物理光学第三章 答案

物理光学第三章 答案
物理光学第三章 答案

第三章作业

1、波长为600nm的平行光垂直照在宽度为0.03mm的单缝上,以焦距为100cm的会聚透镜将衍射光聚焦于焦平面上进行观察,求:(1)单缝衍射中央亮纹的半宽度;(2)第一亮纹和第二亮纹到衍射场中心的距离。

2、求矩孔夫琅和费衍射图样中,沿图样对角线方向第一个次级大值和第二个次级大值相对于图样中心的强度。

3、在双缝的夫琅和费衍射实验中,所用光波的波长为632.8nm,透镜的焦距为80cm,观察到两相邻亮条纹之间的距离2.5mm,并且第5级缺级,试求:(1)双缝的缝宽与缝距;(2)第1,2,3级亮纹的相对强度。

4、平行白光射到在两条平行的窄缝上,两缝相距为2mm,用一个焦距为1.5m的透镜将双缝衍射条纹聚焦在屏幕上。如果在屏幕上距中央白条纹3mm处开一个小孔,在该处检查所透过的光,问在可见光区(390~780nm)将缺掉那些波长?

5、推导出单色光正入射时,光栅产生的谱线的半角宽度的表达式。如果光栅宽度为15cm,每毫米内有500条缝,它产生的波长632.8nm的单色光的一级和二级谱线的半角宽度是多少?

6、钠黄光包含589.6nm和589nm两种波长,问要在光栅的二级光谱中分辨开这两种波长的谱线,光栅至少应有多少条

缝?

7、设计一块光栅,要求:(1)使波长为600nm的第二级谱线的衍射角小于等于300;(2)色散尽可能的大;(3)第4级谱线缺级;(4)对于波长为600nm的二级谱线能分辨0.03nm的波长差。选定光栅的参数后,问在透镜的焦面上只能看见波长600nm的几条谱线?

8、一束直径为2mm的氦氖激光(632.8nm)自地球发向月球,已知月球到地面的距离为380000km,问在月球上接收到的光斑的大小?若此激光束扩束到0.15m再射向月球,月球上接收到光斑大小?

9、在正常条件下,人眼瞳孔直径约为2.5mm,人眼最灵敏的波长为550nm。问:(1)人眼最小分辨角(2)要分辨开远处相距0.6m的两点光,人眼至少离光点多近?(3)讨论眼球内玻璃状液的折射率(1.336)对分辨率的影响。

10、一个使用贡绿灯波长为546nm的微缩制版照相物镜的相对孔径为1/4,问用分辨率为每毫米400条线的底片来记录物镜的像是否合适?

11、一台显微镜的数值孔径为0.86,(1)试求它的最小分辨距离;(2)利用油浸物镜使数值孔径增大到 1.6,利用紫色滤光片使波长减小到420nm,问它的分辨本领提高多少?(3)为利用(2)中获得的分辨本领,显微镜的放大率应设计为多少?

答案:

1.解:⑴中央亮条纹半宽度 ΔX=mm f a 2003

.01000

106006=??=

?-λ

⑵第一亮纹的位置对应于πβ43.1±=,即是 πθ43.1sin 2

±=ka

0286

.003.010643.143.1sin 4±=??±=±=-m m

m m

a λθ rad

0286.0±≈θ,因此第一亮纹到场中心的距离

mm mm f q 6.2810000286.01±=?±==θ

第二亮纹对应于πβ46.2±=,因而

0492

.003.010646.246.2sin 4±=??±=±=-mm

mm a λθ 他到场中心的距离 mm mm f q 2.4910000492.02±=?±=?=θ

2.解:对角线方向上的第一个次极大对应于πβα4

3.1==,它的相对强度为:

0022

.0)047.0()43.143.1sin (

)43.1sin ()sin ()sin (2

222

20====π

ππ

π

ββααI I

第二个次极大对应于πβα46.2==, 因此它的相对强度

00029.0)017.0()46.246.2sin ()46.246.2sin (2

220===π

πππI I

3.解:(1)条纹间距d

f f e λθ=

??=

所以mm e

f d 2025.0==

λ

再由第五级亮纹缺级的条件知

mm d

a 04.05

==

(2)第1,2,3级亮纹分别对应于

s i n ,2,3

d θλλλ=±±± 或者

2sin 2,4,6d π

δθλλλλ

=

=±±±

并且由于a d 5=,

所以当sin ,2,3d θλλλ=±±±时,

5

3,52,5

s i n λ

λλ

θ±±

±

=a 因此,由双缝衍射强度公式,第1,2,3级亮纹的相对强度为

2221

s i n s i n

s i n ()c o s ()s i n 42

a I a I πθβδλ

πθβλ

====2)5

5s i n (π

π

0.8752

==202)5252s i n

(4ππI I 0.5727 ==20

3)5

353sin

(4ππI I 0.2546 4.解:这是一个求哪些波长在小孔位置有强度零值的问题。这

些波长将满足

sin d m θλ=

135,,, (222)

m =±±±

因此

)(400015003

102sin 6nm m

m m

d =?

?==

θ

λ 在390nm 和780nm 间的波长是

nm 7271=λ (2

11=m )

nm 6152

=λ (213

=m )

nm 5333=λ (215

=m )

nm 4714

=λ (217

=m )

nm 4215

=λ (2

19

=m )

5. 解:(1)光栅产生的 m 级谱线的峰值强度位置由下式决定

s i n m d m θλ=

与之相邻的暗线的位置由下式决定

'

1s i n m d m N θλ??=+ ??

?

'

m m θθθ-=?近似为谱线两半强度点之间的角距离,

它通常用来表示谱线的角半宽度。

因此,由

'

1

(s i n s i n

)c o s m m m d d N

θθθθλ-

=?=

得到谱线角半宽度的表示式

c o s m

Nd λ

θθ?=

(2)632.8nm λ=的单色光的一级和二级谱线的位置分别为:

6

111632.810sin sin 1826'1500mm d mm

λθ---??

????

=== ? ??? ???

6

11222632.810sin sin 3912'1500mm d mm

λθ---??

?????

=== ? ??? ???

因此谱线的角半宽度为

66

1'

632.810 6.6710100cos1826

mm rad mm θ--??==?? 4.45

662'

632.8108.1710100cos3912

mm

rad mm θ--??==?? 5.45 6. 解:光栅的一级光谱的分辨本领为:

N mN 2==δλ

λ

在本题情况下

589.6

589

589.32

n m n m

λ+=

= 而589.65890.6nm nm nm δλ=-=。因此

9826

.03.5892===

δλλN 故光栅至少应有=N 491条缝。

7.解:为使波长600nm 的二级谱线的衍射角30θ≤,光栅距d 必须满足

63260010 2.410sin sin 30

m mm

d mm λθ--??=≥=? 据(2),应选择d 尽可能小,故

32.410d mm -=?

据(3),光栅缝宽a 应为

mm d

a 3106.04

-?==

光栅的缝数N 至少应有

1000003

.02600

=?==

δλδM N 所以光栅的总宽度W 至少为 mm Nd W 24==

光栅形成的谱线在90θ<的范围内。当90θ=±时,

34

s i n

2.4104610

d m m

m θλ

--±?=

==±? 即第4级谱线对应于衍射角90θ=,实际上不可能看见。此外第4级缺级,所以只能看见0,1,2,±±3±级共7条谱线。 8. 激光束的衍射发散角为:

2

108.63244.244.226

-??=

=D λ

θ

47.710rad -=?

因此月球上接收到的激光束直径为:

km L D 2902'=?=θ

当把激光束扩束为直径0.15m 时,激光束的衍射发射角为:

rad D 56

10029.1150

108.63244.244.22--?=??==λ

θ

月球上接收到的激光束的直径为:

km

D 91.31038010029.135=???='-

9.解:(1)人眼的最小分辨角为: 6

4550101.221.222.6810

2.5

mm rad D

mm λ

α--?==

=

? 约为 ()'41 2.910rad -=? 。

(2)当人眼刚能分辨两光点时,人眼到两光点之间的距离为(见图)

m L 22391068.26

.06

.04

=?=

=

(3)人眼内玻璃状液折射率对分辨本领没有影响。

因为当两光点(1S 和2S )的象斑 '1S 和'2S

刚能分辨时(图

5.28)

1.22nD

λθ=

式中n 是玻璃状液折射率,D 是瞳孔直径。但是由于眼睛水晶前后两面在中心部分可视为平行,故

0n n αθ

?=?

式中0n 使空气折射率(=1),所以眼睛的最小分辨角

1.22n D

λ

αθ=?= 与玻璃状液折射率无关。

10.解: 照相物镜的最大分辨能力:

4

1

1054622.1122.116-??=

=

f D N λ=375/mm 为了充分利用物镜的这一分辨本领,应使记录底片的分辨率大于每毫米375条线,所以可选用分辨率400条线的底片。 11.解:⑴显微镜最小分辨率距离 m N A

μλ

39.086

.055

.061.061.0=?=

(2)数值孔径1.45时,能分辨的最小距离为 m N A

μλε16.06

.142.061.061.0=?==

放大倍率: 44.216

.039

.01

2

==

εε (3) 为充分利用其放大率,应使其成像在距离眼睛250mm 处,

睛能分辨的最小距离为

m e μπαε7.72180

601250250=??

=?= ∴放大率为:45416

.07.72===

εεe M

物理光学第一章答案

第一章 波动光学通论 作业 1、已知波函数为:?? ? ???-?=-t x t x E 157 105.11022cos 10),(π,试确定其速率、波长和频率。 2、有一张0=t 时波的照片,表示其波形的数学表达式为 ?? ? ??=25sin 5)0,(x x E π。如果这列波沿负 x 方向以2m/s 速率运动, 试写出s t 4=时的扰动的表达式。 3、一列正弦波当0=t 时在0=x 处具有最大值,问其初位相为多少? 4、确定平面波:?? ? ??-+ + =t z k y k x k A t z y x E ω14314 214 sin ),,,(的传播方向。 5、在空间的任一给定点,正弦波的相位随时间的变化率为 s rad /101214?π,而在任一给定时刻,相位随距离 x 的变化是 m rad /1046?π。若初位相是 3 π ,振幅是10且波沿正x 方向前进, 写出波函数的表达式。它的速率是多少? 6、两个振动面相同且沿正x 方向传播的单色波可表示为: )](sin[1x x k t a E ?+-=ω,]sin[2kx t a E -=ω,试证明合成波的表达式可 写为?? ??? ???? ? ??+-?? ? ???=2sin 2cos 2x x k t x k a E ω。 7、已知光驻波的电场为t kzcoa a t z E x ωsin 2),(=,试导出磁场),(t z B 的表达式,并汇出该驻波的示意图。

8、有一束沿z 方向传播的椭圆偏振光可以表示为 )4 cos()cos(),(00π ωω--+-=kz t A y kz t A x t z E 试求出偏椭圆的取向 和它的长半轴与短半轴的大小。 9、一束自然光在30o 角下入射到空气—玻璃界面,玻璃的折射率n=,试求出反射光的偏振度。 10、过一理想偏振片观察部分偏振光,当偏振片从最大光强方位转过300时,光强变为原来的5/8,求 (1)此部分偏振光中线偏振光与自然光强度之比; (2)入射光的偏振度; (3)旋转偏振片时最小透射光强与最大透射光强之比; (4)当偏振片从最大光强方位转过300时的透射光强与最大光强之比. 11、一个线偏振光束其E 场的垂直于入射面,此光束在空气中以45o 照射到空气玻璃分界面上。假设n g =,试确定反射系数和透射系数。 12、电矢量振动方向与入射面成45o 的线偏振光入射到两种介质得分界面上,介质的折射率分别为n 1=1和n 2=。(1)若入射角为50o ,问反射光中电矢量与入射面所成的角度为多少?(2)若入射角为60o ,反射光电矢量与入射面所成的角度为多少? 13、一光学系统由两片分离的透镜组成,两片透镜的折射率分别为和,求此系统的反射光能损失。如透镜表面镀上增透

大学物理光学答案

第十七章 光的干涉 一. 选择题 1.在真空中波长为的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3,则路径AB 的长度为:( D ) A. 1.5 B. C. 3 D. /n 解: πλ π ?32== ?nd 所以 n d /5.1λ= 本题答案为D 。 2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A ) A. 变密 B. 变稀 C. 不变 D. 消失 解:条纹间距d D x /λ=?,所以d 增大,x ?变小。干涉条纹将变密。 本题答案为A 。 3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B ) A. P 处仍为明条纹 B. P 处为暗条纹 C. P 处位于明、暗条纹之间 D. 屏幕E 上无干涉条纹 解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 选择题3图

反射后再入射到屏幕上的光相位差在均比原来增,因此原来是明条纹的将变为暗条 纹,而原来的暗条纹将变为明条纹。故本题答案为B 。 4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B ) A. 亮斑 B. 暗斑 C. 可能是亮斑,也可能是暗斑 D. 无法确定 解:反射光和透射光的等倾干涉条纹互补。 本题答案为B 。 5.一束波长为 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜 放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B ) A. /4 B. / (4n ) C. /2 D. / (2n ) 6.在折射率为n =的玻璃表面上涂以折射率n =的MgF 2透明薄膜,可以减少光的反射。当波长为的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C ) A. 5.0nm B. C. D. 解:增透膜 6.904/min ==n e λnm 本题答案为C 。 7.用波长为 的单色光垂直照射到空气劈尖上,观察等厚干涉条纹。当劈尖角增 大时,观察到的干涉条纹的间距将( B ) A. 增大 B. 减小 C. 不变 D. 无法确定 解:减小。 增大,故l n l ,sin 2θθ λ = 本题答案为B 。 8. 在牛顿环装置中,将平凸透镜慢慢地向上平移,由反射光形成的牛顿环将

物理光学梁铨廷答案

第一章光的电磁理论 在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=,(各 量均用国际单位),求电磁波的频率、波长、周期和初相位。 解:由Ex=0,Ey=0,Ez=,则频率υ= ==×1014Hz,周期T=1/υ=2×10-14s, 初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。 .一个平面电磁波可以表示为Ex=0,Ey=,Ez=0,求: (1)该电磁波的振幅,频率,波长和原点的初相位是多少(2)波的传播和电矢量的振动取哪个方向(3)与电场相联系的磁场B的表达式如何写 解:(1)振幅A=2V/m ,频率υ=Hz,波长λ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y 轴;(3)由B=,可得By=Bz=0,Bx= .一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=, 试求:(1)光的频率;(2)波长;(3)玻璃的折射率。 解:(1)υ===5×1014Hz; (2)λ=; (3)相速度v=,所以折射率n= 写出:(1)在yoz平面内沿与y轴成θ角的方 向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由,可得 ; (2)同理:发散球面波 , 汇聚球面波 。 一平面简谐电磁波在真空中沿正x方向传播。其频率为Hz,电场振幅为m ,如果该电磁波的振动面与xy平面呈45o,试写出E ,B表达式。解:,其中 = = = , 同理:。 ,其中 = 。 一个沿k方向传播的平面波表示为 E=,试求k 方向的单位矢。 解:, 又, ∴=。

证明当入射角=45o时,光波在任何两种介质分界面上的反射都有。 证明: = === 证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。证明:由布儒斯特角定义,θ+i=90o , 设空气和玻璃的折射率分别为和,先由空气入射到玻璃中则有,再由玻璃出射到空气中,有, 又,∴, 即得证。 平行光以布儒斯特角从空气中射到玻璃 上,求:(1)能流反射率和;(2)能流透射率和。 解:由题意,得, 又为布儒斯特角,则=.....① ..... ② 由①、②得,,。 (1)0, , (2)由,可得, 同理,=。 证明光波在布儒斯特角下入射到两种介质的分界面上时,,其中。 证明:,因为为布儒斯特角,所以, =,又根据折射定律,得,则,其中,得证。 利用复数表示式求两个波 和 的合成。 解: = = = =。 两个振动方向相同的单色波在空间某一点产生的振动分别为和 。若Hz,V/m ,8V/m,,,求该点的合振动表达式。 解:= = = =。 求如图所示的周期性三角波的傅立叶分析表达式。解:由图可知, , =, =)=,(m为奇数),,

中国科学院大学《高等物理光学》期末知识点总结

20讲题目:平面波与球面波;空间频率;角谱:波的叠加;空间频率的丢失:卷积的物理意义;抽样定理;衍射与干涉;透过率函数;近场与远场衍射;“傅里叶变换与透镜”;対易:衍射的分析法:空品対易;全息;阿贝成像原理(4f 系统);泽尼克相衬显微镜;CTF;OTF;非相干与相干成像系统;衍射的计算机实验;衍射的逆问题;叠层成像(Ptychography );如何撰写科技文章 抽样定理:利用梳状函数对连续函数 抽样,得 抽样 函数 ,由 函数的阵列构成,各个空间脉冲在 方向和 方向的间距分别为 。每个 函数下的体积正比于该点g 的函数值。利用卷积定理,抽样函数 的频谱为 空间域函数的抽样,导致函数频谱 的周期性复 现,以频率平面上 点为中心重复 见图。假定 是限带函数,其频谱仅在频率平面一个有限区域R 不为0.若 , 分别表示包围R 的最小矩形,在 , 方向上的宽度,则只要 ,X,Y 为抽样间隔。 中各 个频谱区域就不会出现混叠现象。这样就 有可能用滤波的方法从 中抽取出原函数频谱G ,而滤除其他各项,再由G 求出原函数,因而能由抽样值还原原函数的条件是1) 是限带函数2)在x ,y 方向上 抽样点最大允许间隔分别为 , 通常 称为奈奎斯特间隔。显然,当函数起伏变化大,包含的细节多、频带范围较宽时,抽样间隔就应当较小。抽样数目最小应为 这是空间带宽积(函数在空域和频域中所占面积之积) 2.10若只能用 表示的有效区间上的脉冲点阵对函数进行抽样,即 试说明,及时采用奈奎斯特间隔抽样,也不在能用一个理想低通滤波器精确恢复 。解:因为表示的有限区域以外的函数抽样对精确恢复,也有贡献不可省略。用 表示的有限区间上的脉冲点阵对函数进行抽样,即 ,抽样函数 对应的频谱为 ,上式右端大 括号中的函数,是以 点为中心周期性重复出现的函数频谱 。对于限带函数,采用奈奎斯特间隔抽样, 中的各个频谱区域原本不会发生混叠现象,但是和二维 函数卷积后,由于 函数本身的延展性,会造成各函数频谱间发生混叠现象,因而不再能用低通滤波的方法精确恢复原函数 。从另一角度看,函数 被矩形函数限制范围后,成为 ,新的函数不再是限带函数,抽样时会发生频谱混叠,可以得出同样的解释。 2.11如果用很窄的矩形脉冲阵列对函数抽样(物理上并不可能在一些严格的点上抽样一个函数)即 式中, 、 为每个脉冲在 方 向的宽度。若抽样间隔合适,说明能否由 还原函数 。解:用很窄的矩形脉冲阵列对函数进行抽样,例如当采用CCD 采集图像,每个像素都有一定的尺寸大小。这时抽样函数 对应的频谱为 , )] sinc sinc ,由于 、 尺寸很小,二维 函数是平缓衰减的函数, 对 中各个以 点为中心的函数频谱 的高度给以加权衰减。上式也可以看成是用经 函数加权衰减的脉冲序列与 卷积,结果是一样的。由于各个重复出现的频谱 形状不变,带宽不变,不发生混叠,因而只要抽样间隔合适,仍然能通过低通滤波还原 . 空间频率的理解:传播矢量位于 平面时,由于 , 平面上复振幅分布为 等位相线方程为 与不同C 值相对应的等位相线是一些垂直于 轴的平行线,图画出了位相依次相差 的几个波面,与 平面相交得出的等位相线,这些等位相线接近相等,由于等位相线上的光振动相同,所以复振幅在xy 平面周期分布的空间周期可以用位相相差 的两相邻等位相线的间隔X 表示, 所以 用空间周期的倒数表示x 方向单位长度内变化的周期数,即 , 成称为复振幅分布在x 方向上的空间频率。 角谱理解: , , , 称 作 平面上复振幅分布的角谱,引入角谱的概念,进一步理解复振幅分解的物理含义:单色光 波场中某一平面上的场分布可看做不同方向传播的单色平面波的叠加,在叠加时各平面波成分有自己的振幅和常量位相,它们的值分别取决于角谱的模和辐角。 泰伯效应:用单色平面波垂直照射一个周期性物体,在物体后面周期性距离上出现物体的像。这种自成像效应就称为泰伯效应,是一种衍射成像。 3.3余弦型振幅光栅的复振幅透过率为 式中, 为光栅的周期; 。 观察平面与光栅相距为z 。当z 分别取下述值时,试确定单色平面垂直照明光栅时在观察平面上产生的强度分布。解:1) 为泰伯距离,光栅透射光场为 式中,A 为平面波振幅值。该透射光场对应的空间频率为 根据菲涅尔衍射 的传递函数 可写出观察平面上得到广场的频谱为 当 时 则式(A )变为 对上式做傅里叶逆变换可得到 观察平面上的光场复振幅分布为 强度分布为 强度分布与光栅透射场 分布相同。结论:在泰伯距离处,可以观察到物体的像;在 处观察到的是对比度反转的泰伯 像;在 处观察到的是泰伯副像,条纹频率变为原来的两倍。 3.4孔径的透过率函数表示为 ,用向P 点汇聚的单色球面波照射孔径 ,P 点位于孔径后面有限短距离z 处得观察平面上,坐标是 .求观察平面上的光强分布,并说明该光强分布与孔径是什么关系;若该孔径是两个矩形孔,求观察平面上的光强分布,并画出沿y 轴方向的 光强分布曲线。解:孔径平面上透射波的光场分布为 把它代入菲涅尔衍射方程,得到衍射光场为 其 强 度 分 布 为 即证明了观察平面上强度 分布是以P 点为中心的孔径的夫琅禾费单缝衍射图样。以上分析表明,若采用向观察平面汇聚 的球面波照明孔径,在近距离上就可以观察到孔径的夫琅禾费单缝衍射分布。 双圆孔:振幅透过率表示 透射光场 傅里叶变换 夫琅禾费光场分布 强度分布 可双孔衍射图样的强度分布是单孔的衍射图样与双光束干涉图样相互调制结果。 双矩形:振幅透过率表示 透射光场 傅里叶变换 夫琅禾费光场分布 强度分布 可双矩形孔衍射图样的强度分布是单矩形孔的衍射图样与双光束干涉图样相互调制结果。 傅里叶透镜和普通透镜的区别:傅里叶变换透镜与普通透镜并无本质区别,只是根据作用的不同将透镜分为傅里叶变换透镜与普通透镜。为了能在较近的距离观察到物体的远场夫琅禾费衍射图样,通常是利用传统的光学元件----透镜,也就是说透镜可以用来实现物体的“傅里叶变换”,我们把实现这种功能的这类透镜称为傅里叶变换透镜。 4.2楔形棱镜,楔角为 ,折射率为n ,底边厚度为 .其位相变换函数,并利用它来确定平行光束小角度入射时产生的偏向角 。解:如图所示,棱镜的厚度函数为 则棱镜的位相调制可以表示为 忽略常系数,则棱镜的位相变换函数可表示为 对于小角度入射的平行光束(假设入射角为 ),其复振 幅分布为 与入射光相比,其传播角度发生了偏转,角度为 CTF:把相干脉冲响应的傅里叶变换定义为相干传递函数,即 }, OTF:非相干成像系统的光学传递函数,强度的传递函数,它描述非相干成像系统在频域的效应。 联系:CTF 与OTF 分别是描述同一个成像系统采用相干照明和非相干照明时的传递函数,它 们都取决于系统本身的物理性质,沟通二者的桥梁是 CTF 和OTF 分别定义为 } 利用傅里叶的自相关定理得到 因此,对 于同一系统来说光学传递函数 等于相干传递函数 的归一化自相关函数。 区别:截止频率:OTF 的截止频率是CTF 截止频率的两倍,但前者是对强度而言,后着是对复振幅而言的,两者由于对应物理量不同,不能从数值上简单比较,成像好坏也物体本身有关。两点分辨率:根据瑞丽分辨率判据,对两个等强度的非相干点光源,若一个点光源产生的艾里斑中心恰好与第二个点光源产生的艾里斑的第一个零点重合,则认为这两个点光源刚好能分辨,高斯像面的最小可分辨间隔是 ,l 是出瞳的直径,对于想干成像系统能否分辨两个 点光源,主要考虑两点间距外,还必须考虑他们的位相关系。相干噪声:想干成像系统在像面上会出现激光散斑或灰尘等产生的衍射斑,这些相干噪声对成像不利。非相干成像系统不产生相干噪声。 5.2一个余弦型光栅,复振幅透过率为 放在图上所示的成像系统的物面上,用单色平面波倾斜照明,平面波传播方向在 平面内,与z 轴夹角为 。透镜焦距为 ,孔径为 。1)求物体透射光场的频谱2)使像平面出现条纹的最大 角等于多少?求此时像面强度分布3)若 采用上述极大值,使像面上出现条纹的最大光栅频率是多少?与 时截止频率相比结论如何?解:1)倾斜单色平面波入射,在物平面上产生的入射光场为 ( )则物平面的透射光场为 其频谱为 其频谱如图,物体有三个频率分量,与垂直入射 的情况相比,其频谱沿 轴整体平移 。本题 中简化计算, 。2)物体的空间频谱包括三个分量,其中任意一个分量都对应空间某一特 定传播方向的平面波。如果仅让一个分量通过系统,则在像面上不会有强度起伏,因此为了在像面上有强度起伏,即有条纹,至少要让两个频率分量通过系统。对于想干成像系统,其截止 频率为 ,式中 为透镜直径; 。因此选取的 角必须至少保证最低的两个 频率分量能通过系统,即最低的两个频率分量都在系统的通频带内,即要求 同时满足上述条件,需要 , 角可以选取的最大值为 当 取该值时,只有两个频率分量通过系统,像的频谱为 对应的复振幅分布为 强度分布为 3)当 取该最大值时,要求光栅频率满足如下关系 即要求 或者是说 当 时,要求光栅频率不大于系统截止频率,即要求 或者是说 可见,当采用 倾斜角的平面波照明时,系统允许通过的物光栅的频 率比垂直照明时提高了一倍。 5.12图所示成像系统,双缝光阑缝宽为a ,中心间距为d 照明光波长为 求系统的脉冲响应和 传递函数并画出他们的截面图。1)相干照明2)非相干照明。解: 时间相干性:假定光源发出的光是由一个有限长度的波列所组成的,将波列在真空中的传播的长度称为相干长度 。单个波列持续的时间 称为相干时间。通常用相干长度和想干时间来衡量时间相干性的好坏。当时间延迟 远大于 或光程差远大于 观察不到干涉条纹。相干时间和光源谱宽之间的关系(时间相干性的反比公式)为 , 为谱线宽度。谱线 越窄,相干时间和相干长度就越长,时间相干性越好,可以得到 ;讨论在空间某一点,在两个不同时刻光场之间的相关性.(同地异时)例如迈克尔孙干涉仪。同一光源形成 的光场中,同一地点不同时刻的光之间的相干性。 空间相干性:讨论在同一时刻 , 空间中两点光场之间的相关性。(同时异地)例如杨氏双缝干涉实验。同一光源形成的光场中,不同地点同一时刻的光之间的相干性。 6.7在图所示的杨氏干涉实验,采用宽度为a 的准单色缝光源,辐射强度均匀分布为 , 。试1)写出计算 两点空间相干度 的公式。2)若a=0.1mm ,z=1m ,d=3mm ,求观察屏上杨氏干涉条纹对比度的大小。3)若z 和d 仍取上述值,欲使观察屏上干涉条纹对比 度下降为0.4,求缝光源宽度a 应为多少?解:1)缝光源的强度分布为 (

物理光学第二章答案

第二章光的干涉作业 1、在杨氏干涉实验中,两个小孔的距离为1mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长为550nm和600nm的两种光波,试求: (1)两光波分别形成的条纹间距; (2)两组条纹的第8个亮条纹之间的距离。 2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为100cm,当用一片折射率为1.61的透明玻璃贴住其中一小孔时,发现屏上的条纹系移动了0.5cm,试决定该薄片的厚度。 3、在菲涅耳双棱镜干涉实验中,若双棱镜材料的折射率为1.52,采用垂直的激光束(632.8nm)垂直照射双棱镜,问选用顶角多大的双棱镜可得到间距为0.05mm 的条纹。 4、在洛埃镜干涉实验中,光源S1到观察屏的垂直距离为1.5m,光源到洛埃镜的垂直距离为2mm。洛埃镜长为40cm,置于光源和屏的中央。(1)确定屏上看见条纹的区域大小;(2)若波长为500nm,条纹间距是多少?在屏上可以看见几条条纹? 5、在杨氏干涉实验中,准单色光的波长宽度为0.05nm,

平均波长为500nm ,问在小孔S 1处贴上多厚的玻璃片可使P ’点附近的条纹消失?设玻璃的折射率为1.5。 6、在菲涅耳双面镜的夹角为1’,双面镜交线到光源和屏的距离分别为10cm 和1m 。设光源发出的光波波长为550nm ,试决定光源的临界宽度和许可宽度。 7、太阳对地球表面的张角约为0.0093rad ,太阳光的平均波长为550nm ,试计算地球表面的相干面积。 8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。试计算从反射光方向和透射光方向观察到的条纹的可见度。 9、在平行平板干涉装置中,若照明光波的波长为600nm ,平板的厚度为 2mm ,折射率为 1.5,其下表面涂上高折射率(1.5)材料。试问:(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮环的半径是多少?(f=20cm )(3)第10个亮环处的条纹间距是多少? P P ’

物理光学第一章习题

1.在真空中传播的平面电磁波,其电场为0=x E ,0=y E , ]2 )(10cos[10014ππ+-?=c x t E z ,问:(1)该电磁波的频率、波长、振幅和原点的初位相为多少?(2)波的传播和电矢量的振 动取哪个方向?(3)与电场相联系的磁场B 的表达式如何 写? 2.平面电磁波在真空中沿x 方向传播,Hz 14104?=ν,电场振幅为m V /14.14,若振动平面与xy 面成45 度,写出E 和B 的表达 式。 3.已知k ,ω,ABC O -为一正方体,分别求沿OC OB OA ,,方向传播的平面波的实波函数、复振幅及z y x ,,方向的空间频率和空间周期。 4.有3列在xz 平面内传播的同频率单色平面波,其振幅分别为:321,,A A A ,传播方向如图,若设振幅比为1:2:1,21θθ=,求xy 平面上的光强分布(假设初相位均为0)。 5. 维纳光驻波试验中,涂有感光乳剂的玻璃片的长度为1cm ,起一端与反射镜接触,另一端与反射镜面相距10m μ,测出感光片上两个黑纹的间距为250m μ,求所用光波波长。 6.确定正交分量由下面两式表示的光波的偏振态, )](cos[),(t c z A t z E x -=ω ]4 5)(c o s [),(πω+-=t c z A t z E y 7.让入射光连续通过两个偏振片,前者为起偏片,后者称为检偏片,通过改变两者透振方向之间的夹角可调节出射光强。设入射光为自然光,通过起偏片后光强为1,要使出射

光强减弱为8 1,41,21,问两偏振片透振方向的夹角各为多少? 8.一束自然光入射到折射率3/4=n 的水面上时反射光是线偏振的。一块折射率2/3=n 的平面玻璃浸在水下,若要使玻璃表面的反射光N O ''也是线偏振的,则玻璃表面与水平面夹角α应为多大? 9.s 光波从5.11=n 的玻璃以入射角0120=i 入射到0.12=n 的空气界面,求菲涅耳透射系数,光强透射系数,能流透射系数? 10.一束自然光从空气射到玻璃,入射角o 30,玻璃折射率5.1=n ,求反射光的偏振度。 11. 假设窗玻璃的折射率为1.5,斜照的太阳光(自然光)的入射角为600,求太阳光的光强透射率。 12.线偏光从0.11=n 的空气以入射角0145=i 入射到5.12=n 的玻璃表面,已知线偏光的振动面和入射面夹角为060=θ,试计算: 1)总的能流反射率R 和总能流透射率T 2)以自然光入射,又如何?

物理光学作业答案

3.13 波长为589.3nm 的钠黄光照在一双缝上,在距离双缝100cm 的观察屏上测量20个条纹共宽2.4cm,试计算双缝之间的距离。 解:设孔距l ,观测屏到干涉屏的距离为d ,条纹间距为e,所用光波的波长为λ; 条纹间距24 1.220mm l mm = = 根据d e l λ=可知:589.310.491.2d nm m l mm e mm λ?= == 3.18 在菲涅尔双面镜试验中,若单色光波长为500nm ,光源和观测屏到双面镜棱线的距离 分别为0.5m 和1.5m ,双面镜的夹角为10-3弧度:(1)、求观察屏上条纹间距。(2)、问观察屏上最多可以看到多少条两纹。 菲涅耳双面镜 l 解:根据已知条件, 条纹间距等于()933 500100.5 1.51101220.510 d e m mm s λα---??+===?=?? 能看到条纹的区域为P1P2,设反射镜棱至观察屏的距离为B 可以看出 ()312 102tan 2 1.5tan 1800.00333.1415926PP B m mm α-?? ==???== ??? 可看到条纹数:12 331 PP N e = == 3.21 在很薄的楔形玻璃板上用垂直入射光照射,从反射光中看到相邻暗纹的间隔为5mm , 已知光的波长为580nm ,波的折射率为1.5mm ,求楔形角。 解:相邻条纹的间距2e n λ θ ≈ 知: 953 58010 3.861022 1.5510m rad ne m λ θ---?≈==???? 3.24 为了测量一条细金属丝的直径,可把它夹在两块玻璃片的一段,如图所示,测得亮条

(完整版)物理光学-第一章习题与答案

v= 物理光学习题 第一章波动光学通论 、填空题(每空 2分) 1、. 一光波在介电常数为£,磁导率为卩的介质中传播,则光波的速 度 【V 1】 【布儒斯特角】 t ],则电磁波的传播方 向 ____________ 。电矢量的振动方向 _______________ 【x 轴方向 y 轴方向】 4、 在光的电磁理论中,S 波和P 波的偏振态为 __________ ,S 波的振动方向为 ______ , 【线偏振光波 S 波的振动方向垂直于入射面】 5、 一束光强为I 0的自然光垂直穿过两个偏振片,两个偏振片的透振方向夹角为 45°则通 过两偏振片后的光强为 ____________ 。 【I 0/4】 6、 真空中波长为入。、光速为c 的光波,进入折射率为 n 的介质时,光波的时间频率和波长 分别为 ______ 和 ________ 。 【c/入o 入o /n 】 7、 证明光驻波的存在的维纳实验同时还证明了在感光作用中起主要作用是 __________ 。 【电场E 】 &频率相同,振动方向互相垂直两列光波叠加,相位差满足 _____________ 条件时,合成波为线偏 振光波。 【0或n 】 9、 会聚球面波的函数表达式 ____________ 。 A -ikr 【E(r) e 】 r 10、 一束光波正入射到折射率为 1.5的玻璃的表面,则 S 波的反射系数为 _____________ , P 波 2、一束自然光以 入射到介质的分界面上,反射光只有 S 波方向有振动。 13 10 3、一个平面电磁波波振动表示为 E x =E z =0, E y =cos[2

工程光学物理光学参考答案

物理光学作业参考答案 [13-1] 波长nm 500=λ的单色光垂直入射到边长3cm 的方孔,在光轴(它通过孔中心并垂直孔平面)附近离孔z 处观察衍射,试求出夫琅和费衍射区的大致范围。 解:夫琅和费衍射条件为: π<<+z y x k 2)(max 2121 即: m nm y x z 900109.0500 )1015()1015()(122626max 2121=?=?+?=+>> λ [13-3]平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为 2 0)s i n (s i n )]sin (sin sin[??? ???? ???????--=i a i a I I θλπθλπ 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图)。 证明:(1 缝上任意点Q 的位矢: 单逢上光场的复振幅为: 因此,观察面上的夫琅和费衍射场为: (其中: ) ) cos ,0,(sin i i k k = )0,,(11y x r = 1sin 1)(~x i ik r k i Ae Ae x E ??== ) sin (sin )]sin (sin sin[)(~1)(~)2(1 1 22)sin (sin )2(11sin 22 sin )2(11221)2(1121 12 11 112111 121i a i a ae z A dx e e z i A dx e e e z i A dx e x E e z i x E z x z ik a a x i ik z x z ik x ik a a x i ik z x z ik x z x ik a a z x z ik --====+---+?--?+--+? ?? θλ πθλπλλλλθθθsin 1≈z x

物理光学课后习题答案-汇总教学提纲

第一章光的电磁理论 1.1在真空中传播的平面电磁波,其电场表示为 Ex=0,Ey=0,Ez=,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。 解:由Ex=0,Ey=0,Ez=,则频率υ= ==0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。 1.2.一个平面电磁波可以表示为Ex=0, Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写? 解:(1)振幅A=2V/m,频率υ=Hz,波长λ ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3) 由B =,可得By=Bz=0,Bx= 1.3.一个线偏振光在玻璃中传播时可以表示为 Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。 解:(1)υ===5×1014Hz; (2)λ=; (3)相速度v=0.65c,所以折射率n= 1.4写出:(1)在yoz平面内沿与y 轴成θ角的方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由,可得 ; (2)同理:发散球面波 , 汇聚球面波 。 1.5一平面简谐电磁波在真空中沿正x方向传播。其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy平面呈45o,试写出E,B 表达式。 解:,其中 = = = , 同理:。 ,其中 =。 1.6一个沿k方向传播的平面波表示为 E=,试求k 方向的单位矢。 解:, 又, ∴=。

浙江大学物理光学试题

浙江大学 – 学年 学期 《 应用光学》课程期末考试试卷 开课学院:信息学院 ,考试形式:闭卷,允许带 计算器、尺入场 考试时间: 年______月______日,所需时间:120分钟 考生姓名:_______________学号: 专业:____________ 题序 一 二 三 四 总 分 得分 评卷人 一、选择题(每题2分共16分) 1. 当一远视眼通过带分划板的望远镜观察远处物体时,应使 a. 物镜远离分划板 b. 物镜靠近分划板 c. 目镜远离分划板 d. 目镜靠近分划板 2. 负透镜对 a. 实物只能成实像 b. 实物只能成虚像 c. 虚物只能成实像 d. 虚物只能成虚像 3. 像面的光照度正比于 a. 光源亮度、22sin β与U b.光源亮度与U 2sin c. 光源亮度与2β d. 22sin β与U 4. 200度的近视眼,应配戴的眼镜的焦距为 a. 200mm b. 500mm c. -500mm d. –200mm 5. 以下几种初级像差中,当视场很小时就要考虑的是 a. 畸变 b. 彗差 c. 像散 d. 场曲 6. 在以下的哪个平面,轴外物点的像是垂直于子午面的短线? a. 高斯像面 b. 弧矢像面 c. 子午像面 d. 以上都不是 7. 拍摄人像艺术照,为突出主要人物,应选用 a. 焦距大,F 数与对准距离小 b. 对准距离与F 数大,焦距小 c. 对准距离与焦距大,F 数小 d. 对准距离小、焦距与F 数大 8. 在球差、彗差、像散、像面弯曲、畸变、位置色差、倍率色差中,对轴上点成像产生圆形弥散斑的有 a. 1种 b. 2种 c. 3种 d. 以上都不对 答案: 1 2 3 4 5 6 7 8 二、填空题(每空2分,共42分)

物理光学梁铨廷版习题答案

第一章光的电磁理 论 1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=(102)Cos[π× 1014(t?x c )+π 2 ],(各 量均用国际单位),求电磁波的频率、波长、周期和初相位。 解:由Ex=0,Ey=0,Ez=(102)Cos[π× 1014(t?x c )+π 2 ],则频 率υ= ω 2π =π×10 14 2π =0.5× 1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m, 波长λ=cT=3×108×2×10-14=6×10-6m。 1.2.一个平面电磁波可以表示为Ex=0,Ey=2Cos[2π×1014(z c ?t)+π 2 ],Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写? 解:(1)振幅 A=2V/m,频率υ=ω 2π = 2π×1014 2π =1014Hz,波长 λ=c υ =3×108 10 =3×

10?6m ,原点的初相位φ0=+π/2;(2)传播沿z 轴,振动方向沿y 轴;(3)由B =1 c (e k ???? ×E ? ),可 得By=Bz=0,Bx=2 c Cos [2π×1014(z c ? t)+π 2] 1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0, Ex=102Cos [π× 10 15 (z 0.65c ?t)],试 求:(1)光的频率;(2)波长;(3)玻璃的折射率。 解: (1) υ =ω 2π= π×1015 2π =5×1014 Hz ; (2)λ= 2πk = 2ππ×10/0.65c =2×0.65×3×108 1015 m = 3.9×10?7m =390nm ; (3)相速度v=0.65c ,所以折射率n=c v =c 0.65c ≈1.54 1.4写出:(1)在yoz 平面内沿与y 轴成θ角的k ? 方 向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由E ?=A ? exp(ik ? ?r ? ),可得E ?=A ? exp?[ik (ycosθ+zsinθ)]; (2)同理:发散球面波E ?(r ,t)=A r exp?(ikr )=

高等物理光学作业-反射率和膜参数的关系(matlab)

大作业一:问题2: %大作业一: m0=8.85e-10;%真空电容率 m1=pi*4e-7;%真空磁导率 %问题一: nA=1;%空气 nG=1.52;%玻璃 nH=2.3;%高折射率膜 nL=1.38;%低折射率膜 %不同波长时的特征矩阵: %一层GHA: %lamda=460; lamda=460; M=matrix(lamda,lamda/4,nH); r=reflect(M,nA,nL); R1=r*conj(r); %其他波长也是一样,因为h/lamda=1/4; %三层GHLHA: lamda=460; M1=matrix(lamda,lamda/4,nH); M2=matrix(lamda,lamda/4,nL); M3=matrix(lamda,lamda/4,nH); M=M1*M2*M1; r=reflect(M,nA,nL); R2=r*conj(r); %五层GHLHLHA: M=M1*M2*M1*M2*M1*M2; r=reflect(M,nA,nL); R3=r*conj(r); %问题二: %一层GHA: for lamda=300:1000 M=matrix(lamda,460/4,nH); r=reflect(M,nA,nL); R1(lamda-299)=r*conj(r); end figure plot(300:1000,R1) hold on %三层GHLHA: for lamda=300:1000 M1=matrix(lamda,460/4,nH); M2=matrix(lamda,460/4,nL); M=M1*M2*M1; r=reflect(M,nA,nL); R2(lamda-299)=r*conj(r); end plot(300:1000,R2,'r') %五层GHLHLHA: for lamda=300:1000 M1=matrix(lamda,460/4,nH); M2=matrix(lamda,460/4,nL); M=M1*M2*M1*M2*M1; r=reflect(M,nA,nL); R3(lamda-299)=r*conj(r); end plot(300:1000,R3,'-g') legend('一层GHA','三层GHLHA','五层GHLHLHA') xlabel('\lambda/(nm)') ylabel('反射率R') grid on title('不同膜系下,反射率R与波长\lambda的关系')

高等物理光学复习题-干涉

一、光波的干涉习题 1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播 到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为() (A) 1.5λ. (B) 1.5 λ/ n . (C) 1.5λ n . (D) 3λ. A 2. 2、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为() (A) 0.45 mm (B) 0.9 mm (C) 1.2 mm (D) 3.1 mm B 3. 3、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后, 测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 (A) λ / 2.(B) λ / (2n ). (C) λ / n . (D) ()12-n λ . [ ] D 4. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面 的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的() (A) 间隔变小,并向棱边方向平移 (B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移 (D) 间隔变小,并向远离棱边方向平移 A 5. 在折射率为68.1=n 的平板玻璃表面涂一层折射率为38.1='n 的2MgF 透明薄 膜,可以减少玻璃表面的反射光。若用波长nm 500=λ的单色光垂直入射, 为了尽量减少反射,则2MgF 薄膜的最小厚度是 (A )nm 2.181; (B)nm 1.78;(C )nm 6.90;(D )nm 3.156 B 6. 两块折射率相同的标准玻璃之间形成一个劈尖。用波长λ的单色光垂直入射, 产生等厚干涉条纹。假如我们将上面的玻璃向上抬起改变劈尖角,则劈尖角 增大时相邻明纹间距比原来 (A )增大 (B )减小 (C ) 不变 (D )无法判断 2)12(2sin 222122λ λδ+=+-=m i n n e 2,1,0=m 00110221122/222λπδλλπλλπφ=???? ??-=???? ??-=?l n l n l l 2 )12(22 λ+=m e n

关于物理光学习题附答案

选择题 1、在相同时间内,一束波长为λ的单色光在空中和在玻璃中,正确的是 A 、 传播的路程相等,走过的光程相等; B 、 传播的路程相等,走过的光程不相等; C 、 传播的路程不相等,走过的光程相等; D 、 传播的路程不相等,走过的光程不相等。 2. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若 直平分面处放一反射镜 M ,如图所示,则此时 A .P 点处仍为明条纹; B. P 点处为暗条纹; C .不能确定 P 点处是明条纹还是暗条纹; D. 无干涉条纹。 4、用白光源进行双缝实验,若用一纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片 遮盖另一条缝,则 [ ] A .干涉条纹的宽度将发生变化; B. 产生红光和蓝光的两套彩色干涉条纹; C .干涉条纹的位置和宽度、亮度均发生变化; D .不发生干涉条纹。 5、有下列说法:其中正确的是 [ ] A 、从一个单色光源所发射的同一波面上任意选取的两点光源均为相干光源; B 、从同一单色光源所发射的任意两束光,可视为两相干光束; 薄膜的厚度为 e ,并且 n1n3, 为入射光在真空中的波长, 则两束反射光在相遇点的相 位差为 [ ] n 1 A . 2 n 2e ; B. 2 n 2e ; 1 n 2 C . 4 n 2e ; D. 4 n 2e /2 。 n 3 3. 在双缝干涉实验中,屏 幕 E 上的 P 点是明条纹。若将 S 2 缝盖住,并在 S 1S 2 连线的垂

C、只要是频率相同的两独立光源都可视为相干光源; D、两相干光源发出的光波在空间任意位置相遇都会产生干涉现象。

物理光学第一章答案

第4章 光的电磁理论 1、计算由下式表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长,并求解该平面波所处介质的折射率,同时证明该平面波的横波性,该平面波是何种偏振态?(其中x 和y 分别为x 和y 方向上的单位矢量,式中所有数值均为国际单位制表示) ( )) 8223exp 610E x y i y t ??=- +++?? ? 答案: 由题意得到 ) ) 88 2exp 610610x y i y t i y t E E ???=-??? ? ?? ?=++?+??+?? 所以电矢量的振动方向为13 2O x y =- +,为线偏振态。 x 和y 方向的波数分别为)1x k m -=和() 11y k m -= ,所以平面波传播方向为 312 P x y =- -,总波数为()12k m -===。 ()4V m = 角频率为()8610rad s ω=?,所以频率为()83 102Hz ωυππ = =? 波长为()8831010c m s m Hz λπυπ ?== =? 相位速度为()88 1 6103102rad s v m s k m ω -?===? 该平面波所处介质的折射率为883101310c m s n v m s ?== =? 振动方向1322O x y =- +和传播方向3122 P x y =+的内积为

111102222???-?=-+= ? ????? 所以振动方向与传播方向垂直,平面波的横波性得证。 2、已知单色平面光波的频率为1410Hz υ=,在0z =平面上相位线性增加的情况如图所示,求空间频率x f 、y f 、z f 。 答案: 单色平面光波的波长814 310310c m s m Hz λμυ?===,空间频率61 11103 f m λ-==?。 从图中可以看到x 和y 方向上的波长为8x m λμ=、5y m λμ=,所以x 和y 方向上的空间频率()5111 1.25108x x f m m λμ-= = =?、() 5111 2105y y f m m λμ-===?。 由关系式2222x y z f f f f =++得到()512.3554910z f m -=≈?。 3、设一单色平面光波的频率为1410Hz υ=,振幅为1V m 。0t =时,在xOy 面(0z =)上的相位分布如图所示:等相位线与x 轴垂直(即与y 轴平行),0?=的等相位线坐标为5x m μ=-,?随x 线性增加,x 每增加4m μ,相位增加2π。

相关文档
最新文档