拉氏变换和z变换表

拉氏变换和z变换表

附表A-2 常用函数的拉氏变换和z变换表

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] 积化和差sinαsinβ =-[cos(α+β)-cos(α-β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2

419

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉氏变换和z变换表(精选.)

word. 附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个

2.常用函数的拉氏变换和z变换表 word.

word. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个 2.常用函数的拉氏变换和z 变换表 附表A-2 常用函数的拉氏变换和z 变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即

11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b -都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分 分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算: lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5)

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z 变换三者之间的关系 一 傅里叶级数展开与傅里叶变换 之所以要将一个信号f(t)进行傅里叶级数展开或傅里叶变换是因为一般自然界信号都非常复杂,且表面上并不能直观的表现出频率与幅值的关系,而一个信号的大部分有效信息恰藏于其频谱上,即其幅频关系和相频关系上。通过傅里叶级数展开或傅里叶变换,可将自然界中复杂的信号分解成简单的,有规律的基本信号之和或积分的形式,并且可以明确表达出周期信号的离散频谱和非周期信号的连续频谱函数。 傅里叶级数展开是对于周期信号而言,如果该周期信号满足狄利克雷条件(在电子和通讯中大部分周期信号均满足),周期信号就能展开成一组正交函数的无穷级数之和,三角函数集在一个周期内是完备的正交函数集,使用三角函数集的周期函数展开就是傅里叶级数展开,而欧拉公式是将三角函数和复指数连接了起来,所以傅里叶级数可展开成三角函数或复指数两种形式,此时就可画出信号的频谱图,便可直观的看到频率与幅值和相位的关系。 既然是级数和展开,则上述频谱图中横轴表示n 倍的角频率,是一个离散频谱图,那么由离散频谱的间隔与周期的反比关系知当f(t)的周期T 趋近于无穷大时,周期信号变成了非周期信号,谱线间隔趋近于无穷小,谱线无限的密集而变成为连续频谱,该连续频谱即为频谱密度函数,简称频谱函数,该表达式即是我们熟悉的傅里叶变换,傅里叶变换将信号的时间函数变为频率函数,则其反变换是将频率函数变为时间函数,所以傅里叶变换建立了信号的时域与频域表示之间的关系,而傅里叶变换的性质则揭示了信号的时域变换相应地引起频域变换的关系。 二 傅里叶变换与拉氏变换 上述的傅里叶变换必须是在一个信号满足绝对可积的条件下才成立,那么对于不可积的信号,我们要将它从时域移到频域上,就要将原始信号乘上一个衰减信号将其变为绝对可积信号再做傅里叶变换,即为 f t e ?σt e ?j ωt ∞?∞dt = f(t)e ?(σ+j ω)t dt ∞?∞= f(t)e ?st ∞ ?∞ dt s=σ+j ω 变为拉氏变换,如令σ=0则拉氏变换就变成了傅里叶变换,所以傅里叶变换是S 域仅在虚轴上取值的拉氏变换,拉氏变换是傅里叶的推广,拉氏变换的收敛域就是f t e ?σt 满足绝对可积条件的σ值的范围,在收敛域内可积,拉氏变换存在,在收敛域外不可积,拉氏变换不存在。拉氏变换针对于连续时间信号,主要用于连续时间系统的分析中,对一个线性微分方程两边同时进行拉氏变换,可将微分方程转化成简单的代数运算,可方便求出系统的传递函数,简化了运算。

z变换与拉氏变换的比较分析

z 变换与拉氏变换的比较分析 一. z 平面与s 平面的映射关系 1.一个信号的抽样取拉氏变换与相应的离散信号与Z 变换的作用是等效的。 在引入z 变换的定义时,引入符号 z=sT e s (直角坐标):s=σ+j Ω z,s 关系 z=sT e z(极坐标): z=r θj e 比较 z=T j e )(Ω+σ=T j e e Ω?T σ 2.几种情况 (1)s 平面的原点 z 平面 ,即z=1。 (2) (4)z~s 映射不是单值的。Ω=±2 s Ω→θ=π 二. z 变换与拉式变换表达式之对应 s 平面z 平面?????===s T ΩΩΩ T θr π2:e : 幅角半径所以σ???==00Ωσ??==0 1θr

z 变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。 z 变换法存在的局限性 z 变换法是研究线性定常离散系统的一种有效工具,但是z 变换法也有其本身的局限性,使用时应注意其适用的范围。 ⑴ 输出z 变换函数C(z)只确定了时间函数)(t c 在采样瞬时的数值,不能反映)(t c 在采样点间的信息。 ⑵ 用z 变换法分析离散系统时,系统连续部分传递函数)(0s G 的极点数至 少应比其零点数多两个,即)(s G 的脉冲响应)(t k 在0=t 时必须没有跳跃,或者满足 0)(lim =∞ →s G s z 变换则是连续信号经过理想采样之后的离散信号的拉普拉斯变换,否则,用z 变换法得到的系统采样输出)(*t c 与实际连续输出)(t c 差别较大,甚至完全不符。 我们总可以容易地画出实变函数的图像(绝大多数函数的确如此),但我们难以画出一个复变函数的图象,这也许是拉普拉斯变换比较抽象的原因之一;而另外一个原因,就是拉普拉斯变换中的复频率s 没有明确的物理意义。 拉普拉斯变换 拉普拉斯变换提供了一种变换定义域的方法,把定义在时域上的信号(函数)映射到复频域上(要理解这句话,需要了解一下函数空间的概念--我们知道,函数定义了一种“从一个集合的元素到另一个集合的元素”的关系,而两个或以上的函数组合成的集合,就是函数空间,即函数空间也是一个集合;拉普拉斯变换的“定义域”,就是函数空间,可以说,拉普拉斯变换就是一种处理函数的函数。由于拉普拉斯变换定义得相当巧妙,所以它就具有一些奇特的特质),而且,这是一种一一对应的关系(只要给定复频域的收敛域),故只要给定一个时域函数(信号),它就能通过拉普拉斯变换变换到一个复频域信号(不管这个信号是实信号还是复信号),因而,只要我们对这个复频域信号进行处理,也就相当于对时域信号进行处理 我们总可以容易地画出实变函数的图像(绝大多数函数的确如此),但我们难以画出一个复变函数的图象,这也许是拉普拉斯变换比较抽象的原因之一;而另外一个原因,就是拉普拉斯变换中的复频率s 没有明确的物理意义。

一些常见的Z变换

附表A-2 常用函数的拉氏变换和z 变换表 序 号 拉氏变换()E s 时间函数()e t Z 变换()E s 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0 )()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 2 1s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 11+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 ) (a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ----- 11 2 2ωω +s t ωsin 2 sin 2cos 1 z T z z T ωω-+ 12 2 2ω+s s t ωcos 2 (cos )2cos 1 z z T z z T ωω--+ 13 22)(ω ω ++a s t e at ωsin - 22sin 2cos aT aT aT ze T z ze T e ωω----+ 14 2 2)(ω+++a s a s t e at ωcos - 222cos 2cos aT aT aT z ze T z ze T e ωω-----+ 15 a T s ln )/1(1- T t a / a z z -

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

傅里叶变换、拉氏变换、z变换的含义到底是什么

1。关于傅里叶变换变换?(来自百度知道) 答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。——参考郑君里的《信号与系统》。 傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有

区别的,所以我们用冲激函数表示。已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。 (另一种说法)对于周期函数f,傅立叶变换就是把这个函数分解成很多个正弦函数fn的和,每个fn的频率是f的n倍。所谓二次谐波,就是函数f2的频率为f两倍的那个函数。 (另二种说法)周期信号的傅里叶级数的意义是信号在每一个离

拉氏变换与Z变换的基本公式及性质

1拉氏变换的定义 若时间函数 f (t ) 在 t > 0 有定义,则 f (t ) 的拉普拉斯变换(简称拉氏变换)为 ? ∞ -?= =0 )()()]([dt e t f s F t f L ts ???)()(t f s F 2拉普拉斯反变换 s s F t f st d e )(j 21 )( j j ?∞ +∞ -=σσ π ,可表示为:f (t ) =L -1[F (s )] 1.表A-1 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1)1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ 像 原像

常用函数的拉氏变换和z变换表

附录A 拉普拉斯变换及反变换

… 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 @ i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ????? ?-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()()( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

常用傅里叶_拉普拉斯_Z变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:

常用的拉氏变换表

1 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s) 时间函数e(t) Z 变换E(z) 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0)()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 21s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 1 1+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 )(a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ---- - 11 22ω ω +s t ωsin 1 cos 2sin 2+-T z z T z ωω 12 2 2ω+s s t ωcos 1 cos 2)cos (2+--T z z T z z ωω 13 22)(ω ω++a s t e at ωsin - aT aT aT e T ze z T ze 22cos 2sin ---+-ωω 14 2 2)(ω+++a s a s t e at ωcos - aT aT aT e T ze z T ze z 222cos 2cos ---+--ωω 15 a T s ln )/1(1- T t a / a z z -

附录.拉氏变换和z变换表

附录A 拉普拉斯变换及反变换1.拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1)()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

常用函数的拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

相关文档
最新文档