茶梗

茶梗
茶梗

Using tea stalk lignocellulose as an adsorbent for separating decaffeinated tea catechins

J.H.Ye,J.Jin,H.L.Liang,J.L.Lu,Y.Y.Du,X.Q.Zheng,Y.R.Liang *

Zhejiang University,Tea Research Institute,268Kaixuan Road,Hangzhou 310029,China

a r t i c l e i n f o Article history:

Received 7March 2008

Received in revised form 1July 2008Accepted 2July 2008

Available online 16August 2008Keywords:Antioxidant Caffeine

Pine sawdust Bagasse

Macroporous resin

a b s t r a c t

Lignocelluloses prepared from woody tea stalk,pine sawdust and sugarcane bagasse were used as adsor-bents to isolate decaffeinated catechins from tea extracts and compared with synthetic macroporous resin HPD 600.HPD 600had the highest adsorption capacity to catechins,followed by tea stalk lignocel-lulose while lignocelluloses of pine sawdust and bagasse the least.Tea stalk lignocellulose absorbed pref-erentially tea catechins and showed a good selectivity.HPD 600absorbed caffeine and tea catechins simultaneously.The kinetics data of tea stalk lignocellulose showed a good ?t with the Langmuir iso-therm model.It is considered that tea stalk lignocellulose is an alternative low-cost adsorbent for prepar-ing decaffeinated tea catechins.

ó2008Elsevier Ltd.All rights reserved.

1.Introduction

Tea catechins,a group of abundant polyphenols in tea leaf,have received great attention both from scienti?c community and gen-eral public recently owing to their health bene?ts and functionality such as antimutagenic,anticarcinogenic and anticlastogenic effects (Gupta et al.,2002;Kuroda and Hara,1999).The major compo-nents of tea catechins are (à)-epigallocatechin gallate (EGCg),(à)-epigallocatechin (EGC),(à)-epicatechin gallate (ECg),(à)-epi-catechin (EC),and their epimerization isomers (+)-gallocatechin gallate (GCg),(+)-gallocatechin (GC),(+)-catechin gallate (Cg),and (+)-catechin (C)(Row and Jin,2006).EGCg is regarded as the most important component of tea catechins because of its high concentration in tea and excellent bioactivities.It is reported that EGCg can prevent cancer,cardiovascular disease,obesity as well as diabetes (Dreosti,1996;Johnson and Loo,2000),and also be effective to inhibit HIV reverse transcriptase (Chang et al.,1994).Preparation of catechins complex or pure EGCg will be interesting for further exploiting their bioactivities and related applications.Tea contains two to four percent of caffeine and it is a source for extracting caffeine (Guru and Icen,2004).It was con?rmed that excessive intake of caffeine exerted adverse effects on human health,including sleep deprivation (Hindmarch et al.,2000),abor-tions and miscarriages (Giannelli et al.,2003;Rasch,2003),psycho-social stress and hypersensitivity (Bernhisel-Broadbent,1999;

Nehlig et al.,1992).In order to obtain caffeine-free products of tea and its extracts,many attempts have been made,including the use of organic solvents (Row and Jin,2006),hot water (Liang et al.,2007),supercritical carbon dioxide (Park et al.,2007a,b ),microbial degradation of caffeine (Gokulakrishnan et al.,2005),activated carbon (Ye et al.,2007)and column chromatography (Sakanaka,2003).However,organic solvents extraction is not widely accepted by consumers due to its chemical residue.The hot water treatment is exclusively applicable for treating fresh tea leaf (Liang et al.,2007).Extraction by supercritical carbon diox-ide is still expensive.There is a long way to go for the microbial degradation of caffeine to be industrialized.Column chromatogra-phy is an important method to isolate bioactive ingredients from plant materials,and the selectivity of absorbents is critical to the isolation process.

Lignocellulose prepared using unwanted woody materials such as agricultural byproducts or natural ?bres was con?rmed to be useful absorbents for isolating bioactive components from plants or removing heavy metal ions from waste water (Sciban et al.,2006).Sawdust of North American cedar wood was used to prepare raw decaffeinated tea polyphenol from tea extract (Sakanaka,2003).However,various lignocellulosic materials have different adsorption capacities to individual compounds or metal ions (Shu-kla et al.,2002).In the present paper,lignocellulose materials pre-pared from three plant species were used to decaffeinate tea catechins in comparison with synthetic macroporous resin HPD 600,and the appropriate material was selected for further study on the adsorption mechanism including kinetics and isotherm,as well as column chromatographic conditions.

0960-8524/$-see front matter ó2008Elsevier Ltd.All rights reserved.doi:10.1016/j.biortech.2008.07.003

*Corresponding author.Tel.:+8657186971260;fax:+8657186971704.E-mail address:yrliang@https://www.360docs.net/doc/4616434497.html, (Y.R.Liang).Bioresource Technology 100(2009)

622–628

Contents lists available at ScienceDirect

Bioresource Technology

jo ur na l h o me pa ge :w w w.e ls ev ie r.c o m/lo c a t e/bi or t e c

h

2.Experimental

2.1.Materials

Woody tea stalk(Camellia sinensis)from tea processing byprod-uct,pine sawdust(Pinus massoniana),bagasse of sugarcane(Sac-charum sinensis)and a synthetic macroporous resin HPD600 were used in this study.The tea stalk was supplied by Shenlong Tea Factory(Hangzhou,China).The pine sawdust was obtained from Hangzhou Lumber Mill(Hangzhou,China)and the bagasse was supplied by the Experimental Farm of Zhejiang University (Hangzhou,China).HPD600macroporous resin(Cangzhou Bon Chemical Co.Ltd.,Cangzhou,China)which is usually used as an absorbent for isolating tea catechins complex was purchased from market.

Green tea extract used was supplied by Orient Tea Development Co.Ltd.(Hangzhou,China).Chemical purity grade ethanol was pur-chased from Sinopharm Chemical Reagent Co.Ltd.(Beijing,China). HPLC reference compounds including(à)-epigallocatechin gallate (EGCg),(à)-epigallocatechin(EGC),(à)-epicatechin gallate(ECg), (à)-epicatechin(EC),(+)-gallocatechin gallate(GCg),(+)-gallocate-chin(GC),(+)-catechin gallate(Cg),(+)-catechin(C)were supplied by National Institute of Japan(Kagoshima,Japan),and caffeine was a Sigma product(Sigma–Aldrich,St.Louis,USA).The other chemi-cal reagents used were of HPLC grade(Jinmei Biotech Corporation, Tianjin,China).The water used in the experiments was de-ionized water.

2.2.Preparation of adsorbents

Lignocullulose preparation was carried out according to modi-?ed method described by Sakanaka(2003).The plant materials were dried at105°C for4h,ground using an EUPA TSK-927S grin-der(Cankun Co.Ltd.,Shanghai,China)and sifted to particle size 0.25–0.30mm,and then drenched in2volumes of0.1N NaOH and stood for72h at room temperature.The NaOH solution was drained and the plant materials were washed with water.The NaOH-treated materials were drenched in2volumes of0.1N HCl overnight and then washed with water to pH7,and?nally sus-pended in2volumes of95%ethanol overnight at room tempera-ture and washed again with water.The prepared lignocelluloses were dried under ambient conditions.The lignocelluloses prepared from tea stalk,pine sawdust and bagasse were used as adsorbents in the tests and they were abbreviated as TSL,PSL and BL,respec-tively.The HPD600was pretreated with0.1N NaOH and0.1N HCl as the same method.

2.3.Test of adsorption capacity

Ten gram of above pretreated adsorbents was added into 500mL beaker?asks containing200mL of tea extract solution (20g Là1).The?asks were shaken at150rpm and25°C for12h using H2S-H water bath shaker(Donglian Electronic Technology Co.Ltd.,Harbin,China)and then the supernatants were sampled for HPLC.The adsorption capacity was calculated by the following Eq.(1):

q?V C0àCT

e

G

e1T

where q was adsorption capacity of the adsorbent(mg gà1)at equi-librium,C0and C were the initial and?nal solute concentrations of the solution(mg mLà1),respectively.V was the solution volume (mL)and G was weight of adsorbent used(g).

Selectivity coef?cient K B

A

characterizes quantitatively the ability of an adsorbent to select one of two solutes present in the same solution and is calculated by the following Eq.(2):K B

A

?

R B=R A

C B=C A

?

C A

C B

?

R B

R A

e2T

K B

A

was selectivity coef?cient.A and B represented caffeine and total catechins in the present paper,respectively.C A and C B were concen-trations(mg mLà1)of caffeine and total catechins in the solution at equilibrium.R A and R B were concentrations(mg gà1)of caffeine and total catechins in the adsorbent phase at equilibrium.The selectiv-ity coef?cient is in proportional to concentration of total catechins in the product isolated by the adsorbent.

2.4.Test of adsorption isotherm

According to the adsorption performances in the above test,TSL had a high adsorption capacity to catechins and a good selectivity, and so it was chosen as preferential material for further studies on adsorption mechanism.

The TSL(1.5g)was shaken with50mL tea extract solution at concentrations ranging from0.25g Là1to3.5g Là1in H2S-H water bath shaker at150rpm for12h at temperatures of288K,298K and308K,respectively.The supernatants were sampled and cen-trifuged as above before https://www.360docs.net/doc/4616434497.html,ngmuir isotherm model(Lang-muir,1918)was employed in this work.

2.5.Column chromatography

2.5.1.Gradient elution

One milliliter of the tea extract solution(100g Là1)was loaded on the TSL column(8mm i.d.?160mm).The column was washed with30mL of water and then eluted sequentially with20mL eth-anol solution by increasing the concentration from10%to80%(v/v) at?ow rate of0.5mL minà1.The ef?uent was collected in2mL each fraction for HPLC.

2.5.2.Loading volume study

To test the effect of loading volume on isolation and recovery rate of catechins,tea extract solution(100g Là1)was loaded at volumes of 1.0, 1.5, 2.5and 3.0mL on TSL columns(8mm i.d.?160mm),respectively,then sequentially washed with 30mL of water and20mL of10%(v/v)ethanol at?ow rate of 0.5mL minà1.The ef?uents were collected and combined.The col-umn was?nally eluted with30mL of80%(v/v)ethanol at?ow rate of0.5mL minà1.The eluates were dried under reduced pressure at 70°C in weighted glass dishes,respectively.The powder obtained was weighted.Ten mg of the powder was dissolved in10mL50% (v/v)ethanol for HPLC.

2.6.Analysis of catechins and caffeine

Concentrations of catechins and caffeine were analyzed by modi?ed method described in previous paper(Liang et al.,2007). The HPLC conditions were:Injection volume10l L,phenomenex C18column(4.6mm?150mm),column temperature28°C,mo-bile phase A=acetonitrile/acetic acid/water(6:1:193,v),mobile phase B=acetonitrile/acetic acid/water(60:1:139,v),linear gradi-ent elution:from70%(v)A and30%(v)B to15%(v)A and85%(v)B during early33min and then15%(v)A and85%(v)B till38min, Flow rate1mL minà1,Shimadzu SPD ultraviolet detector at 280nm.

2.7.Data statistics

Tests in the present paper were carried out in triplicate and the mean values of the triplicate tests were presented.Statistics was carried out on software of the SAS System for Windows version 8.1(SAS Institute Inc.,Cary,NC,USA).

J.H.Ye et al./Bioresource Technology100(2009)622–628623

3.Results and discussion

3.1.Adsorption capacities of various absorbents

Both adsorption capacity and selectivity coef?cient K B

A

at equi-

librium are important parameters to evaluate the performance of adsorbents.Table1showed that the adsorption capacity of total catechins for HPD600was156.3mg gà1,being the highest among the tested absorbents,followed by TSL.PSL and BL had least adsorption capacity to catechins.However,adsorption capacity to caffeine for HPD600was the highest(18.8mg gà1),followed by BL and PSL.TSL had the least adsorption capacity to caffeine.The

selectivity coef?cients K B

A

of total catechins over caffeine for all the lignocellulose absorbents were signi?cantly higher than HPD600.For example,it was3.35for TSL,being more than six times that of HPD600(Table2).Furthermore,the selectivity coef?-

cient K B

A

of gallated catechins(GCs)over non-gallated catechins (NGCs)was the highest for TSL.This suggests that TSL had the best adsorption selectivity among the tested adsorbents and it was a promising adsorbent for decaffeination and puri?cation of tea cat-echins.Although HPD600had the strongest adsorption capacity to catechins among the tested adsorbents,it is not suitable for isolat-ing decaffeinated tea catechins because it had strong af?nity to both caffeine and catechins.

Puri?cation by adsorption chromatography was reported to be based on differences in molecular weight,polarity,or shape of molecule of the sorbates,which led to differentiated af?nity with the adsorbent(Seader and Henley,1998).The difference in molecular structure between caffeine and catechins is that catechins are rich in phenyl and hydroxy groups.Lignocellulose is a complex substance containing p-hydroxyphenylpropanoid units connected by C–C and C–O–C links(Adler,1997),com-posed by lignin,cellulose and hemicelluloses(Sj?str?m,1981). Hemicelluloses establish close associations between lignin and cellulose.Although part of hemicelluloses still remained in the solid fraction of the pretreated materials,plenty of hemicellu-loses were hydrolyzed or removed in the process of NaOH–HCl treatment.The adsorption capacities of tea catechins by lignocel-lulosic materials mainly depend on the contents of lignin and cellulose.Lignin,a highly branched macromolecule,is composed of several types of aromatic compounds such as guaiacyl lignin, syringyl lignin and p-hydroxyphenyl lignin,and has a three-dimensional structure.Cellulose,a linear polymer substance, consists of about10,000–14,000D-glucose residues in b-D(1,4) linkage.Some of the residues are strongly bonded and crystal-lized in a bundle form,thus forming a complex composite with lignin and another polysaccharide.The relatively low solubility and the presence of signi?cant amounts of different aromatic groups and functional groups,such as carbonyl,methoxyl,phe-nolic hydroxyl and aliphatic hydroxyl,in a matrix structure of cross-linked lignin are prerequisites for sorping non-polar organ-ic compounds from aqueous solutions by mechanisms such as physical adsorption,hydrogen bonding as well as coordination and covalent linking(Chakar and Ragauskas,2004;Dizhbite et al.,1999).Cellulose,without aromatic compounds and a three-dimensional structure,might have little effect on the adsorption of catechins,which was con?rmed through the comparison be-tween lignocellulose and cellulose powder(Sakanaka,2003). Therefore lignin is the primarily functional component of ligno-cellulose on adsorption of catechins,which might aggregate cat-echins through hydrogen bonding between hydroxy groups of catechins and nucleophilic radicels on the lignin as well as the interaction of p-orbits.

Bagasse from sugarcane contains74.2–79.7%holocellulose and the hollocelluloses had2–4%Klason lignin(Hassan et al.,2000). Klason lignin contents in woody materials such as pine wood and tea stem ranged from25%to35%(Alves et al.,2006;Zaprometov et al.,1993).Low adsorption capacity of BL(Table1)may be as-cribed to its lower content of lignin.Lignin of tea stem tissues is consisted of not only guaicyl and syringyl structures but also of p-hydroxyphenyl structures(Zaprometov et al.,1993).The compo-sition of tea stalk lignin in TSL may lead to its stronger af?nity to catechins than BL and PSL.The mechanism remains to be further investigated.

3.2.Adsorption isotherm

Langmuir isotherm model is usually used to describe the distri-bution of sorbates between liquid phase and solid absorbent phase. It is expressed by(Langmuir,1918):

1

q

e

?

1

q

m

K bc

t

1

q

m

e3T

where q e was the amount(mg gà1)of sorbates(catechins or caf-feine)adsorbed onto TSL adsorbent at equilibrium.C was equilib-rium sorbate concentration(mg mLà1)in the solution.K b was the association constant and q m the adsorption capacity,which were calculated from the slope and intercept of plot of1/q versus1/C, respectively.Coef?cients of determination R2of caffeine and total catechins onto TSL were statistically signi?cant(Table3),suggest-ing that the adsorption systems showed excellent?t with the Lang-muir isotherm model.The calculated Langmuir parameters also showed that adsorption capacity(q m)and association constant (k b)decreased with increase in temperature,implying the adsorp-tion process was not favourable at raised temperature.However, both q m and K b for total catechins were higher than those for caf-feine at the three tested temperatures.For example,at temperature 288K,q m for total catechins was209.409mg gà1,being3.55times of that for caffeine.It indicates that TSL had a stronger af?nity to catechins than to caffeine and it is suitable for removing caffeine from catechins complex.

Table1

Adsorption capacity of different materials at equilibrium(mg gà1)a

Composition TSL PSL BL HPD600

GC7.4b 4.5c 6.2bc 4.1c

EGC16.4a11.0b12.2b11.5b

C 2.1b 1.5c 2.0b 2.7a

EC12.0ab8.4c9.8b14.6a

EGCg44.5c53.1b40.4d69.7a

GCg27.7a14.6bc17.9b12.8c

ECg35.1ab26.4b29.1b39.3a

Cg 1.6a 1.0b 1.1b 1.7a

Total catechins146.7b120.5c118.6c156.3a

Caffeine 3.9d 4.6c 6.1b18.8a

a Initial concentration of tea extract20g Là1;data followed by different alpha-

betic letters in a same row were signi?cantly different at q=0.05.

Table2

Selectivity coef?cients K B

A

of different adsorbents a

B/A b TSL PSL BL HPD600

TC/CA c 3.35a 2.49b 1.70c0.54d

GCs/NGCs d 4.10a 3.42a 2.11b0.79c

a Initial concentration of tea extract20g Là1;data with different alphabetic let-

ters in a same row were signi?cantly different at q<0.05.

b B/A Selectivity coef?cients K B

A

of solute B to solute A present in the same

solution.

c TC,total catechins;CA,caffeine.

d GCs,gallated catechins;NGCs,non-gallated catechins.

624J.H.Ye et al./Bioresource Technology100(2009)622–628

3.3.Thermodynamic parameters

Temperature dependent adsorption properties are correlated to thermodynamic parameters,such as standard Gibbs free energy change (D G 0),enthalpy change (D H 0)and entropy change (D S 0).The D G 0was calculated based on the following relationships (Kula et al.,2008):

D G 0?àRT ln Kc

e4T

where R was the gas constant;Kc was equilibrium constant,i.e.,the ratio of sorbate concentration on solid adsorbent phase (CBe )to sor-bate concentration in the solution phase (CAe )at equilibrium.Table 4shows that Kc values for total catechins were more than 4times those for caffeine,implying that more catechins were ab-sorbed on TSL,comparing to caffeine.The values of D G 0for total catechins and caffeine were negative,indicating the adsorption pro-cess was spontaneous one.The free energy change is related to the

adsorption properties,i.e.,from à20kJ mol à1to 0kJ mol à1for physisorption and from à80kJ mol à1to à400kJ mol à1for chemi-sorption (Atkins,1990).The D G 0values in the Table 4suggested that the adsorption processes of caffeine and catechins onto TSL were spontaneous physical processes and did not gain external en-ergy.The negative D G 0value was in proportional to the driving force.The D G 0values for total catechins were more negative than those for caffeine,suggesting that the adsorption of catechins were more spontaneous.Enthalpy change (D H 0)and entropy change (D S 0)were calculated from Kc through Van’t Hoff equation:

ln Kc ?

D S 0R àD H 0

RT

e5T

Enthalpy change (D H 0)is the amount of heat released or absorbed when the reaction occurs at constant pressure.Entropy change (D S 0)is a measure for degree of freedom of the adsorbed species or the disorder of a system.The D H 0and D S 0were obtained from the slope and intercept of the Van’t Hoff plot of ln Kc versus 1/T (Fig.1)and the obtained D H 0for total catechins was à15.114kJ mol à1in comparison with D H 0for caffeine à11.625kJ mol à1while the D S 0for total catechins was à7.941J mol à1K à1in comparison with D S 0for caffeine à8.246J mol à1K à1.A higher negative value of D H 0for total cate-chins than for caffeine indicated that the adsorption of catechins onto the TSL was more exothermic than caffeine.The negative entropy change (D S 0)values for caffeine and total catechins testi-?ed a decrease in degree of freedom of the caffeine and catechins when they were adsorbed onto the TSL.

Table 3

Langmuir parameters of caffeine and total catechins onto TSL at different temperatures a Temperature

Caffeine Total catechins

K b

q m R 2Langmuir equation

K b q m R 2Langmuir equation

288K 0.89858.9430.993*q ?52:931C

1t0:898C 2.830209.4090.997*q ?592:627C

1t2:830C 298K 0.63453.3570.990*q ?33:828C 1t0:634C 2.434186.1570.995*q ?453:106C 1t2:434C 308K

0.395

49.377

0.965*

q ?19:504C 1t0:395C

2.077

167.031

0.988*

q ?346:923C 1t2:077C

a

Initial concentrations of tea extract used were 0.25–3.5g L à1.

*Statistically signi?cant at p <0.01.

Table 4

Equilibrium constant (Kc )and Gibbs free energy change (D G

0)of caffeine and total catechins onto TSL

288K

298K 308K Caffeine Kc

47.60940.47634.735D G 0(kJ mol à1)à9.250à9.169à9.085Total catechins

Kc

212.186171.521140.836D G 0(kJ mol à1)

à12.828

à12.746

à12.669

J.H.Ye et al./Bioresource Technology 100(2009)622–628

625

3.4.Column chromatography

3.4.1.Gradient elution

When tea extract was loaded on the TSL column and washed sequentially with ethanol solutions of increasing concentrations, composition of the eluates changed with the increase in ethanol concentration(Fig.2).Caffeine and non-gallated catechins(NGCs) including EGC,EC,GC and C,were most eluted by water and10% (v/v)ethanol,but gallated catechins(GCs)including EGCg,GCg, ECg,and Cg were eluted by ethanol solutions at concentrations more than20%(v/v).EGCg showed bimodal distribution at ethanol concentrations40%(v/v)and60%(v/v)(Fig.2D and E).ECg had peak at40%(v/v)ethanol ef?uent(Fig.2D).GCg and Cg were eluted by60%(v/v)ethanol(Fig.2E).Partial EGCg was eluted by80%(v/v)ethanol(Fig.2F).The results were consistent with selectivity coef-?cients in Table2.It suggests that decaffeinated product rich in GCs can be obtained by TSL column chromatography.

EGCg is the most important component among tea catehins.It is of great signi?cance to isolate pure EGCg.Fig.2D and E showed that EGCg was relatively abundant and the other catechins were at low levels in fractions collected in the late stage of40%(v/v)eth-anol ef?uent and early stage of60%(v/v)ethanol ef?uent,i.e.,from fraction40to fraction45.It implies that EGCg enriched product could be obtained by TSL column chromatography.HPLC pro?le of fraction41(a part of81and82th mL,2mL per fraction)con-?rmed that EGCg was predominant component,accompanying low levels of ECg,Cg and GCg,suggesting TSL is a promising absor-bent for isolating puri?ed EGCg.

Table5

Effect of loading on decaffeination and recovery of tea catechins(mg)a

Loading volume b1mL 1.5mL 2.5mL 3.0mL

Composition of loaded tea extract Caffeine 4.20±0.08 6.30±0.1210.49±0.2012.59±0.24

EGCg14.78±0.1422.17±0.2136.96±0.3544.35±0.42

Total catechins39.69±0.4359.53±0.6499.22±1.07119.06±1.29

TC/C c9.45±0.169.45±0.169.45±0.169.45±0.16

Mixture of ef?uents of30mL water and20mL10%(v/v)ethanol Caffeine 3.97±0.07 5.71±0.098.67±0.0910.67±0.10 Recovery of Caffeine94.52%90.63%82.65%84.75% EGCg0.37±0.02 3.23±0.06 6.81±0.0815.15±0.11 Recovery of EGCg 2.50%14.57%18.43%34.16% Total catechins16.97±0.1729.34±0.2156.07±0.8975.42±0.96 Recovery of total catechins42.76%49.29%56.51%63.35%

TC/C c 4.28±0.03 5.14±0.04 6.47±0.047.07±0.16

Ef?uent of30mL80%(v/v)ethanol Caffeine0.19±0.010.44±0.02 1.53±0.04 1.51±0.03

Recovery of Caffeine 4.52% 6.98%14.58%12.02%

EGCg14.16±0.1618.64±0.1728.73±0.1928.11±0.21

Recovery of EGCg95.8%84.08%77.73%63.39%

Total catechins21.85±0.3528.89±0.2341.71±0.3441.25±0.38

Recovery of total catechins55.05%48.53%42.04%34.65%

TC/C c115.22±4.2265.77±2.4727.29±0.9427.33±0.79

a TSL column:8mm i.d.?160mm;data were expressed as mean±standard deviation.

b Initial concentration of tea extract was100g Là1.

c TC/CA:ratio of total catechins to caffeine.

626J.H.Ye et al./Bioresource Technology100(2009)622–628

3.4.2.Effect of loading volume on decaffeination of catechins by stepwise elution

Fig.2shows that caffeine was eluted by water and10%(v/v) ethanol and EGCg was partially eluted by80%(v/v)ethanol.Decaf-feinated tea catechins complex might be obtained by a simpli?ed stepwise elution process,i.e.,sequential elution by water,10%(v/ v)ethanol and then80%(v/v)ethanol.Table5showed that recov-ery rate of total catechins in the80%ethanol ef?uent decreased with increase in loading volume.The recovery rate of EGCg in the80%ethanol(v/v)ef?uent decreased from95.80%at loading volume of1mL tea extract containing14.78mg EGCg to63.39% at loading volume of3mL tea extract containing44.35mg EGCg. On the other hand,caffeine remained in the80%ethanol(v/v)ef?u-ent increased with the loading volume.The ratio of total catechins to caffeine(TC/C)in the80%ethanol(v/v)ef?uent decreased with increase in loading volume,suggesting the purity of the catechins obtained declined.If recovery of EGCg was set to95%,the loaded EGCg should not be exceeded1.85mg per cm3TSL adsorbent based on the results in Table5.

When the80%ethanol(v/v)ef?uents were dried at70°C under reduced pressure,it showed that the concentration of total cate-chins and EGCg decreased with increase in loading volume though total yield increased(Table6).If the loading was up to1.5mL or 7.5mg total catechins per cm3TSL,the concentration of total catechins of product obtained was909.2mg gà1,with caffeine 8.8mg gà1.The absorption selectivity of TSL column was better than that of lignocellulose column prepared from North American cedar wood(Sakanaka,2003).For example,the ratio of caffeine to EGCg in products prepared by TSL column was0.009–0.037(TC/ C=115.22–27.33)(Table5),being lower than0.313obtained by North American cedar wood lignocellulose column(Sakanaka, 2003).This study con?rmed that lignocellulosic materials prepared from various plant species have different adsorption selectivities to catechins and caffeine.

4.Conclusion

This study illustrated that adsorption capacity to catechins for tea stalk lignocellulose(TSL)was next to synthetic macroporous resin HPD600,but higher than lignocelluloses prepared from pine sawdust and bagasse.The adsorption capacity to caffeine for TSL was signi?cantly lower than resin HPD600.TSL is a promising alternative adsorbent for isolating decaffeinated catechins.

The kinetics data showed that the selectivity coef?cient of cat-echins over caffeine onto TSL was signi?cantly higher than that onto resin HPD600,supporting that TSL was a better adsorbent for preparing decaffeinated catechins than resin HPD600.The kinetics of the system‘catechins and caffeine/TSL’showed a good ?t with Langmuir isotherm model.

The TSL column chromatography of tea extract showed that tea components were roughly separated into two portions by gradient elution with increasing ethanol solution from0%to80%(v/v).The portion eluted by0–10%(v/v)ethanol contained high concentra-tion of caffeine and partial non-gallated catechins(NGCs)and the portion eluted by ethanol solutions i th concentration more than 20%(v/v)had high level of gallated catechins(GCs).Product abun-dant EGCg was collected in late fractions of40%(v/v)ethanol and early fractions of60%(v/v)ethanol ef?uent.When tea extract loaded on the TSL column was sequentially washed using water, 10%(v/v)ethanol and80%(v/v)ethanol,decaffeinated tea cate-chins complex was collected in80%(v/v)ethanol fraction.How-ever,the decaffeination ef?ciency and recovery rate of catechins decreased with the increase in the loaded tea extract volume. When the loading volume was set up to7.5mg total catechins per cm3TSL column,the concentration of total catechins in the 80%(v/v)ethanol eluates was above90%(w/w)on dry base,with EGCg more than60%(w/w)and caffeine below1%(w/w). Acknowledgements

This study was?nanced by the‘‘Key Technology R&D Pro-gram”(Project No.2006B AD27B06)of the Ministry of Science and Technology of China.The authors also thank Dr.Takeda for kind supply of the HPLC reference catechins.

References

Adler,E.,1997.Lignin chemistry–past,present and future.Wood Sci.Technol.11, 169–218.

Alves,A.,Schwanninger,M.,Pereira,H.,Rodrigues,J.,2006.Analytical pyrolysis as a direct method to determine the lignin content in wood Part1:comparison of pyrolysis lignin with Klason lignin.J.Anal.Appl.Pyrolysis76,209–213. Atkins,P.W.,1990.Physical Chemistry,fourth ed.Oxford University Press,London, pp.884–890.

Bernhisel-Broadbent,J.,1999.Diagnosis and management of food hypersensitivity.

Immu.Allerg.Clin.North Am.19,463.

Chakar,F.S.,Ragauskas,A.J.,2004.Review of current and future softwood Kraft lignin process chemistry.Ind.Crops Prod.20,131–141.

Chang,C.W.,Hsu,F.L.,Lin,J.Y.,1994.Inhibitory effects of polyphenolic catechins from Chinese green tea on HIV reverse transcriptase activity.J.Biomed.Sci.1

(3),163–166.

Dizhbite,T.,Zakis,G.,Kizima, A.,Lazareva, E.,Rossinskaya,G.,Jurkjane,V., Telysheva,G.,Visturs,U.,1999.Lignin-a useful bioresource for the production of sorption-active materials.Bioresour.Technol.67,221–228.

Dreosti,I.E.,1996.Bioactive ingredients:antioxidants and polyphenols in tea.Nutr.

Rev.54(Part2Suppl.),S51–S58.

Giannelli,M.,Doyle,P.,Roman,E.,Pelerin,M.,Hermon,C.,2003.The effect of caffeine consumption and nausea on the risk of miscarriage.Paediatr.Perinat.

Epidemiol.17,316–323.

Gokulakrishnan,S.,Chandraraj,K.,Gummadi,S.N.,2005.Microbial and enzymatic methods for the removal of caffeine.Enzyme Microb.Technol.37,225–232. Gupta,S.,Saha,B.,Giri,A.K.,https://www.360docs.net/doc/4616434497.html,parative antimutagenic and anticlastogenic effects of green tea and black tea:a review.Mutat.Res.512,37–65.

Guru,M.,Icen,H.,2004.Obtaining of caffeine from Turkish tea?ber and stalk wastes.Bioresour.Technol.94,17–19.

Hassan,M.L.,Rowell,R.M.,Fadl,N.A.,Yacoub,S.F.,Christiansen, A.W.,2000.

Thermoplasticization of bagasse I.Preparation and characterization of esteri?ed bagasse?bers.J.Appl.Polym.Sci.76,561–574.

Hindmarch,I.,Rigney,U.,Stanley,N.,Quinlan,P.,Rycroft,J.,Lane,J.,2000.A naturalistic investigation of the effects of day-long consumption of tea,coffee and water on alertness,sleep onset and sleep quality.Psychopharma149,203–216.

Johnson,M.K.,Loo,G.,2000.Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA.Mutat.Res.459,211–218.

Kula,I.,Ugurlu,M.,Karaoglu,H.,Celik,A.,2008.Adsorption of Cd(II)ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation.Bioresour.Technol.99,492–501.

Kuroda,Y.,Hara,Y.,1999.Antimutagenic and anticarcinogenic activity of tea polyphenols.Mutat.Res.436,69–97.

Langmuir,I.,1918.The adsorption of gases on plane surfaces of glass,mica and platinum.J.Am.Chem.Soc.40,1361–1401.

Liang,H.L.,Liang,Y.R.,Dong,J.J.,Lu,J.L.,Xu,H.R.,Wang,H.,2007.Decaffeination of fresh green tea leaf(Camellia sinensis)by hot water treatment.Food Chem.101, 1451–1456.

Nehlig,A.,Daval,J.L.,Debry,G.,1992.Caffeine and the central-nervous-system-mechanisms of action,biochemical,metabolic and psychostimulant effects.

Brain Res.Rev.17,139–169.

Park,H.S.,Choi,H.K.,Lee,S.J.,Park,K.W.,Choi,S.G.,Kim,K.H.,2007a.Effect of mass transfer on the removal of caffeine from green tea by supercritical carbon dioxide.J.Supercrit.Fluids.42,205–211.

Table6

Effect of loading volume on yield and composition of80%(v/v)ethanol eluates(on dry

weight)a

Loading volume 1.0mL 1.5mL 2.5mL 3.0mL

Yield%(w/w)b15.5±0.514.7±0.713.5±0.411.5±0.4

Total catechins(mg gà1)973.2±13.3909.2±8.2884.3±6.6859.2±7.4

EGCg(mg gà1)695.0±7.9627.1±5.7588.0±3.9585.5±4.7

Caffeine(mg gà1) 6.4±0.38.8±0.425.6±0.631.5±0.6

a TSL column:8mm i.d.?160mm;The80%(v/v)ethanol eluates were dried at

70°C under reduced pressure and the data were expressed as mean±standard

deviation.

b Yield%=(dry solids weight obtained by drying the80%(v/v)ethanol eluates/

loaded tea extract)?100%.

J.H.Ye et al./Bioresource Technology100(2009)622–628627

Park,H.S.,Lee,H.J.,Shin,M.H.,Lee,K.W.,Lee,H.,Kim,Y.S.,Kim,K.O.,Kim,K.H., 2007b.Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide.Food Chem.105,1011–1017.

Rasch,V.,2003.Cigarette,alcohol,and caffeine consumption:risk factors for spontaneous abortion.Acta Obstetr.Gynecol.Scand.82,182–188.

Row,K.H.,Jin,Y.Z.,2006.Recovery of catechin compounds from Korean tea by solvent extraction.Bioresour.Technol.97,790–793.

Sakanaka,S.,2003.A novel convenient process to obtain a raw decaffeinated tea polyphenol fraction using a lignocellulose column.J.Agric.Food Chem.51, 3140–3143.

Sciban,M.,Klasnja,M.,Skrbic,B.,2006.Modi?ed softwood sawdust as adsorbent of heavy metal ions from water.J.Hazard.Mater.136,266–271.Seader,J.D.,Henley,E.J.,1998.Separation Process Principles.John Wiley and Sons Inc.,New York,pp.5–7.

Shukla,A.,Zhang,Y.H.,Dubey,P.,Margrave,J.L.,Shukla,S.S.,2002.The role of sawdust in the removal of unwanted materials from water.J.Hazard.Mater.95, 137–152.

Sj?str?m,E.,1981.Wood chemistry.In:Fundamentals and applications.Academic Press Inc.,New York,p.223.

Ye,J.H.,Liang,Y.R.,Jin,J.,Liang,H.L.,Du,Y.Y.,Lu,J.L.,Ye,Q.,Lin,C.,2007.Preparation of partially decaffeinated instant green tea.J.Agric.Food Chem.55,3498–3502. Zaprometov,M.N.,Zagoskina,N.V.,Elkin,V.V.,https://www.360docs.net/doc/4616434497.html,parative study of lignins produced by the tea-plant and by tea-plant derived callus tissues.

Phytochemistry32,709–711.

628J.H.Ye et al./Bioresource Technology100(2009)622–628

对枕头的人机工程分析

对枕头的人机工程学 分析

对枕头的人机工程学分析 摘要枕头与我们的生活密切相关。作为我们的生活必需品之一,枕头的设计、材料、形状等实际上包含了许多人机工程学的原理,值得我们研究,从而加深对枕头的认识,同时加深对人机工程学的认识。 关键词枕头人机工程学 (一)概述 1、人体工程学的定义 人体工程学(human engineering 或ergonomics)又称人机工 程学、人类工程学、人体工程学等,他是研究“人—机(物)—环境”三个要素之间的关系,使其符合于人体的生理、心理及解剖学特性,从而改善工作与休闲环境,提高人的作业效能和舒适性,有利人的身心健康和安全的一门边缘学科。 在人、机、环境三个要素中,“人”是指作业者或使用者,人的 心理特征、生理特征以及人适应机器和环境的能力都是人体工程学重要的研究课题。“机”是指机器,仅较一般技术语的意义要广得包括 人操作和使用的一切产品和工程系统。怎样才能设计出满足人的要求、符合人的特点的产品,是人机工程学探讨的重要问题。“环境”是指 人们工作和生活的环境,噪声、照明、温度等环境因素对人的工作和生活的影响是人体工程学研究的主要对象。 2、人体工程学在枕头功能设计中的作用 一般人认为,枕头就是人们为睡眠的舒适而采用的填充物,而从现代医学研究上认识,人体的脊柱是具有四个生理弯曲的曲线,为了

保护颈部的正常生理弯曲,维持人们睡眠时正常的生理活动,人们睡眠时必须采用枕头。因此枕头对我们的生活非常重要,关系到我们的健康。从人机学的角度枕头是很讲究的。一个好的枕头应当适合人体构造,给人以舒服的睡眠。 (二)枕头的组成部分 1、枕芯 枕芯需要填充材料,使枕头在使用时保持一定的高度,目前枕头市场上填充材料多种多样,其中有中药材如决明子、野菊花、蚕砂;有谷物类如荞麦壳、谷糠、棉;还有将灯芯草、蒲绒、废茶叶等作为材料填充,另外利用现代技术加工制作的材料如多孔真空棉、慢回弹海绵等都是在市场上普及率很高的填充材料。中药材自古以来就被认为是最佳的枕芯填充材料,传统中医认为:中药作为枕芯填充材料在人们的长时间睡眠中可以缓缓发挥药力,发挥他们分别具有的不同功效,由此枕头可以起到保健甚至是治疗的作用。谷物以及其他植物材料之所以一直被认为是传统的填充材料,主要是由于他们本身含有相当丰富的氨基酸成分,在人们的睡眠中经过皮肤摩擦和呼吸可以部分为人体吸收,现代技术制作的枕芯材料主要讲究枕头的舒适。 枕套有三种最基本的款式;普通的一片包型,牛津型(装有平边)和缀边型。三种枕套都有一个固定枕头的内封品,这样便不用在两侧实行一些加固措施了。棉布、棉涤和人造纤维都可以用来缝制枕套,但是最舒适的枕套材料是纯棉质地的材料,透气性和吸湿性好,并且不刺激皮肤。

描写普洱茶的句子(优雅)

描写普洱茶的句子(优雅) 1.品普洱茶,那种香甜的滋味真是令人难忘! 2.“好香的茶啊!”我拿着茶杯感叹。我们现在是在云南昆明的一间茶楼,品尝这里的特产——普洱茶。 3.茶杯里乌黑的普洱茶翻滚着,过了一会儿,叶片舒展开来,缓缓的便往下坠,到了杯底,还不忘调皮的吐出些泡泡。浮出水面的泡泡并没有破散,我用嘴轻轻一吹,“啪”,细微的声音伴随着泡泡的爆裂,传进了我的耳朵。 4.长期饮用云南普洱茶的人,40%以上有人同程度的体重减轻、脂肪和新陈代谢等明显的作用,含量并降下30%。 5.普洱茶有杀死癌细胞、抗突变、防癌功能及减肥降血脂作用。普洱茶自古以来,除了解渴、品茗之外,更有消食减肥及去病的功效。 6.普洱茶是“可以喝的古董”。很少有饮料或食品具备普洱茶这种“可饮、可藏”的双重特性。 7.普洱茶去脂消食,减肥瘦身的药理特性,是风靡了无数爱美塑身族、中年发福者的心。 8.普洱茶是有科学根据的保健饮料。现代人“以命博钱”者,比比皆是,普洱茶的防癌保健功能一经医界证实后,“以小钱保长命”的观念,不但强化了爱茶人的信念,同时吸纳了许多新进茶友。 9.普洱茶易冲耐泡,操作平易随和。陈化得宜的普洱茶,不苦不涩,即使久浸亦能入喉,既不需像高山茶分钞必较,却乃有茶事的乐

趣,甚至不失茶包便利性。 10.普洱茶茶性温和,不伤胃。现代人紧张、压力大的生活模式,胃疾普遍,气血偏虚,食不正常,一般轻发酵茶对爱茶之人而言,确有“不可承受之轻”的顾忌。 11.养颜暖胃有益于身体的传统饮品,包含茶文化陶冶情操的饮品之一普洱茶,跳出黑茶系类另立一派的茶叶,特的独特需人们细细品味! 12.普洱茶中的曲菌,含有微量脂肪分解酵素的脂肪鋂,这种脂肪鋂对脂肪分解具有效用。 13.普洱茶的确有助于降低血浆胆固醇、三酸甘油及游脂肪酸,还有减少胆固醇性脂肪肝的现象。

茶叶枕头的医疗功效

茶叶枕头的医疗功效 现在医学研究证明:茶枕具有祛痰定惊、开窍醒脑、扩张周围血管、防病祛邪、平衡气血、调节阴阳、安神除烦、清头目、清热解毒、止渴生津、去痰、下气、消食、去腻解肥、醒酒、治痢、利水、疗痿、通便、祛风解表、坚齿、益气力、疗饥;可以消除烦躁、紧张、压抑、焦虑等负面情绪,缓解精神压力,提高睡眠品质,镇静安神,是不可多得的保健佳品。茶叶枕头具有灭菌、抗辐射、消暑解热、 安神消烦等作用,即使是喝过的茶渣茶叶梗也同样具有芳香气味及 灭菌、安神的作用。用茶叶梗做成茶枕头有安神保健的作用,可快 速消除疲劳,让你安然入睡,提高睡眠质量;还能清心明目,改善大 脑血液循环,使大脑有充分的氧气和营养供给,消除大脑疲劳,增 强记忆力;此外,茶枕中的物质还有改善胃肠功能、降低血脂和胆固醇、改善面部微循环、杀菌消炎以及清除异味和其他有害气体的作用。 透气性能不好的枕头会使睡眠中的人呼吸不畅,而茶叶可以保证枕头的透气性,枕着这样的枕头睡觉既能闻到茶香,也不用担心睡 眠中的呼吸问题。一般来说,较硬的枕头有益于人体健康,但过硬 的枕头使头部与枕头接触面积过少,局部压力过大,使人感到不舒服,在第二天早上产生头、颈、背臂、手等处的麻木或者疼痛等症状;太软的枕头难以保持枕头的高度,并且因为过于松软对头皮压迫 面积大,不利于血液循环,同时也存在透气性能的问题,不能保证 睡眠时头部皮肤充分呼吸,仰卧时可能引起呼吸受阻的安全隐患。 茶枕头恰巧在软硬之间达成了一个平衡点。 茶叶安神清火清香明目,提神益智,防暑降温的茶叶融入枕内。安神清火的枕在颈部,在浓浓的茶香中入眠。深受婴儿,儿童,学生,白领,中老年人及有颈椎病或者睡眠质量不高的人群青睐。

【CN210080084U】一种茶叶茶梗分离机【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920393203.X (22)申请日 2019.03.27 (73)专利权人 福建晟境农业有限公司 地址 354400 福建省三明市泰宁县大龙乡 饶山村龙婷组 (72)发明人 韩彦  (74)专利代理机构 北京中济纬天专利代理有限 公司 11429 代理人 杨乐 (51)Int.Cl. B07B 13/11(2006.01) B07B 13/14(2006.01) A23F 3/06(2006.01) (54)实用新型名称 一种茶叶茶梗分离机 (57)摘要 本实用新型涉及茶叶加工技术领域,具体涉 及一种茶叶茶梗分离机,包括分离筒、电机和收 集筒,所述分离筒套设在收集筒内,所述电机与 分离筒连接带动分离筒转动;所述分离筒的侧壁 上设置有多个的通槽,所述通槽内可拆卸连接有 分离块;所述分离块中间的凹槽,所述凹槽的底 部为倾斜设置;所述凹槽靠近地面的一侧的厚度 大于相对的另一侧;本实用新型通过倾斜的凹槽 的设置,配合电机做离心运动,能够使得茶叶沿 分离筒的内侧壁分布,同时倾斜设置的凹槽底 部,能够使得进入到凹槽内的茶梗飞出进入到收 集筒内, 从而实现了分离。权利要求书1页 说明书3页 附图2页CN 210080084 U 2020.02.18 C N 210080084 U

权 利 要 求 书1/1页CN 210080084 U 1.一种茶叶茶梗分离机,其特征在于,包括分离筒、电机和收集筒,所述分离筒套设在收集筒内,所述电机与分离筒连接带动分离筒转动; 所述分离筒的侧壁上设置有多个的通槽,所述通槽内可拆卸连接有分离块;所述分离块包括第一部分、第二部分和第三部分,所述第二部分位于第一部分和第三部分之间,所述第二部分、第三部分、第一部分的厚度依次增厚,所述第二部分的最厚处薄于第三部分的最薄处,所述第一部分、第二部分和第三部分形成凹字型结构,所述凹字型结构的中间为凹槽,所述凹槽的底部为倾斜设置;所述第二部分靠近地面的一侧的厚度大于相对的另一侧; 所述收集筒内连接有风道,所述风道设置有进风口和出风口,所述出风口朝向凹槽,所述进风口处连接有鼓风机。 2.根据权利要求1所述的茶叶茶梗分离机,其特征在于,所述第一部分朝向第二部分的侧壁上设置有弧形槽,所述弧形槽与凹槽平行设置并与凹槽连通。 3.根据权利要求1所述的茶叶茶梗分离机,其特征在于,所述收集筒的侧壁底部设置有出料口,所述出料口上设置有可转动的盖板。 4.根据权利要求1所述的茶叶茶梗分离机,其特征在于,所述分离筒的底部设置有过滤网。 5.根据权利要求1所述的茶叶茶梗分离机,其特征在于,所述分离筒、收集筒和分离块的材质为不锈钢材质。 2

普洱茶经典语录大全

普洱茶经典语录大全 导读:本文是关于普洱茶经典语录大全的文章,如果觉得很不错,欢迎点评和分享! 1、适合于自己口味的普洱茶,应该才是最好的普洱茶。 2、普洱茶是一个完整的概念,空气好,经纬度好,多民族聚居,由这么多元素组合成,分量就不一般了。 3、这些年,茶的经济价值和文化内涵提升很快。但茶业教育很滞后,人才短缺,严重制约中国茶业走向现代化和国际化。 4、天下普洱大局,非邓时海不足以定;普洱江湖群雄,非邓时海不足以安。 5、我比较喜欢普洱茶,好的普洱茶我觉得很好。 6、同饮同醉,销万愁,知甘苦,品意境! 7、我最喜欢喝云南的普洱茶,每天都喝,以至于后来满嘴都是泡。后来别人才和我说,普洱茶熟茶挺上火的,让我不要天天喝。可是没有办法我就是喜欢。 8、过去几年的普洱茶,是资本的需要,从现在开始的普洱茶,才是消费的需要! 9、任何人都无法否定普洱茶的饮用价值和药用、保健作用。普洱茶越陈越香也是事实,所以它一定会有好的市场前景。 10、云南普洱茶产业联盟成立后,最核心、最重要的任务就是带领业界去努力拓展零售市场,扩大并形成稳定的终端消费群体。

11、中国的股票市场,中国的房地产市场,中国的艺术品市场,普洱茶的市场,所有的市场究竟有没有泡沫?这个问题我想发表意见的人数以万计,这个问题永远要争论下去。 12、普洱茶只是普通的消费饮品,要按照商品经营的轨迹构建健康体系,长远发展之计应是让消费者认识到什么是真正的普洱茶,扩大消费者的饮用从而壮大产业。 13、普洱茶忽悠了精明的有钱人。 14、所以说什么是好茶,什么是坏茶,普洱茶中没有好茶,也没有坏茶,只有最适合你的茶,根据你自己的口感喜好,决定买什么茶,根据你自己的经济能力来决定买你认为是性价比最好的茶,这就是好茶。 15、我的书在丽江、云南都和普洱茶什么的放在一起当成土特产来卖,对这个我很高兴、骄傲。 16、普洱茶有三个关键词:云南大叶种、晒青毛茶、熟茶。普洱茶在21世纪,能成为部分国家,取代红茶的唯一饮料。 17、波动在继续,普洱茶生活在继续,加工、经营、消费、文化配套的活动,这些都叫做普洱茶的生活,不管市场发生什么变化,我们都要沉着冷静,让普洱茶的生活继续。 18、普洱茶前途是光明的,道路是曲折的,借用今年流行的一句话,不抛弃,不放弃! 19、我希望普洱茶能够在国际上有自己的品牌,老百姓都能喝上好的普洱茶。

老年人的睡眠保健

现代中医理论认为影响睡眠的内外因素复杂,包括情志所伤、饮食不节、病后、年迈、禀赋不足、心虚胆怯等。失眠病位主要在心,涉及肝、胆、脾、肾。病性有虚有实,且虚多实少。其实证者,多因心火炽盛,肝郁化火,痰热内扰,引起心神不安所致;其虚证者,多由阴虚火旺,心脾两虚,心胆气虚,引起心神失养所致。常见临床证型有心火炽盛、肝郁化火、痰热内扰、阴虚火旺、心脾两虚、心胆气虚等。 老年人的睡眠特点 老年人睡眠多表现为入眠时间延迟,容易早醒,熟睡和睡眠时间短,白天伴有头晕、疲乏、精力不足、情绪改变等表现。其正常睡眠和青壮年有以下区别。在睡眠和觉醒方式上,总体是早睡早起,这是由于老年人的生理节律改变的缘故。 老年人入睡前的觉醒期有所延长,由青壮年期的5~15 min延长为10~25 min。 睡眠中的醒来次数增加。青壮年人在睡眠中可醒来1~2次,而老年人醒来的次数可超过5次。 老年人的睡眠程度浅,易唤醒,男性老人深睡眠的消失要较女性老人更早。 睡眠效率(睡眠中睡着时间占总卧床时间的百分比)随年龄增长而下降。青年人的睡眠效率一般达95%,而老年人约为80~85%。 老年人白天易打瞌睡。由于老年人深睡眠减少,睡眠中醒来次数增多,夜间睡着时间约为6 h,睡眠效率下降,致使精力恢复不佳,势必要以白天打瞌睡来弥补。老年人晚上睡眠特点是深睡眠减少、浅睡眠增加,觉醒增加和睡眠片断化,而白天出现以微睡为主要表现的打盹。 老年人可出现睡眠时相提前,即有早睡和早起的倾向,这可能与老年人核心体温节律的改变有关,因为老年人体温节律的变动幅度减少和时相提前。 中医学认为老年人具有脏腑老化、气血亏虚及阴阳失衡的生理特点,是引起老年性失眠的主要原因。 中老年失眠病理机制的转归在于气血虚少,阴液不足,阴阳失调,阳不得入阴之故,以虚证为主。病因主要认为与情志不遂而肝郁化火,思虑劳倦而耗伤心脾,年老久病而肾精亏损,瘀血阻络而脏腑失和,饮食不节而痰热内蕴等因素有关。 中医学对睡眠养生的认识睡眠起居对人体健康和养生有着重要的影响。《千金方》中说:“卧起有四时之早晚,兴居有至和之常制。”清代文人李渔曾言,“养生之诀,当以睡眠为先”“睡能还精,睡能养气,睡能健脾益肾,睡能坚骨强筋”。《养生三经》里也说:“安寝乃人生最乐。”4·2 睡眠养生的理论依据4·2·1 睡眠养生有利于阴阳平衡和心肾相交睡眠的目的在于调整阴阳平衡而达到对生命的涵养储备。 睡眠正则阴阳调,脑神安,气血畅,脏腑气血阴阳各司其职,气血运行于脏腑经脉之间各按其时且各守其序,人体形神乃得安康;睡眠紊乱则脑神不得安宁,神乱则气血失调,气血运行乖逆,必杂病丛生,病与不病全在期间。。

《茶叶加工技术》试卷

《茶叶加工技术》试卷 学号:________:________分数:_________ 本试卷均为单项选择题,请选择一个正确的答案填在答题卡上,每题1分。 1、普洱茶熟茶的基本工艺() A、杀青—揉捻—干燥 B、摊晾—揉捻—发酵—干燥 C、发酵—筛分—拣剔—匀堆—蒸压—烘制—成型 D、萎凋—干燥 2、普洱茶人工渥堆发酵是什么作用的结果() A、微生物作用 B、酶促氧化作用 C、湿热学说 3、茶树鲜叶中水分含量约()%。 A 50 B 60 C 75 D 80 4、绿茶按干燥方法的不同可分为()。 A 炒青、蒸青、晒青 B 炒青、晒青、烘青 C蒸青、炒青、烘青 D 蒸青、炒青、晒青 5、绿茶的汤色是什么颜色() A 红色 B绿色 C黄色 D白色 6、红茶加工的关键工序是( ) A杀青 B 揉捻 C发酵 D干燥 7、下列属于黑茶的是() A毛峰 B泾阳砖茶 C玉露 D 瓜片 8、黄茶品质特征形成的关键工艺是() A杀青 B做青 C闷黄 D 干燥 9、绿茶初制工艺分杀青、()、干燥。 A发酵 B揉捻 C渥黄 D 做青 10、红茶属于()。 A 全发酵茶 B半发酵茶 C不发酵茶 11、下列哪种茶,其制作工序中不需“杀青”工序的是()。

A绿茶B青茶 C黑茶 D黄茶 12、“绿叶红镶边”是描述那类茶()。 A红茶 B绿茶 C青茶 D黑茶 13、绿茶茶汤中主要的色素物质是()。 A胡萝卜素 B叶绿素 C叶黄素、花青素、黄酮类 14、普洱茶采用()茶树鲜叶制成。 A小叶种B大叶种 C中叶种 D中小叶种 15、莫干黄芽属于( B )。 A绿茶 B黄茶 C红茶 D白茶 16、下列属于绿茶的是()。 A铁观音 B碧螺春 C君山银针 D祁门茶红 17、下列哪类茶属于半发酵茶 ( ) A 绿茶 B 红茶 C 青茶 D 黑茶 18、老青砖属于下列哪类茶( ) A 青茶 B 白茶 C 红茶 D 黑茶 19、下列哪个茶属于六大基本茶类()。 A乌龙茶 B花茶 C压制茶 D速溶茶 20、龙井茶因产地不同,产品各显特色,历史上有()、“龙”、梅三个类型。A猴 B狮 C虎 D 雀 21、滇青是指()。 A炒青绿茶 B蒸青绿茶 C晒青绿茶 22、祁红产于哪里()。 A B C D 23、下列属于黄茶的是()。 A大叶青 B竹叶青 C毛峰 D老青茶 24、青茶产于、()、三省。 A B C D 25、我国最早的红茶生产从崇安的()开始。 A小种红茶 B红碎茶 C功夫红茶 26、下列属于后发酵茶的是()。

使用茶叶枕头需注意4点

使用茶叶枕头需注意4点 茶叶多数人都会用来喝,剩下的茶叶直接丢掉,很多人都觉得非常浪费,所以大家会把茶叶晾干来做枕头,茶叶枕头的气味芳香,有助于安眠,但在使用茶叶枕头的时候,要注意做好四点注意事项,这样才能保证不会有危害性。 ★茶叶枕头的危害 ★茶叶枕头的危害之一:容易滋生细菌和沉积灰尘

茶叶枕头内的茶叶,一般是使用陈年茶叶制作而成的,而陈年茶叶有一个特点,就是比较容易滋生细菌,和沉积灰尘。一旦茶叶滋生细菌,很容易长出对人体有害的物质,危害人体健康。 ★茶叶枕头的危害之二:影响脊椎的生长 茶叶枕头质地柔软,不能起到很好的定型作用,如果小孩子长期睡茶叶枕头,会使其骨质松软,影响脊椎的生长。

★茶叶枕头的危害之三:睡久了会颈椎痛 茶叶枕头由茶叶填充而成,茶叶比较柔软,不能很好地支撑颈椎,睡久了之后导致颈椎痛。 茶叶枕含咖啡碱 ★茶叶枕头的危害之四:茶叶枕含咖啡碱,气味让人难以入睡

茶叶中含有5%左右的生物碱,其主要成分是咖啡碱,这种咖啡碱在泡茶时有80%可溶进水中,饮用后能兴奋神经中枢。用作枕头,其气味可能有提神醒脑的作用,有些人闻着此气味难以入睡。 ★茶叶枕头使用注意事项 一、茶叶枕以绿茶渣、白茶渣、黄茶渣、乌龙茶渣为宜,放在阴凉通风处晾干使用,而不能放在阳光下暴晒,否则会使茶叶香气散失,功效降低。

二、枕套最好选用棉布或桑蚕丝料,茶枕长50厘米、宽30厘米即可。 三、枕中茶渣最好3个月更换一次,还应注意茶叶枕要经常晾晒。建议使用陈年的茶叶做,因为陈茶具有消炎、败火的功效。但陈年茶叶里面也含有许多有害成分,所以用之前,最好先把茶叶用热开水烫一烫,可以起到杀菌的作用。 四、茶叶梗可以做枕头,原因是茶叶梗首先是香气上,茶叶梗更胜茶叶一点。其次是硬度上面,茶叶梗硬度更强一点,虽然会没那么舒服,但是也会有按摩头部的功效。所以最好是搭配来制作,茶叶梗和茶叶一起搭配填充,就可以起到既可以按摩头部,又可以有所功效。但是普洱熟茶和红茶的茶叶梗最好不要使用来作为填充物,因为会很硬,茶叶梗比较尖,很不舒服。

《茶叶加工技术》试题

《茶叶加工技术》试题https://www.360docs.net/doc/4616434497.html,work Information Technology Company.2020YEAR

《茶叶加工技术》试卷 学号:________姓名:________分数:_________ 本试卷均为单项选择题,请选择一个正确的答案填在答题卡上,每题1分。 1、普洱茶熟茶的基本工艺() A、杀青—揉捻—干燥 B、摊晾—揉捻—发酵—干燥 C、发酵—筛分—拣剔—匀堆—蒸压—烘制—成型 D、萎凋—干燥 2、普洱茶人工渥堆发酵是什么作用的结果() A、微生物作用 B、酶促氧化作用 C、湿热学说 3、茶树鲜叶中水分含量约()%。 A 50 B 60 C 75 D 80 4、绿茶按干燥方法的不同可分为()。 A 炒青、蒸青、晒青 B 炒青、晒青、烘青 C蒸青、炒青、烘青 D 蒸青、炒青、晒青 5、绿茶的汤色是什么颜色() A 红色 B绿色 C黄色 D白色 6、红茶加工的关键工序是( ) A杀青 B 揉捻 C发酵 D干燥 7、下列属于黑茶的是() A黄山毛峰 B泾阳砖茶 C恩施玉露 D 六安瓜片 8、黄茶品质特征形成的关键工艺是() A杀青 B做青 C闷黄 D 干燥 9、绿茶初制工艺分杀青、()、干燥。 A发酵 B揉捻 C渥黄 D 做青 10、红茶属于()。 A 全发酵茶 B半发酵茶 C不发酵茶 11、下列哪种茶,其制作工序中不需“杀青”工序的是()。

A绿茶B青茶 C黑茶 D黄茶 12、“绿叶红镶边”是描述那类茶()。 A红茶 B绿茶 C青茶 D黑茶 13、绿茶茶汤中主要的色素物质是()。 A胡萝卜素 B叶绿素 C叶黄素、花青素、黄酮类 14、普洱茶采用()茶树鲜叶制成。 A小叶种B大叶种 C中叶种 D中小叶种 15、莫干黄芽属于( B )。 A绿茶 B黄茶 C红茶 D白茶 16、下列属于绿茶的是()。 A铁观音 B碧螺春 C君山银针 D祁门茶红 17、下列哪类茶属于半发酵茶 ( ) A 绿茶 B 红茶 C 青茶 D 黑茶 18、湖北老青砖属于下列哪类茶( ) A 青茶 B 白茶 C 红茶 D 黑茶 19、下列哪个茶属于六大基本茶类()。 A乌龙茶 B花茶 C压制茶 D速溶茶 20、龙井茶因产地不同,产品各显特色,历史上有()、“龙”、梅三个类型。 A猴 B狮 C虎 D 雀 21、滇青是指()。 A炒青绿茶 B蒸青绿茶 C晒青绿茶 22、祁红产于哪里()。 A浙江 B安徽 C湖南 D湖北 23、下列属于黄茶的是()。 A广东大叶青 B竹叶青 C黄山毛峰 D湖北老青茶 24、青茶产于福建、()、台湾三省。 A广东 B广西 C四川 D湖北 25、我国最早的红茶生产从福建崇安的()开始。 A小种红茶 B红碎茶 C功夫红茶

普洱茶最常见的问题大全

普洱茶最常见的问题大全 1、什么是普洱茶? “普洱茶云南省地方标准”是这样定义的:普洱茶是以云南省一定区域内的云南大叶种晒青毛茶为原料,经过后发酵加工成的散茶和紧压茶。其外形色泽褐红;内质汤色红浓明亮,香气独特陈香,滋味醇厚回甘,叶底褐红。 普洱茶产于云南西双版纳等地,生产历史悠久,南宋李石《续博物志》记载,西藩用普茶已自唐朝。清代普洱府即现代普洱县周围所产茶叶运至普洱府集中加工再运销,普洱成为集散地,蒙、康、藏各地普洱茶因此得名。 普洱茶的产区,气候温暖,雨量充足,湿度较大,土层深厚,有机质含量丰富。茶树分为乔木或乔木形态的高大茶树,芽叶极其肥壮而茸毫茂密,具有良好的持嫩性,芽叶品质优异。 普洱茶有散茶与型茶两种。运销港、澳地区及日本。马来西亚、新加坡、美国、法国等十几个国家。 2、普洱茶分为几种?特点有些什么? 普洱茶的“生”“熟”之分 普洱茶是以云南省一定区域内的云南大叶种晒青毛茶为原料,经过后发酵加工成的散茶和紧压茶。是中国茶叶中极具特色的茶类,在目前市场上的普洱茶商品分类上,按产品的特性,有自然分类和学科分类。自然分类即把未经渥堆发酵加工的晒青毛茶制成品俗称为普洱生茶。学科分类普洱茶是工艺茶,即采用人工发酵加工制成的普洱茶,俗称为普洱熟茶。保持传统风格的自然醇化的普洱茶产品、其品质的好坏,关键是选料和贮放的条件陈化时间都会起到直接的作用。人工发酵的普洱茶,其品质形成与原料选择、加工工艺、贮放条件等相关,缺一不可。其中加工工艺尤为复杂,除了控制好水分(湿度)、温度、光线、空气(氧气)等条件外,控制有益微生物是这类普洱茶良好品质形成的关键措施,能否控制这些因素是发酵普洱茶品质稳定与否的重要环节。 无论是经过长时间自然醇化或人工发酵工艺的普洱茶品,目的是让晒青毛茶的苦涩浓烈性味得到收敛,杂味散失,转化为茶汤明亮、醇厚甘滑、温润香纯的优良普洱茶品。 3、普洱茶如何存放? 大家都知道普洱茶陈放越久越好,之所以如此,是因为在存放过程,这种的云南大叶种茶叶采制的普洱茶是在不断变化。要让这个变化越来越好,而且尽量的快,不必等个十年、

茶叶加工技术试卷

茶叶加工技术试卷 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

《茶叶加工技术》试卷 学号:________姓名:________分数:_________ 本试卷均为单项选择题,请选择一个正确的答案填在答题卡上,每题1分。 1、普洱茶熟茶的基本工艺() A、杀青—揉捻—干燥 B、摊晾—揉捻—发酵—干燥 C、发酵—筛分—拣剔—匀堆—蒸压—烘制—成型 D、萎凋—干燥 2、普洱茶人工渥堆发酵是什么作用的结果() A、微生物作用 B、酶促氧化作用 C、湿热学说 3、茶树鲜叶中水分含量约()%。 A 50 B 60 C 75 D 80 4、绿茶按干燥方法的不同可分为()。 A 炒青、蒸青、晒青 B 炒青、晒青、烘青 C蒸青、炒青、烘青 D 蒸青、炒青、晒青 5、绿茶的汤色是什么颜色() A 红色 B绿色 C黄色 D白色 6、红茶加工的关键工序是( ) A杀青 B 揉捻 C发酵 D干燥 7、下列属于黑茶的是() A黄山毛峰 B泾阳砖茶 C恩施玉露 D 六安瓜片8、黄茶品质特征形成的关键工艺是() A杀青 B做青 C闷黄 D 干燥 9、绿茶初制工艺分杀青、()、干燥。

A发酵 B揉捻 C渥黄 D 做青 10、红茶属于()。 A 全发酵茶 B半发酵茶 C不发酵茶 11、下列哪种茶,其制作工序中不需“杀青”工序的是()。 A绿茶B青茶 C黑茶 D黄茶 12、“绿叶红镶边”是描述那类茶()。 A红茶 B绿茶 C青茶 D黑茶 13、绿茶茶汤中主要的色素物质是()。 A胡萝卜素 B叶绿素 C叶黄素、花青素、黄酮类 14、普洱茶采用()茶树鲜叶制成。 A小叶种B大叶种 C中叶种 D中小叶种15、莫干黄芽属于( B )。 A绿茶 B黄茶 C红茶 D白茶 16、下列属于绿茶的是()。 A铁观音 B碧螺春 C君山银针 D祁门茶红 17、下列哪类茶属于半发酵茶 ( ) A 绿茶 B 红茶 C 青茶 D 黑茶 18、湖北老青砖属于下列哪类茶( ) A 青茶 B 白茶 C 红茶 D 黑茶 19、下列哪个茶属于六大基本茶类()。 A乌龙茶 B花茶 C压制茶 D速溶茶 20、龙井茶因产地不同,产品各显特色,历史上有()、“龙”、梅三个类型。

茶知识--8个关于普洱茶的问题

茶知识--8个关于普洱茶的问题 1.普洱茶生茶与熟茶到底有什么区别? 普洱茶分为生茶和熟茶,两者区别还是挺大的: 从工艺上来说:生茶是没有经过发酵的普洱茶,而熟茶是经过人工渥堆工艺发酵的。简单来说就是——生茶是少女,熟茶是人的妻。 从陈化上来说:生茶有更大的陈放价值,合理仓储条件下,时间可以长达几十年甚至上百年,而熟茶则放不了那么久,市场上提到的老茶多指生茶,但生茶是绝对不会放成熟茶的,之所以有这样的误区是长久存放的普洱生茶茶汤会变红。 从饮用历史上来说:生茶饮用历史悠久,而熟茶是上世纪70年代才创制的茶叶,它的出现是为了模拟生茶的陈化口感。 从茶汤和滋味上来说:熟茶汤色为红褐色,生茶汤色较浅,呈黄绿色(不包含老茶);生茶口感较绿茶来得浓强,易出苦味,熟茶口感似红茶般醇厚、浓郁、温和。 2.普洱饼茶为什么又叫七子饼?一饼357克的重量是怎么确立的呢? 旧时,清政府规定“云南商贩茶,系每七圆为一筒……”按当时的重量计算,1饼普洱茶357克,7饼普洱饼茶为1筒,1筒就有约2.5公斤,而12筒为一件,一件约30公斤,马帮运输时一匹马驮2件,就刚好60公斤,无论是按量交税还是交易都非常方便,因而沿用到了现在。

还有另一个说法:当年中国土产畜产进出口公司为了配合出口每件30公斤的普洱茶,每件按国际惯例包装为一打12筒,每筒7饼,每饼就是357克。 上个世纪70年代初,云南茶叶进出口公司希望找到更有号召力、更利于宣传和推广的名称,他们称普洱茶为“七子饼茶”,七子饼茶的称谓也随之被传称。 3.普洱茶有哪些形状? 常见的普洱茶形状除了散茶、饼茶、砖茶之外,还有沱茶、迷你沱茶、柱茶和金瓜茶等形状。 4.称呼普洱茶时常用的7572、7542等编号是指什么呢? 这些号码其实是唛号,“唛”字是音译自英语“mark”,也就是标记号码的意思。 普洱茶的唛号是这么来标示的——前两位数字说明这款茶使用什么年份的拼配方法,第三位数字是原料的主要毛茶等级(数字越大等级越低),第四位数字为生产茶厂编号(昆明茶厂是1,勐海茶厂是2,下关茶厂是3,普洱茶厂是4)。 举个例子来说明:如7572,说明用的75年的配方、原料的主要毛茶等级为7等、生产茶厂是勐海茶厂。 散茶其实也有唛号,不过与饼茶不同的是5位数,毛茶等级有两位数来表示。 5.在家里应该如何存放普洱茶? 普洱茶的存放并不难,只要注意避光和透气,还有适宜稳定的温

茶叶梗如何做枕头

茶叶梗如何做枕头[健康]收藏转发至天涯微博 悬赏点数10 该提问已被关闭12个回答 匿名提问2008-11-01 18:28:29 茶叶梗如何做枕头 最佳答案 gipgipgip2008-11-01 18:29:22 ◎茶香枕:夕阳不知何处去一枕茶香入梦来 茶之功效:中医学认为,头为诸阳之会,精明之府,气血皆上聚于头部,头与全身经络俞穴紧密相联。茶作为芳香类天然植物,挥发出香味具有祛痰定惊、开窍醒脑、扩张周围血管的作用,直接作用于头部,从而防病祛邪,平衡气血,调节阴阳。另外茶具有如下功效: 1、杀菌:茶叶中的多酚类化合物对多种有害人体健康的细菌有杀灭作用 2、防辐射:茶叶中的儿茶素可吸收放射性物质,阻止其在人体内扩散。 3、抗过敏:人体中的透明质酸酶具有将组胺从肥大细胞中释放出来的作用,茶叶中的儿茶素化合物可抑制透明质酸酶活性,因而能阻止组胺的释放,另外发酵茶的抗过敏作用优于半发酵茶,不发酵茶的作用最弱 4、消暑解热:其机理在于茶叶中的咖啡碱、多酚类化合物和维生素C的综合作用。 把茶叶放进去不就行了? 用泡过的茶叶做枕头好. 其他回答 4429453962008-11-01 18:28:59 可以, 有保健作用 猪妹992008-11-01 18:29:10 喝过的茶叶,阴干,要干透,装进枕芯里就行了。 圣迹苍岩2008-11-01 18:30:06 风布袋,长条,茶叶梗晾干,压碎,装入,然后布袋装进枕头套 choice_2u2008-11-01 18:31:08 找个枕芯装进去就可以了 自己泡的茶晒干

水儿滴答2008-11-01 18:31:45 喝过的茶叶,阴干,要干透,装进枕芯里就行了。 nk02282009-09-25 22:40:30 泡过的茶叶因淡而无味常被人丢弃,然而,您是否知道茶渣仍然具有多种保健功效,可以用来做枕头。冲泡过的茶叶干燥后,配入其他材料制成茶渣枕头,学生使用可以保护视力、去眼疾、清脑安神、祛青春痘;成年人使用好处就更多了,如可以抗病毒、抗辐射、降血压、养颜明目、清热解毒以及用于亚健康状态等。 枕茶枕是一种较为理想的自我保健方法,有兴趣的话,动手为自己做一个吧(茶渣及配料的用量均为250~500克)。 【菊花降压茶枕】材料:茶渣、菊花花瓣。功效:清热、明目、降压。适用于高血压患者的头痛、肝火旺造成的视物模糊。 【豆衣明目茶枕】材料:茶渣、绿豆壳。功效:清热、明目、降压、解毒。适用于视觉疲劳、眼睛干涩、高血压。 【决明清肝茶枕】材料:茶渣、碎决明子。功效:清热、解毒、防肝火、抗病毒。适用于肝热眼红肿痛、视物模糊。 【薄荷舒脑茶枕】材料:茶渣、薄荷叶。功效:清热、解毒、抗病毒。适用于高血压患者的头痛、病毒性角膜炎、眼痛。 【罗布降压茶枕】材料:茶渣、罗布麻。功效:清热、明目、降血糖。适用于高血压患者的眼痛、糖尿病造成的视物模糊。 【野菊祛痘茶枕】材料:茶渣、野菊花。功效:清热、抗病毒、祛痘。适用于多发性青春痘及眼睛干涩。 【玫瑰养颜茶枕】材料:茶渣、玫瑰花瓣。功效:舒肝理气、润肤养颜。适用于脸部色斑、肝热气郁等。 古成语虽有“高枕无忧”的说法,其实并非枕头越高越好。因为枕头太高,不论用什么姿势睡,都使颈部纵轴与躯干纵轴产生一定的角度,不但影响睡眠,还可能产生落枕。不过一般的说,头部保持稍高的位置还是有好处的,因为高一点可防止头部充血,胸部也因而抬高了些,使呼吸顺畅,下半身血液回流也减慢了些,减轻了心脏负担,这些都有利于睡眠。 同样,枕头过低也不好,因为低枕使头部充血,易造成眼睑和颜面浮肿。那么,多高的枕头才合适呢?一般他说8~15厘米为宜,即稍低于从肩膀到同侧颈部的距离。对此,《老老恒

《茶叶加工技术》试卷

《茶叶加工技术》试卷 学号:________姓名:________分数:_________ 本试卷均为单项选择题,请选择一个正确得答案填在答题卡上,每题1分、 1、普洱茶熟茶得基本工艺() A、杀青-揉捻—干燥B、摊晾—揉捻—发酵—干 燥 C、发酵—筛分—拣剔—匀堆-蒸压—烘制—成型D、萎凋—干燥 2、普洱茶人工渥堆发酵就是什么作用得结果( ) A、微生物作用 B、酶促氧化作用C、湿热学说 3、茶树鲜叶中水分含量约( )%。 A 50 B60 C 75 D 80 4、绿茶按干燥方法得不同可分为( )、 A炒青、蒸青、晒青B炒青、晒青、烘青 C蒸青、炒青、烘青 D 蒸青、炒青、晒青 5、绿茶得汤色就是什么颜色( ) A 红色B绿色C黄色D白色 6、红茶加工得关键工序就是( ) A杀青 B 揉捻C发酵 D干燥7、下列属于黑茶得就是( ) A黄山毛峰B泾阳砖茶 C恩施玉露 D 六安瓜片 8、黄茶品质特征形成得关键工艺就是( ) A杀青 B做青 C闷黄 D 干燥 9、绿茶初制工艺分杀青、( )、干燥。 A发酵B揉捻C渥黄 D 做青

10、红茶属于( )。 A 全发酵茶 B半发酵茶 C不发酵茶 11、下列哪种茶,其制作工序中不需“杀青”工序得就是( )、A绿茶B青茶 C黑茶D黄茶 12、“绿叶红镶边"就是描述那类茶()。 A红茶B绿茶 C青茶D黑茶13、绿茶茶汤中主要得色素物质就是()、 A胡萝卜素 B叶绿素C叶黄素、花青素、黄酮类 14、普洱茶采用( )茶树鲜叶制成。 A小叶种B大叶种 C中叶种D中小叶种15、莫干黄芽属于( B)。 A绿茶 B黄茶C红茶 D白茶 16、下列属于绿茶得就是()。 A铁观音 B碧螺春C君山银针D祁门茶红 17、下列哪类茶属于半发酵茶() A 绿茶 B 红茶 C 青茶D黑茶 18、湖北老青砖属于下列哪类茶( ) A 青茶B白茶 C 红茶 D 黑茶 19、下列哪个茶属于六大基本茶类( )、 A乌龙茶 B花茶 C压制茶D速溶茶 20、龙井茶因产地不同,产品各显特色,历史上有( )、“龙"、梅三个类型、 A猴 B狮 C虎D雀21、滇青就是指( )。 A炒青绿茶B蒸青绿茶 C晒青绿茶 22、祁红产于哪里()。 A浙江B安徽 C湖南D湖北

茶叶精制的工艺流程和有关术语

茶叶精制的工艺流程和有关术语 精制:将毛茶加工成商品茶的过程。 主要目的是通过风选、筛分等工序,达到整理外形,划分品级,提高净度,调制品质,提高香味,充分发挥原料的经济价值。精制加工一般采用单级付制,多级收回方法。如眉茶精制可分为五路进行加工,即本身路、园身路、长身路、轻身路、筋梗路;红碎茶精制可分三路进行,即碎茶路、头子路、片茶路。 本身路:眉茶精制工艺流程之一。毛茶经复火滚条,初步筛分后,能通过特定筛孔的茶叶,通常条索紧结、苗锋好、香味纯正、叶底较完整,符合成品茶的质量要求,这种茶称为“本身茶”。本身茶的加工工艺流程,即为“本身路”,本身路的一般流程为:毛茶复火——滚条——筛分——毛撩——前紧门——复撩——机拣——风选——手拣——补火——车色——后紧门——净撩——清风——入库待拼。 长身路:眉茶精制工艺流程之一。在精制中筛分出来的长形茶头,尤其是撩筛筛面茶形长体大,称为“长身路”,长身路的流程,一般将长身茶经切分后,(使用切茶机)再经分筛,拣梗等工序。 园身路:眉茶精制工艺流程之一。在精制中筛分出来的毛茶头,抖筛筛面茶一般多为园形,称为“园身路”。园身茶的精制工艺流程,即为“园身路”,园身路的流程,通常将园身茶先切分,后经分筛、拣梗、风选等工序。 轻身路:眉茶精制工艺流程之一。精制中风选出来的身骨较轻的茶叶,称为“轻身”,轻身茶的精制流程即为轻身路。 筋梗路:眉茶精制工艺流程之一。眉茶精制中拣剔出来的筋梗等称为“筋梗茶”,筋梗茶来源广,数量少、净度差、加工难、潜力大,应采取精工细做。筋梗茶的加工流程称为筋梗路,其流程通常将筋梗茶先切分,再经分筛、拣梗、风选、车色等工序。

普洱茶的品鉴

普洱茶的品鉴 鉴定普洱茶好坏,一般有以下几种方法: 1.肉眼识茶 好的普洱茶外形色泽褐红(猪肝色),条索肥嫩、紧结,闻其味有淡淡的桂圆、樟、枣、藕等香味并伴有特殊的陈香。 普洱散茶以嫩度划分级别,从级外、十级到一级、特级,嫩度越来越高,一般来说,嫩度越高品质越好。衡量嫩度的高低主要看四点:一看芽头多少,芽头多、毫显的嫩度高;二看条索紧结,厚实程度,紧结、厚实的嫩度高;三看色泽光润程度,色泽光滑、润泽的嫩度高;四看净度,匀净、梗少无杂质者为好,反之则差。 普洱茶紧压茶外形要求厚薄一致,松紧适度,色泽以青褐、棕褐、褐红色为正常。以青饼为例,一般3-5年,茶饼紧结,圆边完整,茶梗泛紫色;5-7年,茶饼完整,茶梗

全紫;7-10年茶饼变轻可,边缘掉粒,茶梗深紫;10年以上,茶饼变松,叶际边缘模糊。 2.开汤监茶 俗话说:乌龙闻香,普洱赏色。看完外形后,第二步是开汤监茶。取3-5克普洱茶放入壶中,用沸水冲泡,把泡好的茶汤倒入水晶玻璃杯内观赏汤色。普洱茶的汤色要求红浓通透明亮,在普洱茶的加工过程中,80%左右的茶黄素(TF)和茶红素(TR)氧化、聚合,形成茶褐素(TB),再加上较高可溶性糖和水浸出物含量,形成了普洱茶滋味浓厚汤色红褐色的物质基础。茶红素是汤色呈“红”的主要成分,在发酵过程中,过氧化物酶活性增强,促进茶黄素氧化成不溶性茶红素复合物,随着普洱茶陈期延长,发酵时间的增加,普洱茶中不溶性茶红素复合物逐渐增多,茶的汤色也就变得越来越红。由于不溶性茶红素复合物的产生与存放时间的相关关系,在一定的年限内,普洱茶的“红”是鉴别普洱茶陈期的重要指标。普洱茶的“红”是鉴别普洱茶陈期的重要指标。普洱

关于普洱茶

关于普洱茶 普洱茶的功效,早在《本草纲目》中有记载,中医认为普洱茶同时具有清热、消暑、解毒、消食、去肥腻、利水、通便、祛痰、祛风解表、止咳生津、益力气、延年益寿等功效。又由于普洱茶经历了生茶到熟茶的转变过程,其生茶具有祛风解表、清头目等功效,而熟茶又有下气、利水、通便等沉降功效。故普洱一直被誉为一种攻补兼备的良药。普洱茶的历史可以追溯到东汉时期,距今已达2000年之久。民间有“武候遗种” (武候是指三国时期的丞相诸葛亮)的说法,故普洱茶的种植利用至少已有1700多年的历史。普洱茶产于云南西双版纳等地,因自古以来即在普洱集散,因而得名。普洱县城又作普洱哈尼族自治县,隶属思茅地区,位于云南省南部,距昆明373公里,原称宁洱县。“普洱”为哈尼语,“普”为寨,“洱”为水湾,意为“水湾寨”,带有亲切的“家园”的含义。清朝中叶,古“六大茶山”鼎盛,产品远销四川、西藏、南洋各地,普洱茶从此闻名中外,普洱茶外销之路,就是历史上的茶马古道。历史的普洱茶外销路线主要有以下几条:一条是从普洱出发至昆明、昭通、再到四川的泸州、叙府、成都、重庆至京城。二条是普洱经下关到丽江与西康西藏互市。三条是由勐海至边境口岸打洛,再分二路:一路至缅甸、泰国;二路是经缅甸到印度、西藏。四条是由勐腊的易武茶山开始,至老挝丰沙里,到河内再往南洋。在江北古六大茶山境内有7条:易武至江城道、易武至宁洱道、易武至思茅道,此道是主要道,易武至倚邦、莽枝、革登也走此道,易武至车里再到勐海道,易武至老挝磨丁道,易武至老挝勐悻道。於道光二十五年(公元1845年)从昆明经思茅至倚邦通过磨者河上的承天桥再到慢撒、易武那条由石板镶成的古茶马道,约宽2米,长达数百公里。昔日茶山有许多茶号和茶庄专门从事茶叶的收购、加工和外运销售,呈现一派繁荣景象。如今普洱茶名播海内外,享誉盛名;已成为中国最具特色的茶。远去的马帮悠远的铜铃声,更增添了它独有而神秘的文化,时光流转的变迁,它的气息却因此变得丰富,芬芳浓郁起来。传承文明,不因历史而湮没,就像普洱茶,散发出来的独特的东方韵味,感染着 你我,感染着世界。 普洱茶历史 三国时期,“武侯遗种”,在一千七百多年前的农历七月二十三日打开了普洱茶话史。“茶山有茶王树,较五山独大,本武侯遗种,至今夷民祀之。”(檀萃《滇海虞衡志》)。武侯就是诸葛亮· 孔明先生,相传他在公元二二五年南征,到了现在云南省西双版纳自治州勐海县的南糯山。然而当地兄弟民族之一的基诺族,深信武侯值茶树为事实,并世代相传,祀诸葛孔明先生为“茶祖”,每年加以祭拜。唐朝咸丰三年(公元 862 年)樊绰出使云南。在他所著的《蛮书》卷七中有记载:“茶出银生城界诸山,散收无采造法。蒙舍蛮以菽姜桂和烹而饮之。这就证明了唐代时期已经生产茶叶。据考证银生城的茶应该是云南大叶茶种,也就是普洱茶种。所以银生城产的茶叶,应该是普洱茶的祖宗。所以,清朝阮福在《普洱茶记》中说:“普洱古属银生府。则西蕃之用普洱,已自唐时。” 宋朝李石在他的《续

茶叶精制机械设备技术现状与发展

茶叶精制机械设备技术现状与发展 我国初、精制茶叶机械研制工作都是从五十年代开始,至八十年代已研制成功大宗茶初、精制加工系列机械设备。所以茶叶精制加工机械设备到八十年代已基本齐全。在八十年代还出现了较多的茶叶精制加工流水生产线。以后因为精制加工工艺简单化、国营大厂改制、精制加工机械设备市场需求不旺等原因造成精制加工机械设备研制进展缓慢。以前国营大厂都有茶叶精制加工流水生产线。而当时,国营大厂都没有茶叶初制加工流水生产线,初制生产都是单机操作。现在很多茶叶精制厂的机械设备布臵都成单机操作,而同时,茶叶初制加工从单机操作发展成流水生产线操作。茶叶精制加工机械设备研制进展速度远远落后于茶叶初制加工 机械设备研制的进展速度。 茶叶主要精制加工机械设备主要包括:圆筛机、抖筛机、飘筛机、炒车机、切茶机、风选机、拣梗机、匀堆装箱机、运输机械、茶尘处理设备等。 一、主要单机技术现状 1、圆筛机、抖筛机

圆筛机、抖筛机分别筛分茶叶的长短和粗细,目前生产效率、筛分效率等基本使用情况比较好。存在问题是:(1)因为需要人工清筛,无法封闭筛床,造成大量茶尘外泄。为此,曾经研制过各种自动清筛机构,但效果一直不理想;(2)噪音比较严重;(3)机械设备总体不精致。存在傻、大、粗现象。 今后可能解决的方法是:(1)将现有编织筛网改成金属筛网,再配合自动清筛机构来实现封闭筛床,彻底解决圆筛机、抖筛机茶尘污染问题;(2)筛床太重,传动结构不合理造成噪音比较严重。可以从这二方面着手解决。需要特别指出,茶叶抖筛机习惯使用的曲轴连杆机构现在需要重新思考。因为可以采取振动电机代替曲轴连杆机构。曲轴连杆机构复杂、易损。 2、切茶机 切茶机的生产效率都很高。存在的主要问题是:茶切成一定规格的同时产生了太多的粉末茶。而我们希望在尽量减少粉末茶的前提下将茶切成一定规格。这需要进一步研制。现在其他行业有大量不同的粉碎机。可以借鉴其他行业粉碎机技术来解决切茶机存在的问题。 现在碎茶已经兴起,碎茶切茶机没有此难点。

普洱茶调查报告

求关于普洱茶的调查报告 匿名|浏览555 次 发布于2013-10-23 14:55最佳答案 对原产地普洱茶生长环境污染状况调查报告喝普洱茶你放心吗?——对原产地普洱茶生长环境污染状况调查报告普洱茶种植过程中农药、化肥的使用状况及其影响普洱茶根据茶树不同分为野生普洱茶、乔木普洱茶和台地普洱茶。野生普洱茶是没有经过人工驯化的,不施肥、不喷农药,属于自然生产的茶叶类型,目前野生茶树数量非常稀少;而乔木普洱茶和台地普洱茶是由人工种植的,但二者的区别在于,台地茶是茶农通过不断修剪限制台地茶树的成长,使其不断发芽,一发芽即被采摘制成茶叶,而乔木茶则不被限制茶树高度。台地茶的面积大、产量大,但是价格低。我们这次真对乔木普洱茶和台地普洱茶农药、化肥使用情况做了细致的调查。在调查过程结束后,通过对调查问卷的整理分析,了解茶农在对茶树使用农药、化肥的情况,可以根据所种植的茶树种类分为以下几种类型:1、茶农独立经营的台地茶。在勐海县勐宋乡勐短拉乡、曼迈村以及勐海镇曼袄村曼板小组的茶农种植的是台地茶,属于茶农独立经营的茶园,不属于任何茶厂的基地,在管理上存在一定的缺陷。在这些地方,农业技术人员对于农户使用农药、化肥的指导力度不够,另外,在保持土壤的肥力方面需要增加施用有机肥(如农家肥--牲畜粪便等),使这些地方的茶叶产量和质量造成一定的影响。从以往的年份来看,茶园里的病虫害主要发生在4~5月份,如蚜虫、小绿叶蝉以及蓟马等害虫,按照往年的茶叶价格,像这样的台地茶,要保持高的产量,需要适时打农药来控制这些病虫害。但由于今年茶叶价格不好,

导致大部分茶农放弃对茶园的管理,没有及时采摘鲜叶,使得茶叶的发芽轮次减少并且产量降低。今年,有82%的茶农为了降低茶叶种植成本、提高经济收入,对茶园实行不打药、不施肥,因此尽管茶价很低,但茶叶受化肥、农药污染的几率很小,而茶叶的品质要好于往年。而且春茶过后,雨季来临,小绿叶蝉等虫害基本上消失了,这个时候就不需要任何农药,所以一般不会出现农药、化肥污染超标的情况。。2、集约经营的台地茶。在云南省茶叶科学研究所附近的曼喷竜村、曼真村和曼贺村种植的是茶科所研究的优势品种,也属于台地茶类型。由于这几个村寨离茶科所比较近,经常有技术人员进行指导,包括该使用什么农药和化肥以及使用量的多少,或者在病虫少的时候该采用什么方式进行适当控制等。在使用农药时以高效少污染和低成本为目标,正确选用对目标害虫敏感的农药,坚持控制药剂浓度和用量,控制用药次数和合理轮换,控制安全间隔期,同时注意讲究施药方法。因此茶叶生产是符合标准的,也不会出现农药化肥超标的情况。3、乔木古茶树。在勐海县南糯山半坡老寨竹林小组种植的茶叶品种以古茶树(乔木普洱茶)为主,其中最古老的已有八百多年,遇到干旱和雨季交替的季节,偶有少量的小绿叶蝉发生,但随着雨季的来临这种虫害大大减少,古茶树生长的环境非常好,茶树生长在林中,利用生物多样性来控制病虫害,使得病虫害的数量比较少。所以古茶树在生长过程中不需要打农药。靠生态系统自身的调节保持稳定。另外,古茶树也不需要施肥,这是因为茶树生长在树林中,地上有丰富的枯枝落叶,形成腐质层,土壤有机质含量高,而且由于遮阴度高,土壤水分散失率低,茶树的芽叶硕壮,内含物质丰富,不易老化。今年茶叶市场价格不好,对古茶树采摘较少,对古茶树资源起到了休生养息和保护作用。古茶树既不打农药也不使用化肥,无任何污染并且品质优良,是制普洱茶的上等原料。4、生态茶园和有机茶园。在勐海乡“云茶源”、巴达乡西里村以及勐海茶厂巴达基地,主要品种是台地茶,而且大部分是生态茶园,还有一小部分是有机茶园。可以说在品种质量上(特别是有机茶园)都是很好的。在防治病虫害方面:生态茶园尽量杜绝使用化学农药和化学除草剂,即使使用,也要在国家相关规定范围之内。有机茶园完全杜绝(禁止)使用化学农药和化学除草剂,一般采用农业、生物的措施来防治茶园病虫草害。例如,针对春夏之交会发生的小绿叶蝉,出现危害后及时采摘和修剪茶树,可以改变病虫生长的适应环境条件,并把部分病虫枝叶

相关文档
最新文档