热力学函数公式

热力学函数公式
热力学函数公式

热力学一般关系(热学高等数学偏微分)

第二部分工质的热力性质 六热力学函数的一般关系式 由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。 这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。 热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性 对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。下面我们扼要介绍全微分的一些基本定理。

设函数),(y x f z =具有全微分性质 dy y z dx x z dz x y ? ??? ????+??? ????= (6-1) 则必然有 (1) 互易关系 令式(6-1)中 ),(y x M x z y =???? ????, ),(y x N y z x =???? ???? 则 y x x N y M ???? ????=? ??? ???? (6-2) 互易关系与 ?=0 dz 等价。它不仅是全微分的必要条件 ,而且是充分条件。因此,可反过来检验某一物理量是否具有全微分。 (2) 循环关系 当保持z 不变,即0=dz 时,由式(6-1),得 0=???? ????+??? ????z x z y dy y z dx x z

则 x y z y z x z x y ???? ???????? ????- =???? ???? 故有 1-=???? ???????? ???????? ????y z x z x x y y z (6-3) 此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。 (3) 变换关系 将式(6-1)用于某第四个变量ω不变的情况,可有 ωωωdy y z dx x z dz x y ? ??? ????+??? ????= 两边同除以ωdx ,得 ω ω??? ????? ??? ????+??? ????=??? ????x y y z x z x z x y (6-4) 式中:y x z ??? ????是函数),(y x z 对x 的偏导数;ω??? ????x z 是以),(ωx 为 独立变量时,函数),(ωx z 对x 的偏导数。上面的关系可用于它们之间的变换。这一关系式对于热力学公式的推导十分重要。

热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。 焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分 (4)

从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2) H(S,P) 同(2)式相比有 由得(8) (3) F(T,V)

同(3)式相比 (9) (4) G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。 §2.2麦氏关系的简单应用 证明 1. 求 选T,V为独立变量,则内能U(T,V)的全微分为 (1) 熵函数S(T,V)的全微分为( 2)

光子气体与它的热力学函数关系

目录 1引言 (1) 2热辐射和平衡辐射 (1) 3 用能量均分定律讨论热辐射 (3) 4 热力学量的统计表达式 (5) 4.1总分数和能的统计表达式 (5) 4.2广义作用力的统计表达式 (6) 4.3熵的统计表达式 (6) 5 光子气体的热力学函数 (7) 6 结论 (8) 参考文献 (9) 致谢 (10)

光子气体与它的热力学函数关系 摘要:早在1900年,马克斯·普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特·爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。 该文论述了光子气体热力学函数并根据光子气体巨配分函数推导出热力学函数能、压强、熵、焓、自由能和吉布斯函数以及物态方程。 关键词:光子;热辐射;巨配分函数;熵;压强。

1引言 早在1900年,马克斯.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特.爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c 在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。近代物理理论研究表明,辐射除了具有波动性质外,还具有微粒性质,辐射场可看成是有各种频率的电磁波所组成,也可以将其视为是光子的集合是光子气体。光子气体也普通气体一样按一定规律分布(波色分布),但与普通气体相比有着如下差异:(1)光子随时在产生或漂灭,故粒子数不能固定;(2) 由于光子具有相同的速度(光速) ,故不存在速度分布;(3)普通气体分子之间按速度的平衡分布,是通过分子之间相互碰撞与相互作用机制实现的.而光子气体中的光子彼此并不碰撞,其间的平衡分布,只在辐射场中有某种能够吸收和辐射光子的物体存在时才能建立起来.在吸收或辐射过程中,一种频率的光子将转变成另一种频率的光子.正是光子气体与普通气体之间的这些差异,从而导致光子气体具有与普通气体不同的热力学性质和特征函数。 2热辐射和平衡辐射 只要温度不是绝对零度,任何物体的表面都会向外发射各种波长的,频谱为连续的电磁波。温度升高,物体在单位时间从单位面积表面上向外发射的辐射总能量也之增加。一定时间辐射能量随波长的分布也与温度有关,简单来说爱热的固体会辐射电磁波,称为热辐射。一般情形下热辐射的强度和强度按频率的分布与辐射体的温度和性质有关。如果辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,于热辐射的其它特性无关,称为平衡辐射。. 考虑一个封闭的空窖,窖壁保持一定的温度T。窖壁将不断向空窖发射并吸收电磁波,窖辐射场与窖壁达到平衡后,二者具有共同的温度,显然空窖的辐射就是平衡辐射。 平衡辐射包含各种频率,沿各个方向传播的电磁波.这些电磁波的振幅和相位

描述热力学系统的重要态函数之一

描述热力学系统的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为热力学第二定律提供了定量表述。 为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有,式中Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的表明存在着一个态函数熵.对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。 能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。 从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。 读了该篇论文后,我知道了,在信息论中,熵还可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。而我们在大学物理中学到的热力学第二定律体系的熵总是增加理论,发现除了孤立系统熵是不变的以外,其他情况下,熵总是在增加的,更不可能有熵为负数的情况出现。而麦克斯韦提出的一个理想系统,提出了“麦克斯韦妖”存在的假说,这种可能是有生命的物质使得熵为负数成为了可能。物理学与生物学的链接由此打开。使我感到知识正在不断地跨学科交融,在普遍联系的基础上衍生出促进社会进步的新思想。我们要不断探索,在探索中学求真知,从而造福人类。

河南理工大学传热学公式总结

1,——热传导 )(21t t A Q -= δ λ 2 12111)(h h t t A f f ++-= Φλ δ 导热微分方程: z t y t x t a t ρτ· 222222)(Φ+??+??+??=??/(c a ρλ= 肋效率: =实际散热量/假设整个肋表面处于肋基温度下的散热量( = ) 等截面直肋(肋端绝热) 温度分布: θ=θ0ch(m(x-H))/ch(mH), 肋端: 热量:肋效率: ()()()() ()r o f f f o f r f f o f r f f o o f r f A h t t A h t t A A h t t A A A h t t A A ηηηΦ=-+-+=-+=-+) o o o o f h A t t η=-o η为肋面总效率 (1)、集总参数法(Biv <0.1M,M=1(平板),1/2(圆柱),1/3(圆球)) τρθθVc hA e t t t t -∞ ∞=--=00222 ()()hA hV A cV A V c h V A a Bi Fo V A λττρλρτλ=?=?=? 1、 平壁稳态导热 第一类边界条件:单层: x t t t t w w w δ 1 21-- =;2 21/)(m W t t q w w -=δλ 多层 ∑∑=+=+-= -= n i i n n i i i n R t t t t q 1 ,1 111 1λ λδ 第三类边界条件:传热问题 2112 11 1h h t t q i i f f + +-= ∑=λ单位W/m2 2、 圆筒壁稳态导热 第一类边界条件 单层: 12 11 21r n r r n t t t t w w w =-- ;()12212112212r r n l t t t t r r n l w w w w πλπλ-=-=Φ多层:∑ =++-=Φn i i i i n w w r r n l t t 111,1121 λπ 第三类边界条件:1211112 121 ln 2121+=+++-= ∑n n i i i f f l r h ri r r h t t q ππλπ单位:W/m ——热对流

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学公式大全

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相 对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的 平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 2.常用公式 状态参数:1 2 1 2 x x dx- = ? ?=0 dx 状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达

第五讲热力学函数法

第五讲热力学函数法 讲授内容:教科书§1.9-10 学时:6 教学方法:结合课件中的文字、画图、公式进行讲授;通过习题课使学生熟悉用热力学函数解决问题的方法 教学目的:1使学生熟悉热力学基本方程和基本不等式的应用,掌握热力学函数法的基本精神,会在典型热效应之间建立联系,会用热力学方法计算简单系统的热力学函数。 教学重点:热力学函数法的基本精神 教学难点:应用导数变换方法建立不同热效应之间的联系。本讲吸取国内对此内容的教学经验,将问题归纳为几种典型,通过较多的练习和习题课,使难点得以突破。 教学过程: 一热力学函数与典型过程(70分钟)(字幕) 引言:通过前面的讨论,我们在热力学定律和统计规律的基础上引进了两个基本的态函数——内能和熵。从原则上讲,利用这两个热力学函数再加上物态方程可以解决宏观热现象的一般问题。然而在实际操作上并不都很方便。例如在绝热过程中(字幕),外界对系统作的功等于系统内能的U A-U B=W (字幕)通过末态B与初态A内能之差可以直接得到功。根据熵增原理dS≥0(字幕)可以判断不可逆绝热过程的进行方向(字幕)。可是很多过程并不是绝热的,对于经常遇到的等温过程或等温等压过程就无法直接运用内能和熵解决上述问题。本节将引入几个新的热力学函数使问题得到简洁地处理。 1焓与等压过程:(字幕)

1.1等压过程中的功: (字幕)如果系统只有V 作为外参量,在等压过程中外界对系统的功W=-P 0(V B -V A )=-P 0ΔV (字幕) 1.2焓与等压过程中的热量: (字幕)ΔU=U B -U A =Q-P 0ΔV (字幕)移项得Δ(U+P 0V)=Q (字幕)不管等压过程是否可逆,只要初末态是平衡态,系统在初末态的压强P =P 0,引入新的热力学函数——焓H=U+PV (字幕)则ΔH=Q (字幕) 对于初末态为平衡态的无穷小过程则有dH=δQ (字幕)焓是广延量,具有和内能相同的量纲。焓具有明显的物理意义:在没有非体变功的等压过程中系统吸收的热量等于系统焓的增加,系统放出的热量等于系统焓的减少。(字幕)通过末态与初态焓的差就可以算得系统在等压过程中吸收的热量。 1.3焓的全微分式: (字幕)在热力学基本方程两端加d(PV),即 d U P V T d S P d V d P V ()()+=-+ 于是有 d H T d S Vd P =+ (字幕) 上式是以熵S 和压强P 为独立变量时焓的全微分表达式。有时,使用它讨论等压过程的问题比使用基本方程更为方便。通常,H(S,P)的全微分为 dH H S dS H P dP P S =+(/)(/)???? 两式对照即有(/)??H S T P =, (/)??H P V S = 。(字幕) 1.4定压热容:(字幕)系统的定压热容 C li m H T )H T )P T P ==→???0(/(/?? 对于等压过程, dH T dS Q C dT P ===δ 定压热容又可以由下式算得C H T T S T P P P ==(/)(/)???? (字幕) 2自由能与等温过程:(字幕) 2.1自由能与等温过程的功:(字幕)对于等温过程,将热力学基本不等式移项可得

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * ===

式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 pV U H +=

热力学函数意义,应用

一、热力学函数: 1、热力学能(U): 意义:反映了处于一定状态下的系统内部的能量总和。 应用:其本身无实际应用意义,但是热力学能变,即△U,可以反映系统变化前后的能量变化,其变化只与系统始终状态有关而与过程的具体途径无关。即△U等于系统与环境之间的能量传递。△U=W+Q。△U>0表明系统吸收了能量, △U<0表明系统放出了能量。 2、焓(H): 意义:热力学中将(U+pV)定义为焓,其本身并无明确的物理意义。 应用:H= U+pV,因而,焓就和热力学能一样,无实际意义,但是焓变△H却很有应用意义,Q p =H2-H1 =△H反映了在恒温恒压只做体积功的封闭系统中,系统吸收的能量全部用于增加系统的焓。△H>0表明系统吸热,△H<0则表明系统放热。即可以用其表示恒压条件下系统放出的或吸收的热量多少,实践证明,即使有气体参加的反应,p△V也很小,即△H≈△U,因而,在没有△U数据时,可以暂时用△H代替。 3、熵(S): 意义:熵反映了在一定状态下系统混乱度的大小。 应用:熵变△S却反映了系统变化前后混乱度的变化,0 K时,纯物质完美晶体的微观粒子熵为0,即S m* (B,0 K)=0,因而可以以此为基准,确定其他温度下物质的熵,△r S m(B)= S m(B,T)- S m* (B,0 K)= S m(B,T)。 4、吉布斯函数(G): 意义:吉布斯函数和焓一样,本身没有明确的物理意义,热力学中将H-TS规定为吉布斯函数。 应用:其本身无实际用途,但是其变化,即△G=△H-T△S,反映了在恒温恒压非体积功等于零的自发过程中,其焓变、熵变和温度三者的关系。△G的大小可作为判断反应能否自发进行的判据。即: △G<0 自发进行 △G=0 平衡状态 △G>0 不能自发进行(其逆过程是自发的)即根据△H,T,△S可以计算出△G,用于判断反应的可行性。 二、解离常数(K): 意义:反映了物质在溶液中电解能力的大小。 应用:常用的是电解质在水中的解离常数,如果是酸,跟据其解离常数可以计 算出溶液的解离常数大小,进而可以判断其酸碱性强弱或者直接换成pH的大小,碱也是如此。另外,只要知道弱电解质的解离度大小,根据其浓度,就能计算出其溶液中离子的浓度。跟据加入的电解子的离子,还可以计算出溶解平衡的移动方向,即同离子效应。 三、溶度积(K sp): 意义:反映了难容电解质的饱和溶液中,个离子活度幂次方的乘积大小,从而反映出该物质溶解能力的大小。 应用:1、根据溶度积原理,可以判断沉淀平衡移动的方向。 Q i >K sp 溶液为过饱和溶液,平衡向生成沉淀的方向移动。

热力学公式

1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 1. 热力学第一定律的数学表示式 W Q U +=? 或 'a m b δδδ d δd U Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ?为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?= ? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0V W == p Q H =? (d 0,'0)p W == pV U H +=2 ,m 1 d V U nC T ?=?

配分函数与热力学函数的关系

第七章统计热力学基础 教学目的与要求: 通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。 重点与难点: 统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。 §7.1 概论 统计热力学的研究任务和目的 统计力学的研究对象是大量微观粒子所构成的宏观系统。从这一点来说,统计热力学和热力学的研究对象都是一样的。但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。 统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。统计力学建立了体系的微观性质和宏观性质之间的联系。从这个意义上,统计力学又可称为统计热力学。 相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。同时模型本身也有近似性,所以由此得到的结论也有近似性。从历史的发展来看,最早是由玻兹曼(Boltzmann)以经典力学为基础建立的统计方法,称为经典统计热力学。1900 年普朗克(Planck)提出了量子论,麦克斯韦(Maxwell)将能量量子

热力学基本概念和公式

第一章热力学基本概念 一、基本概念 热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。工质:实现热能与机械能相互转换的媒介物质即称为工质。 热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。 边界:系统与外界得分界面。 外界:边界以外的物体。 开口系统:与外界有物质交换的系统,控制体(控制容积)。 闭口系统:与外界没有物质的交换,控制质量。 绝热系统:与外界没有热量的交换。 孤立系统:与外界没有任何形式的物质和能量的交换的系统。 状态:系统中某瞬间表现的工质热力性质的总状况。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。 状态参数:温度、压力、比容(密度)、内能、熵、焓。 强度性参数:与系统内物质的数量无关,没有可加性。 广延性参数:与系统同内物质的数量有关,具有可加性。 准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。

可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。 膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。(对外做功为正,外界对系统做功为负)。 热量:通过系统边界向外传递的热量。 热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。 二、基本公式 ??=-=0 2 1 1 2 dx x x dx 理想气体状态方程式: RT pV m = 循环热效率 1 q w net t = η 制冷系数 net w q 2 = ε 第二章 热力学第一定律 一、基本概念 热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。

热力学概论之状态与状态函数

1.1 热力学概论(1)状态与状态函数 1.1.1体系和环境 我们用观察、实验等方法进行科学研究时,必须先确定所要研究的对象,把要研究的那部分物质与其余的分开(分隔面可以是实际的,也可以是想象的),这种被划定的对象就称为体系,而体系以外,与体系密切相关,影响所及的部分则称为环境。 例如:一个热机气缸中的气体,一个反应器中的物质,一个原电池中的物料,这些都是热力学体系,而这些体系以外的部分为环境。体系又可分为如下几种: (1)隔离体系(或孤立体系):体系和环境之间既没有物质交换,也没有能量交换。 (2)封闭体系:体系和环境之间没有物质交换,但有能量交换。 (3)敞开体系:体系和环境之间既有物质交换,也有能量交换。 如一个盖着的热水瓶可近似地认为是一个隔离体系;一个盖着的,但不保温的热水瓶可认为是一个封闭体系;一个没盖的,也不保温的热水瓶可认为是一个敞开体系。 1.1.2 状态和状态函数 1.1. 2.1 状态函数与状态函数法 ? 状态:某一热力学系统的状态指体系的物理性质和化学性质的综合表现。 ? 体系的性质:描述体系状态的一些变量,如体积、压力和温度等称为性质。这些性质又可分为两类: (1)广度性质(或容量性质):广度性质的数值与体系物质的数量成正比,如体积、内能和熵等。广度性质具有加和性。 (2)强度性质:强度性质的数值与体系物质的数量无关,如温度、压力、密度和粘度等。强度性质不具有加和性。 两个广度性质相除就成了强度性质,如摩尔体积和密度等。 ? 状态函数:在热力学中,把体系的性质称为状态变量或状态函数. 如:温度、压力、体积、密度和粘度等。 状态函数的特点:状态函数的数值只与体系现在所处的状态有关,而与其过去的历史无关。如:一大气压下25℃的水,它的密度和粘度都有确定的值,不管这水是由0℃升温来的,还是由100℃降温来的。 1.2.2.2 状态函数法:状态函数的增量只与体系的始末态有关,而与状态变化的过程无关。如果体系状态变化循环一周,则状态函数的增量为0。从数学上来说,状态函数的微分是全微分,全微分沿封闭路径积分一周结果为0。 ?=-=?0 (12dV V V V 体积) ?=-=?0(dU V V U 初态 末态内能) X X X X X X X X X ?=-==??始末末 始末始)(途径)(途径对于任意状态函数:d 2d 1

热力学基本关系式

至今讨论中常应用的八个热力学函数--p、V、T、U、H、S、A、G。其中 U 和 S 分别由热力学第一定律和第二定律导出;H、A、G 则由定义得来。而 U、H、A、G 为具有能量量纲的函数。这些热力学函数间通过一定关系式相互联系着。基本热力学关系式共有十一个(以下分别用公式左边括弧中的数字标明)。从这十一个基本关系式出发,可以导出许多其它衍生关系式,它们表示出各不同物理量间的相互关系,利用它们可以帮助我们由易于直接测量的物理量出发以计算难于直接测量的物理量的数值。 由定义可得如下三个关系式: (1) (3-136) (2) (3-137) (3) (3-138) 又由热力学第一定律、第二定律联合公式,在无非膨胀功条件下: 将它和式(3-136)、(3-137)、(3-138)联系起来: 即可得以下四个一组被称为恒组成均相封闭系统的热力学基本方程。又称 Gibbs 方程。 (4) (3-139) (5) (3-140) (6) (3-141) (7) (3-142) 这四个基本方程均不受可逆过程的限制,因为 U、H、A、G 等随着相应两个独立的状态函数变化而变化,因而与变化的具体途径(可逆或不可逆)无关,自然亦

可用于不可逆过程。公式虽然是四个,但式(5)、(6)、(7)实际上是基本公式(4)在不同条件下的表示形式。根据全微分定义可有如下关系: (3-143) (3-144) (3-145) (3-146) 式(3-139)与式(3-143)对比、式(3-140)与式(3-144)对比、 式(3-141)与式(3-145)对比、式(3-142)与式(3-146)对比,可得如下关系(或称"对应系数式"): (3-147) (3-148) (3-149) 和 (3-150) 如分别将尤拉(Euler)定则: 应用于热力学基本方程(4)、(5)、(6)、(7)可得如下四式: (8) (3-151)

热力学公式

电熔镁砂热回收热量引用计算公式说明 本课题主要研究熔坨高温回收利用,众所周知,物体能量传递主要以热传导、对流换热、辐射三种方式进行传递。本课题主要涉及到熔坨自身热传导,气体对物体表面对流换热传导过程。物体能量主要是以物体温度作为表征,其中还有化学能、汽化热能等其它不以温度为表征的能量。在本课题能量传递过程中共涉及到熔坨非稳态导热过程,空气与熔坨间的对流放热过程,热空气与矿石原料对流换热过程和矿石原料加热过程, 一、在热工过程热平衡计算中应用了热力学第一定律(即能量 守恒定律),其表达式根据能量守恒定律得知,熔坨的放 出热量等于空气的得热;热空气放热等于矿石原料的热量 (其中含有矿石原料的分解热),并考虑到系统的热损失。 二、在热量传递过程采用熔坨非稳态热传导(熔坨自身传热) 放热和矿石原料非稳态传到加热计算;空气与熔坨和热空 气加热矿石原料的对流换热计算公式(即牛顿冷却或加热 公式)。 三、任何物质在高于绝对零度的温度下,必然具有热能,其能 量值与物质的比热容、物质质量、物质所具有的温度有关。 据此计算熔坨的总能量,整个放热期间终了时刻的能量。 整个吸热过程终了时刻物质所具有的热能(含化学分解热 能)。根据能量传递过程中的热量计算工序所要求的矿石 原料加热量 四、根据应用能量守恒定律、非稳态传导和对流换热过程的计 算得知。该项目可回收熔坨加工过程中的热能。 本课题采用热力学公式如下: 一、热力学第一定律(能量守恒定律) 基本表达式 Q=⊿U+AW (Kcal) Q-----------热量(Kcal)吸热取正值,反之取负值 ⊿U--------系统的内能变化(Kcal) A-----------功热当量1/427(Kcal /kgf*m) W------------物体的膨胀功 kgf*m 二、物体具有的能量 根据任何高于绝对零度物体下所具有的能量得到如下公式: 1、公式Q=Cp*M*T 或 Q=Cp*ρ*V*T (KJ) 该计算公式表征任何高于绝对零度物体下所具有的能量。

相关文档
最新文档