表采用国际公式化委员会(IFC) 提供的标准计算公式。 软件特点; (1)计算和输出可采用国际单位和工程 单位。系统默认已知参数为国际单位。 (2)查出来参数与水/水蒸气性质表上 的数据有所误差。误差均小于1/100。 (3)采用了自动对位数字输入,系统会 自动切换成英文状态输入小数。 (4)可以判断在计算机范围内的两个性 质参数对应的状态。 (5)可以根据焓值来判断熵值的大小范 围。 (6)数据可以手动输入也可以使用拖放 技术。 操作说明: (1)焓、熵、压力、比容、一般取4位小数,温度和干度一般取2位小数进行计算。 (2)如果想计算另一种单位制下的结果,选择单位制后一定要点确定才能生效。 (3)建议查焓熵图时采用拖放技术,它可以自动截取有效数据,减少人为判断。设计经常要使用焓熵查表通,你可以点击就可以缩小为一个标题栏大小,它悬浮在主界面上,要展开只需点一下“焓熵查表通”这几个字。在数据上点击并按住鼠标左 键,数据上显示一只表示系统已抓取该数据,按住鼠标左键实现拖动。 16

汽轮机课程设计设计任务书指导书2015

电气工程学院 课程设计任务书 课题名称: 汽轮机变工况运行的经济性和安全性核算专业、班级:热能与动力工程121、122班 指导教师:钱进 2014年7月20日至2014年7月31日共2周 指导教师签名: 教研室主任签名: 分管院长签名:

一、设计题目:汽轮机变工况运行下的经济性和安全性核算 设计对象为1台50MW纯凝式单缸汽轮机发电机组,由于电网负荷调节的要求及冷端条件的改变,汽轮机的运行工况发生变化。本次设计拟定60%、70%、80%、90%、100%、110%六个变工况负荷,要求各小组按各自给定的背压条件进行前述六个工况中两个变工况条件下的汽轮机的经济性和安全性核算,通过与额定工况(额定功率、额定背压)的比对,展开分析和讨论得出结论。 二、设计时间:2周 三、原始资料: 1、N50-8.82/535型汽轮机热力计算数据汇总表(设计工况) 2、设计工况热力过程线 3、N50-8.82/535型汽轮机设计工况轴向推力计算数据 4、回热系统简图 5、N50-8.82/535型汽轮机设计工况下热平衡计算基本数据 6、N50-8.82/535型汽轮机组设计工况下热经济指标 7、变工况计算所需数据和图表 详见参考文献1 8、变工况数据 背压Pc、负荷 A组 A1组:Pc=0.0065MPa;60%、90%负荷 A2组:Pc=0.0065MPa;70%,100%负荷 A3组:Pc=0.0065MPa;80%,110%负荷 B组 B1组:Pc=0.0060MPa;60%、90%负荷 B2组:Pc=0.0060MPa;70%,100%负荷 B3组:Pc=0.0060MPa;80%,110%负荷 C组 C1组:Pc=0.0055MPa;60%、90%负荷 C2组:Pc=0.0055MPa;70%,100%负荷 C3组:Pc=0.0055MPa;80%,110%负荷 D组 D1组:Pc=0.0050MPa;60%、90%负荷 D2组:Pc=0.0050MPa;70%,100%负荷

300MW汽轮机课程设计

300MW汽轮机课程设计 (报告书) 学院: 班级: 姓名: 学号: 二O一六年一月十五日

300MW汽轮机热力计算 一、热力参数选择 1.类型: N300-16.67/537/537机组形式为亚临界、一次中间再热、两缸两排气。 额定功率:Pel=300MW; 高压缸排气压力prh=p2=3.8896MPa; 中压缸排汽压力p3=p4=0.7979Mpa; 凝汽器压力Pc=0.004698Mpa; 汽轮机转速n=3000r/min; 2.其他参数: 给水泵出口压力Pfp=19.82MPa; 凝结水泵出口压力Pcp=5.39MPa; 机械效率?ni=0.99; 发电机效率?g=0.99; 加热器效率?h=0.98; 3.相对内效率的估计 根据已有同类机组相关运行数据选择汽轮机的相对内效率: 高压缸,?riH=0.875 ; 中压缸,?riM=0.93; 低压缸?riL=0.86; 4.损失的估算 主汽阀和调节汽阀节流压力损失:Δp0=0.8335MPa; 再热器压损ΔPrh=0.1Prh=0.3622MPa; 中压缸联合气阀节流压力损失ΔP‘rh=0.02 Prh=0.07244MPa; 中低压缸连通管压力损失Δps=0.02ps=0.0162MPa; 低压缸排气阻力损失Δpc=0.04pc=0.1879KPa;

二、热力过程线的拟定 1. 在焓熵图,根据新蒸汽压力p 0=16.67 和新蒸汽温度t = 537,可确定汽轮机进气状态点 0(主汽阀前),并查的该点的比焓值h 0=3396.13,比熵s =6.4128,比体积v =0.019896。 2. 在焓熵图上,根据初压p 0= 16.67和主汽阀和调节气阀节533.62流压力损失Δp = 0.8335 以确定调节级级前压力p‘ 0= p -Δp =15.8365,然后根据p‘ 和h 的交点可以确 定调节级级前状态点1,并查的该点的温度t‘ 0=533.62,比熵s’ =6.4338,比体积v ‘ =0.0209498。 3. 在焓熵图上,根据高压缸排气压力p rh =3.8896和s =6.546437可以确定高压缸理想出口 状态点为2t,并查的该点比焓值h Ht = 3056.864,温度t Ht = 335.743,比体积v Ht =0.066192, 由此可以得到高压缸理想比焓降ΔHt H=h 0-h Ht =339.266 ,进而可以确定高压缸实际比焓降 ΔH i H=ΔH t H×?riH=296.8578,再根据h’rh、ΔH i M和p s可以确定高压缸实际出口状态2,并查 得该点比焓值h H =3099.2722,温度t H =351.3652,比体积v H = 0.0687,s H =6.6058。 4. 在焓熵图上,根据高压缸排气压力p rh = 3.8896和再热器压损Δp rh = 0.3622可以确定 热再热压力p’ rh =p rh -Δp rh = 3.5274,然后根据p’ rh 和再热蒸汽温度t th =537 确定中压缸进气 状态点为3(中压缸联合气阀前),并查的该点的比焓值h’ rh = 3535.213,比熵s‘ rh = 7.2612, 比体积v’ rh =0.1036。 5. 在焓熵图上,根据热再热压力p’ rh = 3.5274和中压缸联合气阀节流压力损失Δp’ rh = 0.07244 ,可以确定中压缸气阀后压力p’’ rh =p’ rh -Δp’ rh = 3.45496 ,然后根据p’’ rh 与h’ rh 的交点可以确定中压缸气阀状态点4,并查得该点的温度t’’ h = 536.7268,比熵s’’ rh = 7.2707,比体积v’’ rh =0.1058。若将中、低压缸的过程线画为一条圆滑曲线,则在前面⑤步之后进行如下步骤: 在焓熵图上,根据凝汽器压力pc=0.004698 和低压缸排汽阻力损失Δpc= 0.0001879 可以确定低压缸排汽压力pc’=pc+Δpc= 0.004886 在焓熵图上,根据凝汽器压力pc= 0.004698 和srh’= 7.2612 可以确定低压缸理想出口状态为5t,并查得该点比焓值hct=

相关文档
最新文档