植物昼夜节律研究进展

植物昼夜节律研究进展
植物昼夜节律研究进展

Botanical Research 植物学研究, 2018, 7(3), 331-336

Published Online May 2018 in Hans. https://www.360docs.net/doc/4211487358.html,/journal/br

https://https://www.360docs.net/doc/4211487358.html,/10.12677/br.2018.73042

Research Progress on Circadian

Rhythms in Plants

Yi Chen, Yu Xiang, Guanghui Yu*

Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China,

South-Central University for Nationalities, Wuhan Hubei

Received: May 4th, 2018; accepted: May 23rd, 2018; published: May 30th, 2018

Abstract

Biological clock is the innate rhythmic molecular mechanism in plants by which respond to com-plex environmental change. Via the transcriptional and translational feedback among the core components of clock, plants can integrate the environmental cues such as light and temperature to coordinate and involve the photoperiodic flowering, hormone signaling, growth, metabolism, and biotic/abiotic stress. Clock entrainment allows plants to achieve the best synchronization to the outside changing environment; and furthermore, the modulatory relationship between plant bio-logical clock and photosynthesis metabolites indicates the potential advantage of biological rhythm theory in agricultural applications.

Keywords

Biological Clock, Circadian Rhythm, Core Oscillator, Arabidopsis thaliana

植物昼夜节律研究进展

陈意,向宇,余光辉*

中南民族大学,武陵山区特色资源植物种质保护与利用湖北省重点实验室,湖北武汉

收稿日期:2018年5月4日;录用日期:2018年5月23日;发布日期:2018年5月30日

摘要

生物钟是植物适应外界环境的一种内在分子机制。通过生物钟核心元件基因组成的转录-翻译反馈调节环路,*通讯作者。

陈意等

植物能够对环境中的信号如温度和光照进行整合,对光周期开花、激素信号传导、生长、代谢以及生物和非生物胁迫的响应等多种生理过程进行协调。此外,通过驯化过程使得植物能够达到与外界环境最佳的匹配和同步化;植物生物钟和光合作用代谢产物之间的调控关系,预示着生物节律理论在农业生产上的潜在优势。

关键词

生物钟,昼夜节律,核心振荡器,拟南芥

Copyright ? 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/4211487358.html,/licenses/by/4.0/

1. 引言

地球自转引起的昼夜循环导致了环境每日的重复波动。生物随着环境的明暗交替和温度变化进化出内源性的近日性的节律变化[1],这种机制称为昼夜节律(Circadian rhythm)或生物钟(Biological clock)。没有外部信号的情况下近日性表现为24 h的周期性振荡。研究表明,在连续光照(或黑暗)和恒定温度条件下近日性节律的维持是由内源性生物过程驱动的[2]。例如,人体生理和机理的变化受到内源性节律振荡的广泛调控。在时差影响下,昼夜节律振荡器变化强烈,具体表现在内部振荡器时间的预测与外部环境的冲突和相互协调[3]。几乎所有的有机体,从单细胞的蓝藻到复杂的哺乳动物,都具有一套预知环境变化的生物节律系统。生物的内源生物节律控制着机体的行为、生理活动,使之更好的适应环境[4]。时间生物学(Chronobiology)研究内源生物钟的分子机制、外界环境对生物钟的驯化或牵引(Entrainment)、生物钟对机体行为、生理活动的调节等时间依赖的生物学过程。近年来,植物昼夜节律调控的分子机制成为研究的热点和难点。环境中的信号如温度和光照被核心振荡器所整合,对多种生理过程进行协调。光照和温度这些外界信号通过影响生物钟的速度,并作用于振荡器中不同的核心分子来导引时钟。之后时钟会以相应的节律进行节律性输出,从而协调多种生理途径,包括光周期开花、激素信号传导、生长、代谢以及生物和非生物胁迫的响应(图1) [5]。

2. 植物生物钟

2.1. 植物生物钟核心元件间的交互调节

传统观点认为昼夜节律系统是一种线性路径,但越来越多的证据表明它是一个高度复杂的调控网络。植物、动物、昆虫和真菌等生物的生物钟调控系统通常是基于转录和翻译的反馈环路(Transcriptional/Translational Feedback Loops, TTFLs)。植物生物钟系统的研究主要是在模式生物拟南芥(Arabidopsis thaliana)中进行的。

植物的昼夜节律主要包含了三个特征:1) 植物的昼夜节律是在没有外界环境刺激下由生物钟基因和蛋白协同控制下完成近日24 h的节律性振荡;2) 植物生物钟系统必须与环境保持同步,植物的生长发育阶段需要与环境相匹配,这种过程称为生物钟驯化(entrainment);3) 植物细胞的生物钟与植物的昼夜节律相偶联,植物细胞的时钟基因能够调控植物的昼夜节律的输出。

植物昼夜节律调控网络主要由输入途径(input pathway)、核心振荡器(core oscillator)和输出途径(output pathways)三部分组成。模式生物拟南芥的生物钟的核心振荡器由CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1)、LHY (LATE ELONGATED HYPOCOTYL)、TOC1 (TIMING OF CAB EXPRESSION 1)以及其它元件构成了复杂的交互反馈的调控网络(图2) [6] [7] [8] [9] [10]。振荡器的核心由两个MYB转录因子,CCA1/LHY和TOC1组

陈意等

Figure 1. The integration of the biological clock to the internal and external environment in plants

图1. 植物生物钟对内外环境的整合[5]

Figure 2. The molecular model of the circadian oscillator in Arabidopsis

图2. 拟南芥昼夜节律振荡器的分子模型[1]

成。通过对拟南芥昼夜节律的研究表明,振荡器核心基因在每个节律周期中不同的时刻表达,表现出时空的差异。如CCA1的表达峰值出现在黎明时刻,而LUX ARRHYTHMO (LUX)的表达峰值在黎明后的12 h。植物昼夜节律振荡器除转录-翻译反馈环路之外,还存在一些转录后调控机制来确保振荡器的精确运行,如乙酰化、磷酸化等[11]。

2.2. 生物节律的驯化(Entrainment)

众所周知,植物生物钟并不是完全精确的24 h。因此,植物需要通过驯化途径来与外界环境保持同步。例如,外界环境中的红光和蓝光能够给植物光感受器提供强烈的信号重设生物钟,这就对植物生物钟起到了同步的作用。光敏色素A (PhyA)能在低强度的红光下调节生物钟,光敏色素B (PhyB)则能在高

陈意等

强度的红光下起作用。隐花色素1 (Cry1)能够在低强度和高强度的蓝光下调节生物钟。已有的研究表明,温度的改变也能够影响植物的昼夜节律振荡器[12],然而,温度对植物生物钟的调控我们知之甚少。

2.3. 生物钟在植物生物学中的重要性

高等植物的生物钟能够调控多种代谢通路[13]。研究表明,植物生物钟控制光合作用活性、叶片的气体交换、细胞生长、激素应答、营养吸收和基因表达的日长变化[14] [15] [16] [17],生物钟几乎影响植物新陈代谢的方方面面。植物内源性的生物振荡周期必须与外界生长环境达到最合适的匹配程度,生物钟的准确预测功能对植物细胞的生长和发育有着非常重要的影响。植物昼夜节律经历多种不同的生活环境而独立的演变出来,这为植物适应环境提供了优势。

2.4. 植物昼夜节律的研究

如上所述,植物昼夜节律的特征之一就是在没有外界环境信号的情况下,处于自我维持的节律状态。

因此,研究昼夜节律的方法是在恒定的条件(恒温、恒定光照或黑暗)下来监测植物节律调节的生理或生化情况。在恒定的条件下,生物钟能够“自由运行”,实验条件被称为“自由运行条件(free running)”。例如,为研究植物光合作用的昼夜节律,实验中将植物放置于正常光暗循环中培养一段时间,然后测量CO2含量的变化情况。

植物昼夜节律能够被量化的特征,可以作为昼夜节律的指标加以研究。常见昼夜节律的研究方法就是测量植物组织样品中节律基因mRNA的表达变化。一般用定量RT-PCR技术来测量节律基因的转录产物的合成量,以此来研究植物的昼夜节律。类似地,收集组织样品也能够检测昼夜节律的变化,比如蛋白质数量、酶的活性或者代谢物的浓度。植物昼夜节律的实验通常需要在相当长的时间内在固定时刻进行重复测量。

植物叶片节律性运动是生物钟调控下的外在表现形式,在一定程度上可以反映植物的昼夜节律。因此,叶片运动分析(The plant leaf movement analyzer, PALMA)也是研究拟南芥昼夜节律的常用方法。自动化相机的使用能够直接且无害的监测拟南芥幼苗的节律性生长。通过连续不断的拍照,相机能够捕捉到拟南芥幼苗叶片相对位置的改变,然后用专业软件分析能够得出拟南芥幼苗叶片的节律性运动。

昼夜节律的研究也可以借助于生物发光成像。这种成像既能够测量整个植物荧光素酶的发光情况,又能够测量单一组织类型的昼夜节律。甚至有可能在含荧光素基因的叶片的单细胞中通过制作显微图层来测量昼夜节律。在模式生物拟南芥中,荧光素报告基因已经成为了一种革命性的手段来研究植物生物钟基因。将荧光素基因与昼夜节律关键基因的启动子连接起来,构建荧光报告基因,实验中可以用灵敏的摄像系统检测植物发出微弱的荧光,从而将复杂的植物昼夜节律的分子生物学实验转变成简单的光学实验。

2.5. 生物钟与植物代谢

植物昼夜节律振荡器控制各种生理过程,包括叶绿素的生物合成、光合作用电子的传递、淀粉的合成与降解、氮硫同化作用等过程[18]。例如叶绿素生物合成的峰值出现在黑夜的尽头,预示着其参与光合作用过程的启动。昼夜节律突变体的研究揭示了昼夜节律振荡器与新陈代谢之间的联系。在prr9/7/5三突变体中柠檬酸循环的中间产物如苹果酸、富马酸等的浓度明显高于野生型,可能预示了振荡器和植物光能利用率之间的相关性。由于白天的光合作用为植物夜间的生长提供呼吸和能量,可以推测淀粉的降解速率受到振荡器的调控。在生物钟基因CCA1和LHY的突变体(cca1/lhy)中淀粉的降解速率要比野生型的要快35% [2]。因此,生物钟对于代谢的调控意义重大。

陈意等2.6. 昼夜节律提供时间信息控制光周期开花

植物的昼夜节律系统能够预测外界环境(如温度和光照)的变化从而给植物提供时间信息来控制植物的光周期依赖的开花途径[19] [20]。研究表明,许多植物利用光周期的变化来控制开花的时节。例如小麦(Triticum aestivum)的开花是在白昼变长的晚春时节,而水稻(Oryza sativa)则是在白天变短的夏末开花。光周期敏感植物可以分为长日照植物和短日照植物。长日照植物通过短时间的曝光也能开花,短日照开花植物则不受夜间中断的影响。植物开花是一个受到严格调控的分子机制,许多不同途径包括光周期途径诱导的植物开花最终会影响开花基因FLOWERING LOCUS T (FT)的表达从而决定了开花的时间。其中,FT的表达受到CONSTANS(CO)蛋白的激活。研究表明,CO的表达具有节律性,黎明后的12 h表达达到峰值。然而,在黑暗的条件下CO蛋白是不稳定的,很容易被E3泛素连接酶标记后被降解。因此,在短日照条件下,CO的mRNA表达水平峰值出现在夜间造成蛋白的不累积从而不会引起FT的诱导表达;而在长日照条件下,CO的表达水平峰值出现后CO蛋白得到累积,随后稳定的CO蛋白能够诱导FT的表达从而影响开花。

2.7. 昼夜门控

昼夜节律门控通道是时间生物学研究中的一个重要特征。昼夜门控调控是生物钟信号通路中的外在反应过程。从本质上讲门控通道在时钟信号通路中起着阀门的作用。生物钟自身控制着植物对外界环境信号的反应,例如驯化信号(如光照)的出现使昼夜节律生物钟的相位改变到黎明。植物昼夜节律门控通道使植物对光信号更加敏感,白天植物对光线水平识别的灵敏度给植物带来更强的优势。

3. 总结和展望

植物昼夜节律生物学近年来取得了非凡的进展。昼夜节律调控的分子机制有助于植物对环境做出适应。植物生物节律是一个复杂的调控网络,通过各种时控基因相互作用来控制着植物的各种新陈代谢活动,因此从任何一个单独的时控元件去研究整体的植物生物钟系统是非常困难的。目前流行的做法是利用数学建模的方法来研究植物的昼夜节律调控网络,这样有助于对昼夜节律网络变化的特征进行解析。此外,昼夜节律生物学研究中尚存在着许多未解难题,其中一些需要技术创新来解决。这些开放性的问题包括以下几点:昼夜节律振荡器在每种类型的植物细胞和器官中是否存在着专一性,这些振荡器是否通过信息进行交流?植物昼夜节律门控的分子基础是什么?昼夜节律调控对作物生长的贡献是体现在哪里,如何利用生物钟节律规律来增加作物产量?如何在植物中通过昼夜节律调控来稳定生态系统?植物昼夜节律振荡器是如何进化的?

随着植物生物钟在代谢、生理、进化等方面的进一步研究,以及昼夜节律对生物过程的协调作用深入了解,将昼夜节律的规律运用于农业性状的优化,具有重要的科学意义和应用价值。

基金项目

国家自然科学基金项目(No.31270361)。

参考文献

[1]McClung, R.C. (2006) Plant Circadian Rhythms. Plant Cell, 18, 792-803.

https://https://www.360docs.net/doc/4211487358.html,/10.1105/tpc.106.040980

[2]Vitaterna, M.H., Takahashi, J.S. and Turek, F.W. (2001) Overview of Circadian Rhythms. Alcohol and Heart Health,

25, 85-93.

[3]Hubbard, K. and Dodd, A. (2016) Rhythms of Life: The Plant Circadian Clock. Plant Cell, 28, 1-10.

陈意等

[4]Bass, J. (2012) Circadian Topology of Metabolism. Nature, 491, 348-356. https://https://www.360docs.net/doc/4211487358.html,/10.1038/nature11704

[5]Nohales, M.A. and Kay, S.A. (2016) Molecular Mechanisms at the Core of the Plant Circadian Oscillator. Nature

Structural & Molecular Biology, 23, 1061-1069. https://https://www.360docs.net/doc/4211487358.html,/10.1038/nsmb.3327

[6]Hurley, J.M., Loros, J.J. and Dunlap, J.C. (2016) Circadian Oscillators: Around the Transcription-Translation Feed-

back Loop and on to Output. Trends in Biochemical Sciences, 41, 834-846. https://https://www.360docs.net/doc/4211487358.html,/10.1016/j.tibs.2016.07.009

[7]Sanchez, S.E. and Kay, S.A. (2016) The Plant Circadian Clock: From a Simple Timekeeper to a Complex Develop-

mental Manager. Cold Spring Harbor Perspectives in Biology, 8, 1-16. https://https://www.360docs.net/doc/4211487358.html,/10.1101/cshperspect.a027748

[8]Udoh, U.S., Valcin, J.A., Bailey, S.M., et al. (2015) The Molecular Circadian Clock and Alcohol-Induced Liver Injury.

Biomolecules, 5, 2504-2537. https://https://www.360docs.net/doc/4211487358.html,/10.3390/biom5042504

[9]Nirvani, M., Khuu, C., Sehic, A., et al. (2018) Circadian Clock and Oral Cancer. Molecular and Clinical Oncology, 8,

219-226.

[10]Mcclung, C.R. (2008) Comes a Time. Current Opinion in Plant Biology, 11, 514-520.

https://https://www.360docs.net/doc/4211487358.html,/10.1016/j.pbi.2008.06.010

[11]Robertson, F.C., Skeffington, A.W., Gardner, M.J., et al. (2009) Interactions between Circadian and Hormonal Signal-

ling in Plants. Plant Molecular Biology, 69, 419-427. https://https://www.360docs.net/doc/4211487358.html,/10.1007/s11103-008-9407-4

[12]Salomé, P.A., Weigel., D. and McClung, R.C. (2010) The Role of the Arabidopsis Morning Loop Components CCA1,

LHY, PRR7, and PRR9 in Temperature Compensation. Plant Cell, 22, 3650-3661.

https://https://www.360docs.net/doc/4211487358.html,/10.1105/tpc.110.079087

[13]Nagel, D.H. and Kay, S.A. (2012) Complexity in the Wiring and Regulation of Plant Circadian Networks. Current Bi-

ology, 22, R648-R657. https://https://www.360docs.net/doc/4211487358.html,/10.1016/j.cub.2012.07.025

[14]Bellpedersen, D., Cassone, V.M., Earnest, D.J., et al. (2005) Circadian Rhythms from Multiple Oscillators: Lessons

from Diverse Organisms. Nature Reviews Genetics, 6, 544-556. https://https://www.360docs.net/doc/4211487358.html,/10.1038/nrg1633

[15]Fukushima, A., Kusano, M., Nakamichi, N., et al. (2009) Impact of Clock-Associated Arabidopsis Pseudo-Response

Regulators in Metabolic Coordination. Proceedings of the National Academy of Sciences, 106, 7251-7256.

https://https://www.360docs.net/doc/4211487358.html,/10.1073/pnas.0900952106

[16]Nozue, K., Covington, M.F., Duek, P.D., et al. (2007) Rhythmic Growth Explained by Coincidence between Internal

and External Cues. Nature, 448, 358-361. https://https://www.360docs.net/doc/4211487358.html,/10.1038/nature05946

[17]Mizuno, T. and Yamashino, T. (2008) Comparative Transcriptome of Diurnally Oscillating Genes and Hor-

mone-Responsive Genes in Arabidopsis thaliana: Insight into Circadian Clock-Controlled Daily Responses to Com-

mon Ambient Stresses in Plants. Plant and Cell Physiology, 49, 481-487. https://https://www.360docs.net/doc/4211487358.html,/10.1093/pcp/pcn008

[18]Sanchez, S.E. and Kay, S.A. (2016) The Plant Circadian Clock: From a Simple Timekeeper to a Complex Develop-

mental Manager. Cold Spring Harbor Perspectives in Biology, 8, 1-16. https://https://www.360docs.net/doc/4211487358.html,/10.1101/cshperspect.a027748

[19]Blumel, M., Dally, N. and Jung, C. (2015) Flowering Time Regulation in Crops-What Did We Learn from Arabidop-

sis? Current Opinion in Biotechnology, 32, 121-129. https://https://www.360docs.net/doc/4211487358.html,/10.1016/j.copbio.2014.11.023

[20]Bouche, F., Lobet, G., Tocquin, P., et al. (2016) FLOR-ID: An Interactive Database of Flowering-Time Gene Net-

works in Arabidopsis thaliana. Nucleic Acids Research, 44, D1167-D1171. https://https://www.360docs.net/doc/4211487358.html,/10.1093/nar/gkv1054

知网检索的两种方式:

1. 打开知网页面https://www.360docs.net/doc/4211487358.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2168-5665,即可查询

2. 打开知网首页https://www.360docs.net/doc/4211487358.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.360docs.net/doc/4211487358.html,/Submission.aspx

期刊邮箱:br@https://www.360docs.net/doc/4211487358.html,

植物细胞产酶的研究进展

植物细胞培养产酶的研究进展 王鑫 (吉林师范大学生命科学学院四平136000) 指导教师: 杨丽萍 摘要:随着植物细胞培养技术的迅速发展,利用植物细胞培养技术生产天然产物的 技术也取得了新的进展。其中,酶是植物细胞培养产生次生代谢产物中的主要产物 之一。本文重点介绍了植物细胞培养产酶的方法和提高酶产量的有效措施,包括植 物培养细胞的技术方法、生产过程中的条件控制、提高酶产量的措施、产生酶的种 类、以及该技术未来的应用和前景。 关键词:植物;细胞培养;酶 Research progress of enzyme production obtained by plant cell culture Wang Xin (College of life science,Jilin Normal University,S iping 136000, China) Instructor: Y ang Liping Abstract:The natural production obtained by using of plant cell culture is progressing steadily along with the rapid development of plant cell culture technology. We can get many secondary metabolites by plant cell culture,including enzymes production. This article focuses on plant cell culture methods to get enzyme production and the effective measures to improve the enzyme production, including the plant cultured cells technology and methods, the conditions of control in the production process, the measures to improve enzyme production, as well as applications and prospects of the technology in the future. Keywords:plant; cell culture; Enzyme 植物细胞培养技术起源于本世纪初,从80年代起就迅速发展起来,并且拥有非常广阔的前景。目前,植物细胞培养主要有两种类型,包括单倍体细胞培养,原生质体培养[1]。植物细胞培养具有很多优越性,它不受环境,以及气候条件的限制,节约了生产空间,增值速度也要比整体植株栽培快很多[2]。植物细胞培养技术主要应用在三个领域,其中就包括有用物质的生产,因为在植物细胞生长过程中会产生丰富的代

中国植物区系特有现象研究进展

中国植物区系特有现象研究进展 关于《中国植物区系特有现象研究进展》,是我们特意为大家整理的,希望对大家有所帮助。 摘要:植物区系特有现象是一个地区的植物区系最重要的特征之一,文章回顾了植物区系特有概念的产生与发展,简述了特有现象的类型,分别从历史角度、遗传角度、生态角度介绍了一些有重要影响的对特有现象产生原因的解释假说。介绍对比了植物特有现象的一些研究方法,认为在研究一个地区的植物区系的特有现象时,我们可以选择一些特有现象明显的较大的类群,综合运用形态―地理学方法、细胞学方法、分子生物学方法、等位酶技术等手段来研究,以期取得更为精确的结果。在综述了我国对植物特有现象的研究之后,认为我们应当对我国特有植物进行编目、确立特有中心、加强重要地区的特有现象的研究,为更好的保护珍稀特有植物提供科学依据。 下载论文网/2/view-13088545.htm 关键词:植物;植物区系;特有植物;方法;研究进展 中图分类号:S-3 文献标识码:A 文章编号:1674-0432(2011)-11-0177-4

植物区系的特有现象,在很大程度上演示着生物多样性各方面的特殊性。特有现象是物种遗传分化的结果,种系分化促使物种适应不同的生境,而生境的多样性亦使种系分化。这种连续的、不连续的分化导致物种演化过程中发生间断,进而发生遗传分化使种系繁衍多变。特有现象分化有内因和外因,体现生物多样性的发展是有规律的,既有普遍性,又具特殊性。例如包括地貌因子、地壤因子、气候因子、边缘效应、岛屿隔离以及自然杂交等(张宏达,1997)。特有现象的发生有明显区域性,反映生物历史地理演化的途径(蒋有绪等,2002)。特有现象无疑是一个地区的植物区系最重要的特征之一,对特有现象的研究为了解一个特定地区的植物区系的发展历史和现状,无疑是十分重要的。 1 特有现象的概念 特有现象是相对世界广泛分布现象而言的,一切不属于世界性分布的属或种,都可以称之为其分布区内的特有属或种。“特有”这概念最早是由瑞典植物学家de. Candolle 于1855 年在其著作《Geographie Botanique raisonnee》(植物地理纲要) 中提出,指局限分布于某一自然地区或生境内的分类学单位;Engler 将其分为新特有和古特有,现在仍然沿用。至1937 年,波兰植物地理学家Szymkiewicz才严格使用了“特有”这个词。Braun- Blanquet(1923) 曾强调指出:一个地区的特有现象的研究和精确解释,构成了一个极高的标准,为了获得有关地区植物居群起源及年龄的任何结论,这种标准是不可缺少的;这个标准使我们更

博士论文 涝害胁迫研究进展

中国农业大学博士学位论文第一章植物的涝害胁迫及其适应帆制研究i挂胜 文献综述 第一章植物的涝害胁迫及其适应机制研究进展 土壤中存在的水分超过田问持水量而对植物产生的伤害称为涝害。涝害是世界上许多国家的重火灾害,根据联合国粮农组织(FAO)的报告和国际土壤协会绘制的世界土壤图估算.世界上水分过多的土壤约占12%。我国也是涝害严重的国家。黄淮海平原、长江中下游、东南沿海、松花江和辽河中下游等地是主要的产粮基地.同时也是洪涝灾害发生较多的地区,尤以黄 淮海平原和睦江中下游最为严重,占全国受灾面积的3/4以上(刘祖祺,1994)。根据国家统计 局、中国气象局、国家防汛抗旱总指挥部办公室共同核定.2000年全国农作物受涝面积732.3 万公顷.其中成灾432.1万公顷.绝收132.4万公顷.造成的经济损失仅次子旱灾。因此,了解 植物对水涝胁迫响应的分子机理,从而合理地选择和定向培育耐涝性品种,对于我国的农业生 产具有重要的理论和现实意义。本文将就目前本研究领域的进展作一概述。 1.涝害胁迫和植物反应 涝害对植物的危害主要原因不在于水自身,而是由于水诱导的次生胁迫而造成的。涝害排除了十壤孔隙中的气体,减少了植物组织与大气问的气体交换(因为气体,特别是氧气,在水中比在空气中的扩散速率降低了10,000倍)(Armstrong。1979),这导致根部区域形成缺氧或厌氧环境,这是涝害各种反应中的主要决定因子。由于土壤中的氧气迅速亏缺,引起十壤和厌氧微生物产生了许多对植物有害的物质,如硫化物、二氧化碳、酸、醛、酮等,这些化合物将随着淹水的不同程度影响着植物的正常生长和发育。另外,在植物体内由于淹水缺氧,导致根部厌氧代谢,发酵产生的乙醇、乙醛等物质对细胞具有毒性,对蛋白质结构造成破坏(Pemta,1992):乳酸发酵产生的乳酸及液泡H+外渗等原因会导致细胞质酸中毒(Roberts,1985):发酵还会使线粒体结构破坏,细胞能荷F降,细胞中氧自由基增加,保护酶活性下降,质膜透性剧增,导致细胞严重的厌氧伤害(Fan,1988:Robers,1992:Sachs,1986)。植物对涝害会作出一系列反应,最早的反应之一就是气孔的关闭,虽然在一定时间内,甚至在较长时间内淹水并不引起植株叶片水分亏缺,有时还会提高叶片的水势.但仍会很快引起气孔关闭,叶片气孔阻力增加。由于气孔关闭,导致受涝植物光合作用迅速下降.光合作用下降的后期又相继地与羧化酶受抑制、失绿、叶子衰老和脱落有关。同时碳水化台物的运输速率下降。此外,淹水还会使植物表现出矿质元素吸收的变化,激素含量和平衡的改变,晟后导致生氏的抑制,直至死亡(姜华武,1999;王文泉,2001:卓仁英,2001)。 2.涝害胁迫下植物代谢途径的改变 植物受涝时,由于根部区域缺氧不能进行正常的有氧代谢,而为了维持正常的或至少是最低的生命活动,能量的供应也是必不可少的。因此在厌氧条件F,细胞能量的供应主要依赖于 无氧发酵途径产生ATP。在受涝时.主要有三种活跃的发酵途径:乙醇发酵途径、乳酸发酵途 径平【1植物特有的丙氨酸发酵途径(由谷氨酸飘I丙酮酸通过丙氨酸氪基转移酶产生丙氩酸的过程,__中国农业大学博士学位论文第一章植物的涝害胁迫及其适应机制研究进展 幽1一1)。动物中只有乳酸发酵途径。乙醇和乳酸发酵途径广泛存在于兼性厌氧细菌和酵母中。 庚氧诱导的不键庚氯诱导的

植物叶绿体发育研究进展

Botanical Research 植物学研究, 2018, 7(6), 627-633 Published Online November 2018 in Hans. https://www.360docs.net/doc/4211487358.html,/journal/br https://https://www.360docs.net/doc/4211487358.html,/10.12677/br.2018.76077 Advances in Research on Plant Chloroplast Development Baohua Jin, Qianwen Ge Zhejiang Normal University, Jinhua Zhejiang Received: Nov. 14th, 2018; accepted: Nov. 23rd, 2018; published: Nov. 30th, 2018 Abstract Chloroplasts are important organelles for photosynthesis of green plants, and they are highly concerned by researchers. At present, there is a certain research basis for the structure and func-tion of chloroplasts, but the molecular mechanism of chlorophyll metabolism and regulation in specific chloroplast development remains to be further studied. This article summarizes the de-velopment of chloroplasts, the synthesis of chlorophyll and catabolism, in order to better promote the understanding of chloroplasts. Keywords Chloroplast, Photosynthesis, Chlorophyll 植物叶绿体发育研究进展 金宝花,葛倩雯 浙江师范大学,浙江金华 收稿日期:2018年11月14日;录用日期:2018年11月23日;发布日期:2018年11月30日 摘要 叶绿体是绿色植物进行光合作用的重要细胞器,其备受研究学者的关注。目前对叶绿体的结构、功能等已有一定的研究基础,但具体叶绿体发育中叶绿素的代谢过程及调控的分子机制仍有待深入研究。 本文从叶绿体的发育、叶绿素的合成以及分解代谢等方面进行概述,以期能更好地促进人们对叶绿体的了解。

植物糖生物学研究进展_尹恒

植物学报 Chinese Bulletin of Botany 2010, 45 (5): 521–529, https://www.360docs.net/doc/4211487358.html, doi: 10.3969/j.issn.1674-3466.2010.05.001 —————————————————— 收稿日期: 2010-01-18; 接受日期: 2010-03-23 基金项目: 863计划(No.2006AA10A213, No.2007AA091601)和中国科学院知识创新工程重要方向项目(No. KSCX2-YW-G-041) * 通讯作者。E-mail: zxm@https://www.360docs.net/doc/4211487358.html,; dyguang@https://www.360docs.net/doc/4211487358.html, 植物糖生物学研究进展 尹恒, 王文霞, 赵小明*, 杜昱光* 中国科学院大连化学物理研究所辽宁省碳水化合物重点实验室, 大连 116023 摘要 自1988年糖生物学概念提出以来, 国内外科学家在动物、微生物领域取得了大量的研究成果, 但植物糖生物学的研究进展较慢, 目前少见系统的专著或综述。该文围绕植物正常生长时糖信号、逆境时糖信号、糖蛋白及其糖链、重要糖基转移酶及植物凝集素等植物糖生物学的主要问题, 全面阐述植物糖生物学的各个研究分支, 并介绍各领域的最新研究进展。提出了植物糖生物学的概念, 并将其定义为研究植物与糖类互作机制及植物体内糖(糖链与糖分子)结构及生物学功能的科学。 关键词 糖蛋白, 糖基转移酶, 凝集素, 植物糖生物学, 糖信号 尹恒, 王文霞, 赵小明, 杜昱光 (2010). 植物糖生物学研究进展. 植物学报 45, 521–529. 糖类是生物体的重要组成成分, 在自然界中分布广泛, 含量丰富。但直到20世纪上半叶, 糖类仍被视为是缺乏生物特异性的一类惰性化合物, 只是作为代谢能量来源或充当结构保护材料(如植物细胞壁和昆虫的外壳), 在生物体内功能较少。由于糖类物质结构复杂、糖链分析技术缺乏, 科学家们对其研究关注不多, 使得糖类的研究远远落后于另2种生物大分子 ——核酸和蛋白质。 20世纪70年代以来, 随着糖链解析技术水平的提高以及分子生物学的发展, 尤其是人、拟南芥(Arabidopsis thaliana )等模式生物基因组测序的完成, 围绕糖类物质的研究工作日渐增多。越来越多的证据表明, 糖类物质全面参与了生物的生殖发育、生长、应激等过程, 是很多生理和病理过程中分子识别的决定因素。最初, 这些围绕糖的研究工作被认为是糖化学的一个分支, 但很快其中大量的生物学工作远远超出了糖化学的范畴, 因此科学家们提出了糖生物化学的概念, 而随着研究内容的进一步深入, 糖生物化学也不能完全涵盖糖在生物领域的最新研究进展。1988年, 生化领域的著名杂志《生物化学年评》发表了英国牛津大学Rademacher 等人题为“糖生物学(Glycobiology)”的一篇综述文章(Rademacher et al., 1988), 标志着糖生物学这一学科的正式诞生。此后, 围绕着糖链结构及糖的生物学功能, 科学家们在糖链与疾病的关系、天然产物中糖的分离提纯以及功能糖的制备与应用等方面进行了大量的工作, 取得了一定进展。2001年, Science 杂志汇编了Hurtley 等人的7篇综述和6篇简介, 以《灰姑娘的马车来了》为题编辑了一期“糖和糖生物学”专辑, 对糖生物学最新的研究成果及前景进行了综述和展望, 从而将糖生物学的研究推向了一个新的高度(Hurtley et al., 2001)。2006年, Nature 杂志也推出了糖化学与糖生物学的专辑, 全面介绍了糖生物学领域的研究进展。我国糖生物学的开展与国际接轨较快, 1995年金城等人将糖生物学概念引入中国(金城和张树政, 1995), 此后, 我国科学家在糖生物合成和糖链功能解析等领域取得了一定进展。 广义糖生物学的含义是: 研究自然界中广泛分布的糖(糖链或聚糖)的结构、生物合成和生物学意义。但有关糖类结构和生物合成的研究也是已有学科糖化学和糖生物化学的主要研究内容之一, 所以糖生物学研究和讨论的对象更多地聚焦在一些重要的功能糖、生物体内糖缀合物的生物学功能上。实际上, 糖生物学的研究焦点是糖类和其它分子的关系, 有一种观点认为, 蛋白质和糖类的相互作用是糖生物学的基础(王克夷, 2009)。目前糖生物学的工作多围绕动物、 ·特邀综述·

植物水涝胁迫研究进展

植物水涝胁迫研究进展 摘要:本文概述了植物水涝胁迫的国外研究现状及进展,介绍了水涝胁迫对植物的主要危害,阐述了植物对耐涝的适应性机理,提出并讨论了在植物耐涝方面有待进一步探讨和研究的问题,以期为该领域的研究提供一定的参考。 关键词:水涝胁迫适应性机理研究进展 按照Levitt的分类,水分胁迫包括干旱胁迫(水分亏缺)和水涝胁迫(洪涝)。水涝胁迫对植物产生的伤害称为涝害。涝害是世界上许多国家的重大灾害。随着全球环境的不断恶化,生态系统严重破坏,全球气候异常加剧,雨量分布极不均衡,局部地区水灾不断,土壤淹水现象更是极为常见,世界各国都非常重视防涝抗洪、水土保持等问题的研究。我国也是一个洪涝灾害比较严重的国家,大约有2/3国土面积存在不同程度的涝害,危害极大。认识植物对水涝胁迫响应的机理,揭示其适应机制,从而合理地选择和定向培育耐涝性品种,减轻淹水对农业生产的危害,对于我国的农业生产具有重要的理论和现实意义。 一、水涝胁迫对植物的危害 植物对水的需有一定限度的,水分过多或过少,同样对植物不利,水分亏缺产生旱害,抑制植物生长;土壤水分过多产生涝害,植物生长不好,甚至烂根死苗[1]。涝害会影响植物的生长发育,尤其是旱生植物在水涝情况下其形态、生理都会受到严重影响,大部分维管植物在淹水环境中均表现出明显的伤害,甚至死亡。但涝害对植物的危害主要原因不在于水自身,而是由于水分过多所诱导的次生胁迫而造成的。 1.水涝胁迫对植物细胞膜的影响 当植物处于水涝状态时,细胞自由基的产生与清除之间的平衡遭到破坏,造成自由基的积累从而破坏膜的选择透性。晏斌等研究后认为,在涝渍胁迫下玉米体正常的活性氧代平衡破坏,首先是SOD活性受抑制,导致O2-增生。故认为叶片的涝渍伤害可能主要是过量O2-积累产生MDA,引起蛋白质、核酸分子发生交联反应和变性、破坏膜和生物大分子物质,加快

植物次生细胞壁加厚调控研究进展

植物生理学报 Plant Physiology Journal doi: 10.13592/https://www.360docs.net/doc/4211487358.html,ki.ppj.2015.0568 2016, 52 (1): 8–188收稿 2015-10-22 修定 2015-12-15 资助 国家自然科学基金(31130012)和国家重点基础研究项目 (2012CB114502)。 * 通讯作者( E -mail: lgli@https://www.360docs.net/doc/4211487358.html,)。 植物次生细胞壁加厚调控研究进展 黄成, 李来庚* 中国科学院上海生命科学研究院植物生理生态研究所植物分子遗传国家重点实验室, 上海 200032 摘要: 植物细胞壁是植物细胞的特征性结构。植物体中, 所有细胞都会形成初生壁的结构, 而一些特定组织的细胞会在初生细胞壁内侧进一步加厚形成次生壁, 为这些细胞实现正常生理功能和高等植物发育提供必需的结构。本文分别从转录水平调控、激素调控、加厚模式调控及人工调控等方面介绍目前对于次生细胞壁加厚调控的研究进展。关键词: 次生细胞壁; 转录调控; 木质素; 纤维素 细胞壁是植物细胞区别于动物细胞的一种重要细胞结构。植物细胞完成分裂后, 由中间的细胞板区域开始形成初生细胞壁。一些特殊组织的细胞停止扩展后, 在质膜和初生细胞壁之间形成次生细胞壁。次生细胞壁从结构上可分为S1、S2、S3三层, 主要成分为纤维素、半纤维素和木质素。植物次生细胞壁大量存在于维管组织管状细胞和纤维细胞, 提供植物直立生长所需要的机械支撑力, 疏水性木质素的存在加固管状分子以抵抗负压, 使得植物体能够连续高效的运输水分。同时, 在植物生长过程中, 植物积累的大部分光合作用产物储存在次生细胞壁, 构成植物体结构, 是纤维材料和生物质能源原料的重要来源。次生细胞壁是植物细胞特异分化后产生的细胞结构, 其加厚过程受到多种因素的调控。目前的研究发现植物体中存在复杂的多级转录网络作用于纤维素、半纤维素和木质素合成基因, 从而调控次生细胞壁加厚过程, 多种激素等信号因子也可能参与其中, 木质部纤维细胞和导管细胞次生壁加厚模式与皮层微管密切相关。同时, 由于木质纤维生物质是地球上重要的可再生资源, 人们试图通过各种方式调控次生壁加厚以获得可高效利用的木质纤维原料。本文就这几个方面的研究进展进行综述。 1 植物次生细胞壁加厚的转录水平调控 近十几年来关于次生壁转录调控有大量研究, 目前认为次生壁形成主要由一系列NAC 转录因子和MYB 转录因子形成分层次的网络逐级调控下游次生壁中纤维素、半纤维素和木质素的合成, 同时也有很多其他调控因子参与其中。最近一些文章对次生壁加厚转录调控进行了较详细的综述(Wang 和Dixon 2012; Zhong 和Ye 2015a; Nakano 等2015)。 1.1 转录开关因子 拟南芥中有两类NAC (NAM 、ATAF1/2、CUC2)结构域转录因子被发现作为转录开关因子分别调控维管组织导管细胞和纤维细胞次生壁合成。第一类VND (vascular-related NAC domain)基因家族VND1-7被认为参与导管细胞发育。在百日草悬浮细胞系中过表达VDN6和VND7能诱导各种薄壁细胞转分化为具有环纹和螺纹加厚的原生导管细胞以及具有网纹和孔纹加厚的后生导管细胞, 显性抑制这2个基因能抑制拟南芥根中原生导管和后生导管的形成(Kubo 等2005)。随后的研究发现单独抑制VND7的正常功能就能抑制拟南芥根和茎中所有类型导管的形成, 并且可能形成同源或与其他VND 基因形成异源二聚体行使功能(Ya-maguchi 等2008)。VND1-5在拟南芥花序茎中特异表达在木质部, 过表达能激活次生壁合成途径转录因子和酶基因表达, 引起薄壁细胞异常加厚, 显性抑制VND3使花序茎导管次生壁变薄而塌陷, 这些结果表明VND1-5同VND6、VND7一起特异性调控导管细胞次生壁加厚(Zhou 等2014)。第二类包括NST3/SND1 (NAC secondary wall thickening pro-moting factor 3/secondary wall-associated NAC do-main protein 1)、NST1和NST2, 参与开启维管束间纤维细胞和木质部纤维细胞次生壁加厚(Zhong 和Ye 2015a)。拟南芥NST3/SND1特异性表达在维管束间纤维及木质部纤维细胞, 异位过表达SND1能激活非厚壁细胞中的次生壁合成, 显性抑制SND1

植物区系特征成分及地带性分化问题的探讨

文章编号:0529 6579(2000)05 0073 05 植物区系特征成分及地带性分化问题的探讨 崔大方1,廖文波2,王伯荪2 (1.华南农业大学生物技术学院,广东广州510642; 2.中山大学生命科学学院) 摘 要:简述关于植物区系成分以及中国植物区系的研究进展,讨论细胞学、分子生物学等 新技术在开展特征植物区系成分地带性分化以及分子生物地理学研究方面的意义.关键词:植物区系;特征成分;地带性分化;分子生物地理学 中图分类号:Q948 5 文献标识码:A 植物区系的形成是种系长期分化、繁衍、发展的结果,并与区域性自然地理条件、古地质、古气候环境等方面的变化、变迁密切相关.20世纪以来,随着中国植物志、大部分地方植物志编写的全面完成,我国植物学家对植物区系的组成、性质、起源、区系关系及分区等特征开展了全面的研究,使区系学的理论和方法得到不断的丰富和完善,特别是关于中国植物区系成分的研究取得了长足的进步,形成了系统的理论和观点.同时,区系学研究还存在一些有待解决或有待深入研究的问题,例如在区系发展、演化过程中,区系表征成分、特征成分的发展和演化特征就是一个关键问题,它们将反过来对区系的性质、区系的发展、演化产生重要的影响.本文通过论述中国植物区系的研究进展、分析特征区系成分的性质,试图说明植物区系成分在形态-地理学、细胞-地理学、分子-(生物)地理学等水平,均存在地带性分化特点,因而将成为植物区系学研究的新途径. 1 关于中国植物区系的研究进展 我国具有现代意义的植物学研究是从本世纪初开始的,早在1918年钟观光就在广西西部、北部采集,1920年陈焕镛在广东、海南采集等.同一时期还有胡先在云南、辛树帜在广西、秦仁昌、蒋英在广西、贵州采集等.早期的研究主要是野外采集和开展分类学研究,经过近70年以来我国植物学家的不懈努力,至90年代止发表了大量分类学、系统学的研究论文,全面完成了 中国植物志 80多卷120多部(分册)及多部地方植物志的编写和出版,极大地促进了对我国丰富植物资源的认识. 从20年代开始在分类学、系统学研究的基础上,我国学者如胡先、刘慎愕、李惠林、侯学煜、钟补求等陆续开展了有关的植物地理学(phytogeography)研究.该学科是19世纪初由Humboldt 和Candolle 等人奠基的一门学科,它以植被的外貌及生活型等作为标志,在20世纪初Engler,Drude,Diels 等人进一步发展了植物地理学的概念,包括分布植物地理学、生态植物地理学、历史植物地理学、植物地理分区等.现代意义的植物地理学除 基金项目:国家自然科学基金面上资助项目(39800012);国家自然科学基金重点资助项目(39830310)收稿日期:1999 10 26; 作者简介:崔大方(1964~),男,博士,副教授. 中山大学学报(自然科学版) 第39卷 第5期 2000年 9月ACTA SCIENTIARUM NATURALIUM UNIVE RSITATIS SUNYATSE NI Vol 39 No 5Sep 2000

重金属超富集植物筛选研究进展

农业环境科学学报2005,24(增刊):330-335 J ournal of A gro-Env iron m ent Science 重金属超富集植物筛选研究进展 常青山,马祥庆 (福建农林大学林学院,福建 福州 350002) 摘要:综述超富集植物富集重金属的机制、重金属超富集植物筛选研究现状以及螯合诱导技术和基因技术在重金属超富集植物筛选中的应用,针对重金属污染植物修复技术和重金属超富集植物筛选研究中存在的问题,提出了今后应加强的研究工作。 关键词:重金属污染;植物修复技术;超富集植物;螯合诱导技术;基因技术 中图分类号:X53 文献标识码:A 文章编号:1672-2043(2005)增刊-0330-06 Advances i n t he R esearch of Selecting Hyperaccum ulator C HANG Q i ng-shan,MA X i ang-q i ng (Co llege of Forestry,F uji an A g ricu lt ure and F orestry U niversity,Fuzhou350002,Ch i na) Abstrac t:H eavy m eta l po lluti on has become a ser i ous prob le m wh ich is urgent to be so l ved in the w orld.Phytore m ediati on m ay offer a feasi b l e so l uti on to t h is prob l e m as it is safe and cheap co m pa red to traditi onal rem ed i ation techno logy.H ow ever, there are diffi culties i n extensi on of t h is techn i que for its disadvantage such as a lo w bio m ass producti on and so on.So it i s ur-gent t o look for t he suitable hyperaccumu l ato rs w it h h i gh b i omass i n t he field.I mprove m ent o f plants by genetic eng i neer i ng and app licati on o f che l a t o rs to so il a re also feas i ble and effecti ve approach to i ncrease e fficiency o f phy t o rem ed i ation.T he concept o f phy t o rem ed i ation and hype raccu mu l a t o r,the research advances in mechan i s m s of hyperaccu m l a tor,se l ec ti on o f hyperaccu m ula-tors,g ene techn i que and che l a te-enhanced phytore m diati on f o r hype raccumu l a t o rs selecti on are rev i ew ed.T he prob l ems and the fut ure study directi ons in the phyto remed i ation research field are put f o r w ard.In order to enhance bio m ass and accu m ulati on capacity o f hype raccu mu l a tor,it becom esm ore i m portant to i m prove the e ffect o f phy tore m ed iati on si nce so m e hyperaccu m ula-tors grow i ng slo w l y.G ene techno l ogy m ay br i ng the breakthrough for phyto re m ediation technique,som e adv ises on g ene tech-nology i n the future a re suggested i n th i s pape r. K eywords:heavy m etals po ll u ti on;phytore m ediati on;hyperaccu m ulator;che l ate-induced phyto remed i ation;g ene techno l ogy 0重金属污染由于其难降解性、易于积累且滞留时间长等特点而成为环境污染治理中的一个棘手难题,而且重金属污染可通过食物链危害人类健康,日本的水俣病(H g中毒)和骨痛病(Cd中毒)即是典型例证。目前基于机械物理或物理化学原理的传统重金属污染治理方法如土壤冲洗、热处理及电动修复等因成本高、效率低,而且会破坏土壤结构、导致 二次污染 等原因,难以大面积应用。 收稿日期:2005-02-04 基金项目:福建省科技厅重大科学基金资助项目(2003I004) 作者简介:常青山(1979 ),男,河南林州人,硕士,主要从事重金属污染修复方面的研究。 联系人:马庆祥,E-m a il:m xq@pub li c.fz. f.j cn 在这种背景下,对环境扰动少、成本低且能大面积推广应用的重金属污染植物修复技术应运而生。目前国内外众多学者对重金属污染植物修复技术进行了大量研究,特别是对重金属的超富集植物筛选及其富集机理进行了较深入研究。本文分别从植物修复技术的概念、重金属超富集植物的特征及其富集机制、螯合诱导技术和基因技术在重金属超富集植物筛选中的应用等方面综述了国内外的研究进展,并在此基础上归纳了当前研究中存在的问题,展望了今后发展趋势。 1重金属污染植物修复技术的概念 广义的植物修复技术包括利用植物修复土壤、空

PSAG12-ipt基因转化植株研究进展

PSAG12-ipt基因转化植株研究进展 张根良1,2 王文泉2 (1华南热带农业大学农学院, 儋州571737;2中国热带农业科学院热带生物技术研究所, 海 口571101) 摘要: 叶片衰老是一种程序性死亡过程; ipt ( isopentenyl transferas ) 基因转化植株, 可以催化调控内源细胞分裂素合成, 延缓转化株叶片衰老。SAG12 基因启动子能够控制ipt 基因在植株下部衰老叶片中表达。介绍了ipt 基因和SAG12 基因启动子的来源和应用, 以及PSAG12-ipt基因的产生和转化植株在国内的研究概况。 关键词: SAG12 ipt 细胞分裂素叶片衰老叶片衰老是一种典型的细胞程序性死亡, 它表现在叶绿素、脂类、蛋白质和RNA 的减少, 有助于提高植物的适应性; 它可以作为作物选择的一个重要指标来增加作物的遗传改良潜力。目前, 对于叶片衰老的机制已经在生理生化、分子水平得到一定的阐明, 获得了一些与衰老有关的基因。并且发现在衰老进程中, 植物激素, 包括生长素、赤霉素、乙烯、脱落酸和细胞分裂素起着非常重要的作用。其中, 细胞分裂素作为植物衰老过程中的一个关键因子得到了广泛的关注。已有研究通过转化ipt 基因增加植物内源的细胞分裂素, 可以延缓植物叶片的衰老, 增强植物对非生物逆境的抗性。ipt 基因来源于土壤农杆菌( Agrobacterium tumefaciens) 的Ti 质粒, 编码一种异戊烯基转移酶, 催化和调控细胞分裂素的合成。Medford( 1989) 等[1]利用ipt 基因转化烟草和拟南芥, 用来源于玉米的hsp70 作为热诱导启动子,调控ipt 基因的表达, 受热激诱导后的转基因植物表现出叶片衰老的延迟, 细胞分裂素显著增加, 但没有诱导的转基因植物在细胞分裂素增加后, 出现了许多影响生长和发育的有害症状, 如侧芽的脱落, 茎杆和叶面积的减少, 根生长的停止等。Gan 和Amasino( 1995) [2]采用了一种全新的策略来转化ipt基因, 利用细胞分裂素的自调控来减缓转基因烟草叶片的衰老, 而不改变其它的表型性状; 转化的ipt基因处于高度特异的-与衰老相关启动子SAG12 的控制之下, 融合的PSAG12-ipt 基因只在衰老的底部成熟叶片中表达。简要介绍了ipt基因编码特性和SAG12 启动子在ipt 表达中的作用, 以及表达基因在转化植株中的应用。 1 叶片抗衰老基因ipt 的产生和作用 植物激素在植株生长和发育中具有重要的作用, 其中细胞分裂素参与了细胞分裂的调控、延缓衰老和促进侧芽的生长; 这使研究学者试图通过改变内源细胞分裂素含量来控制这些过程。但是植物本身的细胞分裂素合成相关基因并没有分离得到,使得根癌农杆菌中的ipt 基因得到了广泛的关注。1984 年Akiyoshi 等从根癌农杆菌中将编码异戊烯基转移酶( ipt)的基因分离了出来, 并阐明了异戊烯基转移酶是细胞分裂素生物合成步骤中的一个关键限速酶, 它促

植物功能组研究进展

程论文(作业)封面(2011 至2012 学年度第 2 学期)课程名称:_ ___ 课程编号:___________ 学生姓名:__ ________ 学号:_______ 年级:__ ___________ 任课教师: _ ____________ 提交日期:年月日成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周评阅日期:年月日

植物的功能基因组学研究进展 摘要:基因组研究计划包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为 目标的功能基因组学两方面的内容。目前基因功能鉴定的方法主要有:基因表达的系统分析(SAGE) 、cDNA 微阵列、DNA(基因) 芯片、蛋白组技术以及基于转座子标签和T-DNA 标签的反求遗传学技术等。本文对上述各种技术的优缺点以及它们在植物基因功能鉴定中的应用进行了综述。 关键词:功能基因组学; 基因表达的系统分析;cDNA 微阵列;DNA 芯片;蛋白组 以拟南芥和水稻为代表的植物基因组研究已取得了迅速的进展,到目前为止,占拟南芥基因组(100Mb) 近三分之一的DNA 序列已被测定并在GenBank 数据库中登记注册,预期到2001 年通过全球合作将完成拟南芥全基因组的序列测定工作。随着植物基因组计划的实施和进展,GenBank 中累积了大量的未知功能的DNA 序列,如何鉴定出这些基因的功能将成为基因组研究的重点课题, 因此, 基因组研究应该包括两方面的内容: 以全基因组测序为目标的结构基因组学(structural genomics) 和以基因功能鉴定为目标的功能基因组研究, 后者往往又被称为后基因组研究。功能基因组研究的内容是利用结构基因组所提供的信息, 发展和应用新的实验手段系统地分析基因的功能〔1 〕。目前人类和酵母的功能基因组研究已经全面展开, 尤其是对已完成全基因组测序的酵母来说, 其功能基因组研究任务更加紧迫。植物的基因组研究虽然起步较晚, 但由于吸取了人类基因组研究中积累的一些经验, 所以进展也相当迅速, 对植物功能基因组学的研究目前也已经受到重视, 在1998 年12月出版的最新一期Plant Cell (10 :1771) 和Plant Physiol . (118 :713) 上均编发了关于植物功能基因组学研究的编者按, 并由Bouchez 和Hofte (1998) 〔2 〕综述了植物尤其是拟南芥功能基因组学研究的现状, 本文在此基础上综述了目前植物功能基因组学研究中使用的主要技术手段以及最新的研究进展。 1 基因功能的含义 基因的功能主要包括: 生物化学功能, 如作为蛋白质激酶对特异的蛋白质进行磷酸化修饰; 细胞学功能, 如参与细胞间和细胞内的信号传递途径; 发育上的功能, 如参与形态建成等。目前,获得一段DNA 序列的功能信息的最简单的方法是将该DNA 序列与GenBank 中公布的基因序列进行同源性比较,如利用BLASTn 和BLASTx 两种软件分别进行核苷酸和氨基酸序列同源性比较等。同源性比较的结果大体可以分为如下类型: 与生化和生理功能均已知的基因具同源性; 与生化功能已知的基因具同源性, 但该基因的生理功能未知;与其它物种中生化和生理功能均未知的基因具同源性; 虽与生化和生理功能均已知的基因具同源性, 但对该基因功能的了解尚不深入, 仍停留在表观现象上。上述同源性检索分析方法仅仅为该DNA 片段的功能提供了间接的证据,对基因功能的直接证据还需要实验上的数据。Bouchez 和Hofte (1998)〔2 〕将所需要的实验证据归纳如下: (1) 通过研究基因的时空表达模式确定其在细胞学或发育上的功能, 如在不同细胞类型、不同发育阶段、不同环境条件下以及病原菌侵染过程中mRNA 和/ 或蛋白质的表达的差异等。(2) 研究基因在亚细胞内的定位和蛋白质的翻译后调控等。(3) 利用基因敲除(knock - out) 技术进行功能丧分析或通过基因的过量表达(转基因) 进行功能获(gain2of2function) 分析,进而研究目的基因与表型性状间的关系。(4) 通过比较研究自发或诱发突变体与其野生型植株在特定环境条件下基因表达的差异来获取基因功能的可能信息。 2 植物的表达序列标记(EST) 与基因组大规模测序 通过从cDNA 文库中随机挑取的克隆进行测序所获得的部分cDNA 的5′或3′端序列称为表达序列标记( EST) ,一般长300~500bp 左右, 利用EST作为标记所构建的分子遗传图

植物细胞融合的研究进展_综述_郭学民

河北科技师范学院学报 第19卷第1期,2005年3月 Jo ur nal o f Hebei N or mal U niver sity of Science&T echnolog y Co llege V o l.19 No1.1M arch2005 植物细胞融合的研究进展(综述) 郭学民1,2,徐兴友1,2,王同坤1,王华芳2,尹伟伦2 (1河北科技师范学院生命科学系,河北秦皇岛,066600;2北京林业大学生物科学与技术学院)摘要:概述了原生质体分离和培养的影响因素,介绍了近年来国内外原生质体培养与融合及杂种细胞、筛选和鉴定的动态。 关键词:细胞融合;原生质体;筛选与鉴定 中图分类号:Q321+.2 文献标识码:A 文章编号:1672-7983(2005)01-0065-05 细胞融合(cy to mixis),亦称细胞杂交(cell fusio n),是指亲本的两个细胞在特定的物理和化学因子处理下合并为一个杂种细胞的过程[1]。植物细胞融合可分为体细胞杂交(somatic hybridizatio n)和配子-体细胞杂交(gameto-somatic hy br idizatio n),前者是指不经过有性过程,而直接由体细胞原生质体融合产生杂种细胞,形成愈伤组织,并再生出植株的过程[2],后者是指性细胞(如小孢子四分体、精子、精细胞、幼嫩花粉、成熟花粉、卵细胞、助细胞和中央细胞等)原生质体和二倍体原生质体融合产生三倍体杂种细胞,形成愈伤组织,并再生出植株的过程[3]。植物细胞融合是植物细胞工程的一个重要分支,是一种突破物种生殖隔离、创造远缘杂种的新途径,原生质体技术还可用于细胞突变体的筛选、细胞器移植和外源DNA的导入。 自1960年Cocking[4]用酶法分离出番茄根原生质体后,Natag a和T akebe[5]1970年首次利用烟草叶分离原生质体,经培养获得再生植株;1975年以色列的Vardi等[6]首次从木本植物Sham onti甜橙珠心组织诱导胚性愈伤组织,并从愈伤组织分离原生质体,经培养通过胚状体再生出植株;在禾本科植物中,除在珍珠谷、紫狼尾草用悬浮细胞为材料,较早获得原生质体再生植株外,直到1985年Fujim ur a[7]等率先在水稻原生质体培养中获得了再生植株,才出现了重大突破。现已从许多种内、种间、属间甚至亚科间的体细胞杂交获得杂种细胞系或杂种植株。随着多种植物原生质体的成功培养和融合技术的不断改进,植物细胞融合获得了巨大成功。植物细胞融合包括原生质体的制备、细胞融合的诱导、杂种细胞的筛选和培养,以及植株的再生和鉴定等环节。 1 原生质体的分离和培养 1.1 起始材料 起始材料及其生理状态对原生质体的制备及其活力有很大的影响。在以往的双子叶植物培养中,大多以叶片为分离原生质体的材料,近年来,起始材料的适用范围有了较大扩展。目前,以愈伤组织、悬浮细胞和体细胞胚为材料制备原生质体是最主要的方式;禾本科植物原生质体培养获得成功的试验,几乎都是用从幼胚或成熟胚诱导形成的胚性愈伤组织或胚性细胞系来游离原生质体。采用这些材料制备原生质体方法简便、产量高、不污染、不易破碎。 1.2 基因型 同一植物不同基因型的原生质体脱分化与再分化所要求的条件不同,所以在相同条件下,不同品种的再生能力不同。王光远和夏镇澳[8]在水稻原生质体培养中曾用26个品种进行组织培养,其中仅有3个品种(粳稻农虎6号、国香1号和上农香糯)能成功地用于原生质体培养,获得再生植株。据统计,小麦获得原生质体再生植株的基因型只有大约10个[9]。基因型的选择在植物原生质体培养中起着重要作用,它不仅影响原生质体的产量和活力,而且还影响植株的再生。Cheng和Veillenux证明芙薯(Solanum phureja)从原生质体培养到愈伤组织形成受2个独立位点的显性基因的调控[10]。因此,现有 收稿日期:2004-03-09;修改稿收到日期:2004-12-12

相关文档
最新文档