分配系数和化学反应平衡常数的测定

分配系数和化学反应平衡常数的测定
分配系数和化学反应平衡常数的测定

西安交通大学实验报告

课程:物理化学实验 系别:化学系

专业班号: 组别: 实验日期:2016年3月 日 姓名: 学号: 交报告日期:2016年3月 日 同组者:

实验名称:分配系数和化学反应平衡常数的测定 一、 实验目的

(1)测定碘在四氯化碳和水中的分配系数。

(2)测定水溶液中碘与碘离子之间配合反应的标准平衡常数。

二、 实验原理

1. 碘在水和四氯化碳中分配系数的测定

在一定温度下,将一种溶质A 溶解在两种互不相溶的液体溶剂中,当系统达到平衡时此溶质在这两种溶剂中分配服从一定的规律。即如果溶质A 在这两种溶剂中既无解离作用,也无蒂合作用,则在一定温度下平衡时,该平衡可以表示如下:

A(溶剂1) B (溶剂2)

根据相平衡规则,此时A 在这两种溶剂中的化学势相等。进一步根据溶质型组分的化学势表达式,,A 在这两种溶剂中的活度之比是一常数,可用K d 表示。若两种溶液都比较稀,则它们相对浓度之比近似等于K d ,称为分配系数;

12

12//c c c

c c c K

d ==θ

θ 如果溶质A 在溶剂1和溶剂2中的分子形态不同,则分配系数的表示式就不同。例如,如果A 发生蒂合作用并主要以A n 形式存在,则该平衡可以表示为:

A(溶剂1) nA (溶剂2)

其中n 是缔合度,它表明缔合分子A n 是由单分子组成的。此时分配系数可表示为:

θ

θc c c c K n d /)/(12=

若将I 2加入CCl 4和H 2O 这两种互不相溶的液体中,则会在这两相中建立如下平衡:

I 2 (H 2

O) I 2(CCl 4)

分别滴定CCl 4层和H 2O 层中I 2的浓度。

2. 在水溶液中碘与碘离子配合反应的标准平衡常数的测定

在水溶液中会发生配合反应并建立碘负离子与碘三负离子平衡,其平衡

常数可表示为:

)

/()/()

/(23

2

3

2

3

θ

θθθγγγc c c c c c a a a K I I I I

I I

I I I ??

?=

?=

---

---

若溶液比较稀,则溶液中各组分活度系数都近似为1,那么

θθθ

c K c c c c K c I I I ?=??≈

--

2

3

在一定温度和压力下,把浓度为c 的KI 水溶液与I 2的CCl 4溶液按一定比

例混合后,用滴定方法测得浓度后可得出水层中配合碘的浓度为d=(b+d)-b,进一步可得出水溶液中碘和碘离子配合反应的标准平衡常数为:

b

d c c d c K K c ?-?=

?=)(θ

θ

θ

三、 仪器和药品

150ml 分液漏斗3个,250ml 磨口锥形瓶3个,100ml 量筒1个,5ml 微量滴定管1支,20ml 移液管(有刻度)2个,5ml 移液管3支,25ml 移液管3支,CCl 4(分析纯),0.1mol/L 的KI 溶液,0.1mol/L 的Na 2S 2O 3溶液,I 2的CCl 4溶液(饱和),淀粉指示剂。

四、 实验步骤

(1) 先将三个洗净烘干的锥形瓶按实验表加入不同液体。

(2) 将上述装好溶液的锥形瓶塞号塞子,并剧烈摇动30min ,使碘在CCl 4

层和水层充分达到分配平衡。摇动时勿用手握瓶壁,以免温度发生变化,然后倒入分液漏斗静置。

(3) 待两层完全清晰后,用移液管吸取各样品的CCl 4层5ml 放入干净的锥

形瓶中,并用量筒加入KI 溶液10ml ,促使I 2被提取到水层中。摇动锥形瓶,然后用Na 2S 2O 3滴定。待淡至淡黄色时,加入淀粉指示剂继

续滴定至紫红色刚消失,记录所用的Na2S2O3溶液的体积。每个样品

滴定三次,第一次粗测,后两次精测,计算后两次平均值。

(4)吸取25mL水层溶液,加入8-10滴淀粉指示剂用Na2S2O3滴定至无色,每个样品滴定三次,第一次粗测,后两次精测,计算后两次平均值。

五、实验数据记录

室温:17.8℃

大气压力:99.30kpa

六、实验数据处理

(1)分配系数K d的计算

第一组:K d=3.27/0.23*5=71.09 第二组:K d=2.01/0.14*5=71.78

平均值:(71.09+71.78)/2=71.44

(2)CCl4层和水层中I2浓度计算

Na2S2O3与I2反应摩尔比为2:1

a=0.35/5/2*0.1=0.0035mol/L

b+d=0.52/25/2*0.1=0.00104mol/L

(3)b,d,c-d的计算

b=a/K d=0.0035/71.44=4.90*10-5mol/L

d=b+d-b=0.00104-4.90*10-5=0.000991mol/L

c-d=0.1-0.000991=0.99009mol/L

(4)标准平衡常数Kθ的计算

Kθ=d*cθ/(c-d)/b=20.43

化学平衡常数及分配系

石化与能源工程学院 实验报告 实验名称:化学平衡常数及分配系数的测定 班级:________A13化工__________________________ 学生姓名:__________刘文斌________________________ 学号:_________19_________________________ 实验日期: ___2014.12.3____________________________ 化学平衡常数及分配系数的测定 一、实验目的:(1)测定反应I +KI=KI3的平衡常数及碘在CCl4和水中的 2 分配系数。

(2)掌握常温恒温技术的控制方法。 二、实验原理:在恒温、恒压下I 和KI在水溶液中建立如下平衡: 2 I2+KI=KI3(1) 为了测定平衡常数,应在不扰动平衡状态的条件下,测定平衡组成。当上述反应达到平衡时,若用Na2S2O3标准溶液来滴定溶液中I2的浓度,则随着I2的消耗,平衡将向左移动,使KI3继续分解,最终只能测得溶液中I2和KI3的总量。为了测定I2的单独浓度,可在上述溶液中加入CCl4,然后充分摇匀(KI和KI3均不溶于CCl4),当温度和压力一定时,上述化学平衡及I2在CCl4层和H2O层中的分配平衡同时建立,测得四氯化碳层中I2的浓度,即可根据分配系数求得水层中I2的浓度。 当两个平衡同时建立时,设水层中KI3和I2的总浓度为b(可通过Na2S2O3标准溶液滴定测得)KI的初始浓度为c(由配置溶液可算出),四氯化碳层I2的浓度为a’(用Na2S2O3标准溶液滴定测得)I2在水层和四氯化碳层的分配系数为k,通过实验测得k值和四氯化碳层中I2的浓度a’后,可求出水层中I2浓度a’,k=a’/a,a=a’/k。 这样平衡中水层中I2的浓度为a,KI3的浓度为(b-a),KI的厨师浓度减去KI3的浓度(b-a),即c-(b-a), (因为形成一个KI3,就消耗一个KI),所以反应式(1)的平衡常数: 三、仪器和试剂: 仪器:250ml碘量瓶3个;50ml移液管3支;10ml移液管2支;250ml三角锥瓶4个;碱式滴定管2支;10ml量筒1个,25ml量筒1个;5ml量杯2个;50ml 小烧杯1个。 试剂:Na2S2O3标准溶液(0.01mol/L);KI标准溶液(0.1);四氯化碳;I2的CCl4溶液饱和溶液;碘;1%淀粉溶液。 四、实验步骤: 1、按表列数据,将样品溶液配于碘量瓶中。 2、将配好的溶液置于30℃的恒温槽内,恒温1.5小时。恒温期间,每隔10分钟振荡一次,如要取出槽外振荡,每次不要超过半分钟,以免温度改变,影响结果。最后一次振荡后,待两液层充分分离后,按表列数据吸取样品进行分析。 3、析水层时,用Na2S2O3滴至淡黄色,再加2ml淀粉溶液作指示剂,然后仔细滴至蓝色刚好消失。 4、吸取CCl4层样品溶液,(为了不让水层样品溶液进入移液管,用吸耳球边向移液管吹气通过水层而插入CCl4层),放入盛有10ml蒸馏水的三角锥瓶中。加入少许固体KI,以保证CCl4层中的I2完全提取到水层中,然后加入2ml淀粉溶液。细心地滴至水层蓝色消失,CCl4层不再呈紫红色。滴定后和未用完的CCl4层溶液皆应倾入回收瓶。 五、数据记录与处理

平衡系数

平衡系数 曳引电梯的轿厢与对重通过钢丝绳分别悬挂于曳引轮的两侧。利用对重可以部分平衡轿厢及轿内负载的重量,使曳引电机运行的负荷减轻。 理想的运行状态是对重的重量正好等于轿厢自重加上轿内负载的重量,这样曳引机运行负荷最小。 由于轿厢内负载的大小是经常变化的,每次运行时都是从空载到满载之间的某一个值,而对重在电梯安装调试完毕后已经固定,不便于随时改变,所以上述理想的平衡运行状态不是每次运行总能达到的。但是我们可以调整对重至一个恰当的重量(也就是说,选择一个合适的平衡系数)使电梯多次运行的情况基本上接近于理想的平衡状态。 电梯的平衡系数定义如下: B电梯的平衡系数=(T对重的重量-P轿厢自重)/Q电梯额定载重量 式中: B--电梯的平衡系数; T--对重的重量; P--轿厢自重; Q--电梯额定载重量。 国家标准 GB/T10058-1997《电梯技术条件》3.3.8条规定,各类电梯的平衡系数应在0.4~0.5范围内。 调试时可根据电梯的具体情况决定实际的平衡系数。 如果电梯经常轻载运行,平衡系数可取接近规范下限(0.4)值;如果电梯经常重载运行则取接近规范上限(0.5)值。 测量平衡系数的方法,一般是分别绘制出电梯上行和下行的电流负荷曲线,以两条曲线的交点确定。这种方法理论上是正确的,但实际操作却比较困难,这主要有以下3个原因。(1)要测量得较为准确,则曲线上的点就要取得足够多,也就是要在不同负载下多次上下运行测定曳引电机的运行电流,工作较繁重。(2)电梯上行和下行电流负载曲线的交角一般都很小,交点不易从图上确定,也就影响测量精度。(3)电梯调试时,不是简单地测量平衡系数,而是要设置一个合适的平衡系数。按照上述方法,如果测出的平衡系数不合规范,还得改变对重再测,因而工作量更大。在电梯的安装实践中总结出一种实用的方法,能够较方便准确地预设平衡系数。 下面就额定载重量1000kg平衡系数预设为0.45的电梯为例说明这种方法,其他情况下只要经过简单的换算即可。 (1)先根据经验,在对重框架内预置一定数量的对重块并固定好。在轿厢内均匀放置450kg砝码,注意不要偏置使轿底倾斜。将轿厢停在约一半提升高度的地方,使轿顶与对重在同一高度并能从中间层楼的厅门方便地进入轿顶,以便增减对重。 (2)切断电梯电源。用机械方法打开抱闸,手动盘车。由手感可知对重侧与轿 厢侧重量是否大致平衡。适当增减对重块,直至两侧基本平衡。 (3)在机房控制柜上操纵电梯以正常速度运行。为使测量准确,人不要站在轿厢内开车。如果在机房操纵电梯不方便,当然也可以在轿内开车,不过要将开车人的体重准确计入轿内负载。当轿厢运行至对重与轿厢在同一高度时测量曳引电机的定子电流。 (4) 比较上行和下行电流值。如上行电流大于下行电流,说明对重侧比轿厢侧轻,应增加对重块;如上行电流小于下行电流,说明对重侧较重,应减少对重块,上、下行电流相等则可以认为两侧重量平衡,平衡系数即为0.45。 (5) 考虑到电梯供电电压允许的波动范围是±7%,一般电流表的测量精度约为±2%,用于电梯试验的标准砝码每块为25kg,在实际调试中,一般上、下行电流值相差在3%以内即

高中化学等效平衡原理(习题练习)

等效平衡原理及练习 一、等效平衡概念 等效平衡是指在一定条件(恒温恒容或恒温恒压)下,只是起始加入情况不同的同一可逆反应达平衡后,任何相同组分的体积分数或物质的量分数均相等的平衡。 在等效平衡中,有一类特殊的平衡,不仅任何相同组分X的含量(体积分数、物质的量分数)均相同,而且相同组分的物质的量均相同,这类等效平衡又称为同一平衡。同一平衡是等效平衡的特例。 如,常温常压下,可逆反应: 2SO2 + O2 2SO2 ①2mol 1mol 0mol ②0mol 0mol 2mol ③0.5mol 0.25mol 1.5mol ①从正反应开始,②从逆反应开始,③从正逆反应同时开始,由于①、②、③三种情况如果按方程式的计量关系折算成同一方向的反应物,对应各组分的物质的量均相等(如将②、③折算为①),因此三者为等效平衡 二、等效平衡规律 判断是否建立等效平衡,根据不同的特点和外部条件,有以下几种情况: ①在恒温、恒容条件下,对于反应前后气体分子数改变的可逆反应,改变起始时加入物质的物质的量,通过化学计量数计算,把投料量换算成与原投料量同一则物质的物质的量,若保持其数值相等,则两平衡等效。此时,各组分的浓度、反应速率等分别与原平衡相同,亦称为同一平衡。 ②在恒温、恒容条件下,对于反应前后气体分子数不变的可逆反应,改变起始时加入物质的物质的量,通过化学计量数计算,把投料量换算成与原投料量同一则物质的物质的量,只要物质的量的比值与原平衡相同则两平衡等效。此时,各配料量不同,只导致其各组分的浓度反应速率等分别不同于原平衡,而各组分的百分含量相同。 ③在恒温、恒压下,不论反应前后气体分子数是否发生改变,改变起始时加入物质的物质的量,根据化学方程式的化学计量数换算

何谓结晶过程中的溶质再分配平衡分配系数Ko定义答结晶

1. 何谓结晶过程中的溶质再分配?平衡分配系数Ko 定义? 答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。 2. A-B 二元合金原始成分为 C O =C B =2.5%,K O =0.2,m L =5,自左向右单向凝固,固相无扩散而液相仅有扩散(D L =3×10?5cm 2?s ) 。达到稳定态凝固时,求: (1)S-L 界面的C S ?和C L ?; (2)S-L 界面保持平整界面的条件。 解:(1)求固-液界面的**L S C C 和 :由于固相中无扩散而液相中仅有限 扩散的情况下达到稳定状态时,满足: 0 0*K C C L = ,C *S = C 0 代入C 0=C B =2.5%,K 0=0.2 即可得出: 00*K C C L ==2 .0%5.2=12.5% C *S = C 0 = 2.5% (2)固-液界面保持平整界面的条件 : 当存在“成分过冷”时,随着的“成分过冷”的增大,固溶体生长方 式 将 经历:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶) 的转变过程,所以只有当不发生成分过冷时,固-液界面才可保持平整界面,即需满足

R G L ≥000)1(K K D C m L L ? 代入L m =5,C 0=C B =2.5% ,D L =3×10-5cm 2/s , K 0=0.2 可得出: R G L ≥1.67×104 ℃/cm 2s 即为所求. 2. 成分过冷与热过冷的涵义以及他们之间的区别和联系。 答:成分过冷的涵义:合金在不平衡凝固时,使液固界面前沿的液相中形成溶质富集层,因富集层中各处的合金成分不同,具有不同的熔点,造成液固前沿的液相处于不同的过冷状态,这种由于液固界面前沿合金成分不同造成的过冷。 热过冷的涵义: 界面液相侧形成的负温度剃度,使得界面前方获得大于k T ?的过冷度。 成分过冷与热过冷的区别 : 热过冷是由于液体具有较大的过冷度时,在界面向前推移的情况下,结晶潜热的释放而产生的负温度梯度所形成的。可出现在纯金属或合金的凝固过程中,一般都生成树枝晶。 成分过冷是由溶质富集所产生,只能出现在合金的凝固过程中,其产生的晶体形貌随成分过冷程度的不同而不同,当过冷程度增大时,固溶体生长方式由无成分过冷时的“平面晶”依次发展为:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶)。 成分过冷与热过冷的联系: 对于合金凝固,当出现“热过冷”的影响时,必然受“成分过冷”的

等效平衡问题的基本模型及例题

等效平衡问题的基本模型 等效平衡问题是高中化学中《化学平衡》这一章的一个难点,也是各级各类考试的重点和热 点。学生如何正确理解并运用相关知识进行解题是非常必要的。经过对大量试题的对比分析, 笔者认为可以归纳为以下三种情形: 完全等效平衡,这类等效平衡问题的特征是在同T、 P、 V 的条件下,同一化学反应经过不 同的反应过程最后建立的平衡相同。解决这类问题的方法就是构建相同的起始条件。下面看例题一: 【例题一】:温度一定,在一个容器体积恒定密闭容器内,发生合成氨反应:N2+3H2 2NH3。若充入 1molN2 和 3molH2 ,反应达到平衡时NH3 的体积百分含量为W% 。若改变开始时投 入原料的量,加入amolN2,bmolH2 ,cmolNH3 ,反应达到平衡时,NH3 的体积百分含量仍 为 W% ,则: ①若 a=b=0, c= ②若 a=0.75, b= , c= ③若温度、压强恒定,则a、 b、 c 之间必须满足的关系是 分析:通过阅读题目,可以知道建立平衡后两次平衡之间满足同 T、 P、 V ,所以可以断定是完全 等效平衡,故可以通过构建相同的起始条件来完成。 N2 + 3H2 2NH3 起始条件Ⅰ:1mol 3mol 0 起始条件Ⅱ:amol bmol cmol (可以把 cmolNH3全部转化为 N2, H2) 转化: 0.5cmol 1.5cmol cmol 构建条件:( a+0.5c)mol ( b+1.5c) mol 0 要使起始条件Ⅰ和起始条件Ⅱ建立的平衡一样,那么必须是起始条件Ⅰ和构建条件完全相 同。则有:( a+0.5c) mol = 1mol ( b+1.5c) mol = 3mol 其实这两个等式就是③的答案,①②的答案就是代入数值计算即可。 不完全等效平衡,这类等效平衡问题的特征是在同T、P 不同 V 的条件下,同一化学反应经过不同的反应过程最后建立的平衡中各成分的含量相同。解决这类问题的方法就是构建相似 的起始条件,各量间对应成比例。下面看例题二: 【例题二】:恒温恒压下,在一个可变容积的容器中发生中下反应: A ( g)+B(g) = C(g)(1)若开始时放入1molA 和 1molB ,到达平衡后,生成 a molC,这时 A 的物质的量为 mol 。 (2)若开始时放入3molA 和 3molB ,到达平衡后,生成 C 的物质的量为mol 。 (3)若开始时放入xmolA 、2molB 和 1molC ,到达平衡后, A 和 C 的物质的量分别是y mol 和 3a mol ,则 x=, y= ,平衡时, B 的物质的量(选填一个编号) 甲:大于 2mol 乙:等于 2mol 丙:小于 2mol 丁:可能大于,等或小于2mol 作出判断的理由是。 (4)若在( 3)的平衡混合物中再加入3molC ,待到达平衡后, C 的物质的量分数是。分析:通过阅读题目,可以知道建立平衡后两次平衡之间满足同T、P 不同 V ,所以可以断定是不完全等效平衡,故可以通过构建相似的起始条件各量间对应成比例来完成。解答过程如下: A ( g) + B(g) = C(g) (1)起始条件Ⅰ:1mol 1mol 0 平衡Ⅰ:( 1-a ) mol ( 1-a ) mol amol (2)起始条件Ⅱ:3mol 3mol 0 平衡Ⅱ: 3( 1-a) mol 3 ( 1-a ) mol 3amol (各量间对应成比例)

如何做出电梯平衡系数

如何做出电梯平衡系数 本方法只试用于曳引驱动式电梯。 平衡系数是曳引式驱动电梯的重要性能指标。曳引电梯的轿厢与对重通过钢丝绳分别悬挂于曳引轮的两侧。利用对重可以部分平衡轿厢及轿内负载的重量,使曳引电机运行的负荷减轻。理想的运行状态是对重的重量正好等于轿厢自重加上轿内负载的重量。这样曳引机运行负荷最小。由于轿厢内负载的大小是经常变化的,每次运行时都是从空载到满载之间的某一个值,而对重在电梯安装调试完毕后已经固定,不便于随时改变,所以上述理想的平衡运行状态不是每次运行总能达到的。但是我们可以调整对重至一个恰当的重量(也就是说,选择一个合适的平衡系数)使电梯多次运行的情况基本上接近于理想的平衡状态。 电梯的平衡系数定义如下: B=(T-P)/Q 式中:B--电梯的平衡系数; T--对重的重量; P--轿厢自重; Q--电梯额定载重量。 国家标准GB/T10058-1997《电梯技术条件》3.3.8条规定,各类电梯的平衡系数应在0.4~0.5范围内。 调试时可根据电梯的具体情况决定实际的平衡系数。如果电梯经常轻载运行,平衡系数可取接近规范下限(0.4)值;如果电梯经常重载运行,则取接近规范上限(0.5)值。 测量平衡系数的方法,一般是分别绘制出电梯上行和下行的电流--负荷曲线,以两条曲线的交点确定。这种方法理论上是正确的,但实际操作却比较困难,这主要有以下3个原因。(1)要测量得较为准确,则曲线上的点就要取得足够多,也就是要在不同负载下多次上下运行测定曳引电机的运行电流,工作较繁重。(2)电梯上行和下行电流-负载曲线的交角一般都很小,交点不易从图上确定,也就影响测量精度。(3)电梯调试时,不是简单地测量平衡系数,而是要设置一个合适的平衡系数。按照上述方法,如果测出的平衡系数不合规范,还得改变对重再测,因而工作量更大。在电梯的安装实践中总结出一种实用的方法,能够较方便准确地预设平衡系数。下面就额定载重量1000kg,平衡系数预设为0.45的电梯为例说明这种方法。其他情况下只要经过简单的换算即可。 (1)先根据经验,在对重框架内预置一定数量的对重块并固定好。在轿厢内均匀放置450kg砝码,注意不要偏置使轿底倾斜。将轿厢停在约一半提升高度的地方,使轿顶与对重在同一高度并能从中间层楼的厅门方便地进入轿顶,以便增减对重。 (2)切断电梯电源。用机械方法打开抱闸,手动盘车。由手感可知对重侧与轿厢侧重量是否大致平衡。适当增减对重块,直至两侧基本平衡。 (3)在机房控制柜上操纵电梯以正常速度运行。为使测量准确,人不要站在轿厢内开车。如果在机房操纵电梯不方便,当然也可以在轿内开车,不过要将开车人的体重准确计入轿内负载。当轿厢运行至对重与轿厢在同一高度时测量曳引电机的定子电流。 (4) 比较上行和下行电流值。如上行电流大于下行电流,说明对重侧比轿厢侧轻,应增加对重块;如上行电流小于下行电流,说明对重侧较重,应减少对重块,

(完整版)化学平衡常数及其计算

考纲要求 1.了解化学平衡常数(K)的含义。 2.能利用化学平衡常数进行相关计算。 考点一化学平衡常数 1.概念 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。 2.表达式 对于反应m A(g)+n B(g)p C(g)+q D(g), K=c p?C?·c q?D? c m?A?·c n?B? (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。 3.意义及影响因素 (1)K值越大,反应物的转化率越大,正反应进行的程度越大。

(2)K只受温度影响,与反应物或生成物的浓度变化无关。 (3)化学平衡常数是指某一具体反应的平衡常数。 4.应用 (1)判断可逆反应进行的程度。 (2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。 对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D? c a?A?·c b?B? 。 Q<K,反应向正反应方向进行; Q=K,反应处于平衡状态; Q>K,反应向逆反应方向进行。 (3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。 深度思考

1.正误判断,正确的打“√”,错误的打“×” (1)平衡常数表达式中,可以是物质的任一浓度() (2)催化剂能改变化学反应速率,也能改变平衡常数() (3)平衡常数发生变化,化学平衡不一定发生移动() (4)化学平衡发生移动,平衡常数不一定发生变化() (5)平衡常数和转化率都能体现可逆反应进行的程度() (6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。 (1)Cl2+H2O HCl+HClO (2)C(s)+H2O(g)CO(g)+H2(g) (3)CH3COOH+C2H5OH CH3COOC2H5+H2O (4)CO2-3+H2O HCO-3+OH- (5)CaCO3(s)CaO(s)+CO2(g) 3.一定温度下,分析下列三个反应的平衡常数的关系 ①N2(g)+3H2(g)2NH3(g)K1 ②1 2N2(g)+ 3 2H2(g)NH3(g)K2 ③2NH3(g)N2(g)+3H2(g)K3 (1)K1和K2,K1=K22。 (2)K1和K3,K1=1 K3。 题组一平衡常数的含义 1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应: 2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K1 2NO(g)+Cl2(g)2ClNO(g)K2 则4NO2(g)+2NaCl(s)2NaNO3(s)+2NO(g)+Cl2(g)的平衡常数K=(用K1、K2表示)。 2.在一定体积的密闭容器中,进行如下化学反应:CO2(g)+H2(g)CO(g)+H2O(g),其化学平衡常数K和温度t的关系如表所示: t/℃700 800 830 1 000 1 200 K0.6 0.9 1.0 1.7 2.6

化学平衡之等效平衡练习题(含解析答案).doc

化学平衡练习题 【例 1 】将 3 mol A 和 1 mol B 混合于一体积可变的密闭容器P 中,以此时的温度、压强和体 积作为起始条件,发生了如下反应:3A(g)+B(g) 2 C(g)+D(g) 达到平衡时 C 的浓度为 wmol · L -1 。回答⑴~⑸小题: (1) 保持温度和压强不变,按下列四种配比充入容器P 中,平衡后 C 的浓度仍为 -1 wmol · L 的是 () (A)6 mol A+2 mol B (B)3 mol A+1 mol B 十 2 mol C , (C)2 mol C+1 mol B+1 mol D (D)1 mol C+2mol D (2) 保持原起始温度和体积不变,要使平衡后 C 的浓度仍为wmol · L -1 ,应按下列哪种 配比向容器 Q 中充入有关物质( ) (A)3 mol A+1 mol B (B)4 mol C 十 2 mol D (C)1.5 mol A+0.5mol B+1 mol C +0.5 mol D (D) 以上均不能满足条件, (3)保持原起始温度和体积不变,若仍按3 mol A 和 1 mol B 配比在容器 Q 中发生反应, 则平衡时 C 的浓度和w rml · L-1 的关系是 () (A) > w (B) < w (C)= w (D) 不能确定 (4) 将 2 mol C 和 2 mol D 按起始温度和压强充入容器Q 中,保持温度和体积不变,平 衡时 C 的浓度为 V mol ·L -1 , V 与 w 和叫的关系是 ( ) (A) V > w (B) V <w (C) V= w (D) 无法比较 (5) 维持原起始温度和体积不变,按下列哪种配比充入容器Q 可使平衡时 C 的浓度为 -1 ) V mol · L ( (A)1 mol C+0.5 m01 D.(B)3 mol A+2 mol B (C)3 mol A+1 mol B+1 mol D(D) 以上均不能满足条件 解析⑴( A )⑵ (D) .⑶ (B) .⑷ (B) .⑸ (C) .

结构力学次课力矩分配法分配系数结点不平衡力矩

梦想不会逃跑,会逃跑的永远都是自己! 结构力学第27次课 第8章力矩分配法 分配系数 结点不平衡力矩2012-6-6 第1节课 其他约束情况下 超静定单跨梁的转动刚度 1 转动刚度:梁端发生单位转角产生的弯矩。 ??? ?? ??????=?=远端为自由端远端为平行支链杆远端为铰支端远端为固定端0 341 ik ik ik ik ik ik i i i S S M 2 分配系数:与转动刚度成正比 () 1 ==∑∑i ik i ik ik ik S S μμ3 传递系数:近端发生转角时,远端弯矩与近端弯矩的比值. ??? ? ????-??== 远端为平行支链杆远端为铰支端 远端为固定端1021 ik ki ik M M C ?结构力学第26次课(mardi 5-juin -2012)内容回顾 ( ) ( )a b 1 2 3 4 A l l l l B C A D E =1i =1 i =1i =1 i 单结点的力矩分配 F P q A 原结构 = F P q A A 状态 -M B 状态 + A 点附加刚臂阻止转动,承担汇交杆端的不平衡固端弯矩M 。 在结点上加一个反向的力矩。 (相当于刚臂放松) B 状态的内力——分配弯矩 用力矩分配法计算 A 状态的内力——固端弯矩 查表计算 例题-M(作用在结点上)结点不平衡力矩 3/7 4/7i i M i i M B M B M B =-M M 1. 直接作用结点力偶 分配系数:二、结点不平衡力矩例题 3/7 4/7-ql 2/8固端弯矩q i i l l 分配系数:-ql 2/8 结点不平衡力矩 2 8 ql 2. 杆上作用荷载 M B M B 28 ql 单结点的力矩分配 例题 -F P l 固端弯矩 -F P l 0 F P l/2 F P l 杆端弯矩 0F P l /2F P l 分配、传递l l 2i i F P 1 0F P l F P l/2 M 图 3. 带悬臂端杆件 分配系数:

(完整版)高考化学知识点化学平衡常数

高考化学知识点:化学平衡常数 高考化学知识点:化学平衡常数 1、化学平衡常数 (1)化学平衡常数的化学表达式 (2)化学平衡常数表示的意义 平衡常数数值的大小可以反映可逆反应进行的程度大小,K值越大,反应进行越完全,反应物转化率越高,反之则越低。 2、有关化学平衡的基本计算 (1)物质浓度的变化关系 反应物:平衡浓度=起始浓度-转化浓度 生成物:平衡浓度=起始浓度+转化浓度 其中,各物质的转化浓度之比等于它们在化学方程式中物质的计量数之比。 (2)反应的转化率():= 100% (3)在密闭容器中有气体参加的可逆反应,在计算时经常用到阿伏加德罗定律的两个推论: 恒温、恒容时:恒温、恒压时:n1/n2=V1/V2 (4)计算模式 浓度(或物质的量) aA(g)+bB(g) cC(g)+dD(g) 起始 m n O O 转化 ax bx cx dx 平衡 m-ax n-bx cx dx (A)=(ax/m)100% (C)= 100% (3)化学平衡计算的关键是准确掌握相关的基本概念及它们相互之间的关系。化学平衡的计算步骤,通常是先写出有关的化学方程式,列出反应起始时或平衡时有关物质的浓度或物质的量,然后再通过相关的转换,分别求出其他物质的浓度或物质的量和转化率。概括为:建立解题模式、确立平衡状态方程。说明: ①反应起始时,反应物和生成物可能同时存在; ②由于起始浓度是人为控制的,故不同的物质起始浓度不一定是化学

计量数比,若反应物起始浓度呈现计量数比,则隐含反应物转化率相等,且平衡时反应物的浓度成计量数比的条件。 ③起始浓度,平衡浓度不一定呈现计量数比,但物质之间是按计量数反应和生成的,故各物质的浓度变化一定成计量数比,这是计算的关键。 化学平衡常数知识点总结分享到这里,更多内容请关注高考化学知识点栏目。

等效平衡学案

等效平衡学案 一、概念 在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百分含量.... (体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡。 概念的理解:(1)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。 (2)“等效平衡”与“完全相同的平衡状态”不同: “等效平衡”只要求平衡混合物中各组分的物质的量分数(或体积分数)对应相同,反应的速率、压强等可以不同。 (3)平衡状态只与始态有关,而与途径无关,只要物料相当,就达到相同的平衡状态。 二、等效平衡的分类 在等效平衡中比较常见并且重要的类型主要有以下三种: I 类:恒温恒容下对于反应前后气体体积发生变化的反应来说(即△V ≠0的体系):等价转化后,对应各物质起始投料的物质的量....与原平衡起始态相同.. 。 II 类:恒温恒容下对于反应前后气体体积没有变化的反应来说(即△V=0的体系):等价转化后,只要反应物(或生成物)的物质的量的比例....... 与原平衡起始态相同,两平衡等效。 III 类:恒温恒压下对于气体体系等效转化后,要反应物(或生成物)的物质的...量的比例.... 与原平衡起始态相同,两平衡等效。 解题的关键,读题时注意勾画出这些条件,分清类别,用相应的方法求解。我们常采用“等价转换”的方法,分析和解决等效平衡问题 三、例题解析 I 类: 在恒温恒容下,对于反应前后气体体积改变(m+n ≠p+q)的反应,只 有物质的量按方程式的化学计量关系转化为 例: N 2(g) + 3H 2(g) 2NH 3(g) 起始量 1 mol 3 mol 0 mol 等效于 0 mol 0 mol 2 mol 0.5 mol 1.5 mol 1 mol a mol b mol c mol 则a 、b 、c 关系:___________

实验一 化学平衡常数及分配系数的测定

实验一化学平衡常数及分配系数的测定 【实验目的】 1、了解反应KI+I2→KI3。 2、熟悉测定反应的平衡常数及分配系数的一种方法。 【实验器材】 恒温槽1套,250ml碘量瓶3个,50mL移液管,250ml锥形瓶4个,碱式滴定管1支,100ml量筒1个 0.01mol/L Na2S2O3标准溶液,0.1 mol/L KI溶液,分析纯四氯化碳,碘的四氯化碳饱和溶液,0.1%淀粉溶液 【实验原理】 定温、定压下,碘和碘化钾在水溶液中建立如下的平衡:KI+I2→KI3,为了测定平衡常数,若用标准溶液来滴定溶液中I2的浓度,平衡将向左移动,使KI3继续分解,因而最终只能测定溶液中I2和KI3的总量。为了解决这个问题,可在上述溶液中加入四氯化碳,然后充分摇混(KI和KI3不溶于四氯化碳),当温度和压力一定时,上述平衡及I2在四氯化碳和水层的分配平衡同时建立。测得四氯化碳层中I2的浓度,即可根据分配系数求得水层中I2 的浓度。其反应式为:S2O32-+I2→S4O62-+I-,设水层中KI和KI3总浓度为b,KI的初始浓度为c,四氯化碳层I2的浓度为a’,I2在水层及四氯化碳的分配系数为K,实验测定分配系数K及四氯化碳层中I2的浓度a’后,则根据K=a’/a,即可求得水层中I2的浓度a。再从已知c及测得的b,即可求得平衡常数:Kc=[KI3]/[ I2][KI]=(b-a)/a[c-(b-a)] 【实验内容】 1. 按列表要求将溶液配于碘量瓶中,并将数据记录于表中; 2. 将配好的溶液置于30℃的恒温槽内,每隔5分钟取出震荡一次,约半小时后,按表列数据取样进行分析。 3. 水层分析时,用Na2S2O3滴定,加淀粉溶液做指示剂,然后仔细滴定至蓝色恰好消失。 4. 取CCl4层分析时,用洗耳球使移液管较微鼓泡通过水层进入四氯化碳层,以免水进入移液管中。于锥形瓶中加入10~15ml水,6滴淀粉溶液,然后将四氯化碳层样放入水层(为增快I2进入水层,可加入KI)。小心地滴定至水层蓝色消失,四氯化碳不再显红色。滴定各瓶上、下两层所需Na2S2O3量,记于表中。 5. 滴定后和未用完的四氯化碳层,皆应倾入回收瓶中。

2018年全国卷高考化学总复习《等效平衡》专题训练(含解析)

2018年全国卷高考化学总复习《等效平衡》专题训练 选择题(每题有1-2个选项符合题意) 1.在1L密闭容器中加入2molA和1molB,在一定温度下发生下列反应:2A(g)+B(g) 3C(g) +D(g),达到平衡时容器内D的百分含量为a%。若保持容器体积和温度不变,分别通入下列几组物质达到平衡时容器内D的百分含量也为a%的是() A.3molC和1molD B.2molA、1molB和3molC C.4molC和1molD D.1.9molA、0.95molB、0.15molC和0.05molD 2.在一个容积固定的密闭容器中充入,建立如下平衡:H 2 (g)+I2 (g) 2HI(g),测得HI的转化率为a%。其他条件不变,在上述平衡体系中再充入1mol HI,待平衡建立时HI的转化率为b%,则a与b的关系为() A.a>b B.a<b C.a=b D.无法确定 3.在恒温时,一固定容积的容器内发生如下反应: 2NO 2(g)N2O4(g),达到平衡时,再向容器内通入一定量的NO2(g),重新达到平衡后,与第一次平衡时相比,NO2的体积分数() A.不变B.增大C.减小D.无法判断4.恒温恒压条件下,可逆反应2SO 2+O22SO3在密闭容器中进行,起始时充入1mol SO3,达到平衡时,SO2的百分含量为ω%,若再充入1mol SO3,再次达到新的平衡时,SO2的的百分含量为() A.大于ω% B.小于ω% C.等于ω% D.无法确定 5.在一恒温恒容密闭容器中,A、B气体可建立如下平衡:2A(g)+2B(g) C(g)+3D(g) 现分别从两条途径建立平衡:I. A、B的起始量均为2mol;II. C、D的起始量分别为2mol 和6mol。下列叙述不正确的是() A.I、II两途径最终达到平衡时,体系内混合气体的体积分数相同 B.I、II两途径最终达到平衡时,体系内混合气体的体积分数不同 C.达到平衡时,途径I的和途径II体系内混合气体平均相对分子质量相同 D.达到平衡时,途径I的气体密度为途径II密度的1/2 6.一定温度下,将a mol PCl 5通往一容积不变的密闭容器中达如下平衡:PCl5(g)PCl3(g)+Cl2(g),此时平衡混合气体的压强为P1,再向容器中通入a mol PCl5,恒温下再度达到平衡后压强变为P2,则P1与P2的关系是() A.2P1=P2B.2P1>P2C.2P1<P2D.P1=2P2 7.在温度、容积相同的3个密闭容器,按不同方式投入反应物,保持恒温、恒容,测得反 ―1

六化学平衡常数及分配系数的测定

实验六 化学平衡常数及分配系数的测定 一、实验目的 测定I 2在CCl 4和H 2O 中的分配系数k 以及反应I 2+KI=KI 3的平衡常数K C 。 二、实验原理 在恒温、恒压下I 2和KI 在水溶液中建立如下平衡: I 2+KI=KI 3 (1) 为了测定平衡常数,应在不扰动平衡状态的条件下,测定平衡组成。当上述反应达到平衡时,若用Na 2S 2O 3标准溶液来滴定溶液中I 2的浓度,则随着I 2的消耗,平衡将向左移动,使KI 3继续分解,最终只能测得溶液中I 2和KI 3的总量。为了测定I 2的单独浓度,可在上述溶液中加入CCl 4,然后充分摇匀。由于KI 和KI 3均不溶于CCl 4,只有I 2既可溶于CCl 4也可溶于H 2O ,当温度和压力一定时,上述化学平衡及I 2在CCl 4层和H 2O 层中的分配平衡同时建立。 设a ——平衡时H 2O 层中的2I C a ’——平衡时CCl 4层中2I C b ——平衡时H 2O 层中32KI I C C + c ——KI 溶液初浓度 实验测得分配系数k 及CCl 4层中I 2浓度a ’后,根据k=a ’/a 即可求得H 2O 层中I 2的单独浓度a 。再从已知c 及测得的b ,即可计算(1)式的平衡常数。 ] [23)(a b c a a b C C C K KI I KI C ---= = 三、仪器和试剂 恒温槽一套;250ml 碘量瓶3个;50ml 移液管3支;10ml 移液管2支;250ml H 2O 层 (稀KI 层) CCl 4层 H 2O 层 (稀KI 层) CCl 4层 II 、III 号样 I 号样

化学平衡常数基础知识讲义

化学平衡二 教学目标 1.知道化学平衡常数的含义; 2.能运用化学平衡常数对化学反应进行的程度做出判断; 3.能利用化学平衡常数用三段式计算反应物的转化率; 教学重点、难点 教学重点: 平衡常数的应用 教学难点: 平衡常数的理解 知识点详解: 知识点一 化学平衡常数的含义及表达式 1.含义 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数(简称平衡常数),用符号“K”表示。 2.对于一般的可逆反应:m A(g)+n B(g)p C(g)+q D(g),当在一定温度下达到化学平 衡状态时,平衡常数的表达式为:K =cp C ·cq D cm A ·cn B 。 例1.对于3Fe +4H 2O(g)Fe 3O 4+4H 2(g),反应的化学平衡常数的表达式为( ) A .K = c Fe3O4·c H2c Fe ·c H2O B .K =c Fe3O4·c4H2 c Fe ·c4H2O C .K =c4H2O c4H2 D .K =c4H2 c4H2O 知识点二 意义 (1)K 值越大,说明正反应进行的程度越大,反应物的转化率越大;反之进行的程度就越小,转化率就越小。 (2)K 只受温度影响,与反应物或生成物的浓度变化无关。 例2.关于化学平衡常数的叙述,正确的是( ) A .只与化学反应方程式本身和温度有关 B .只与反应的温度有关 C .与化学反应本身和温度有关,并且会受到起始浓度的影响 D .只与化学反应本身有关,与其他任何条件无关的一个不变的常数 高温

例3.在密闭容器中进行下列反应)()(2g CO s C +)(2g CO ;0>?H 达到平衡后,改变 下列条件,则指定物质的浓度及平衡如何变化: (1)增加少量碳,平衡 ,)(CO c ; (2)减小密闭容器体积,保持温度不变,则平衡 ,)(2CO c ,K ; (3)通入2N ,保持密闭容器体积和温度不变,则平衡 ,)(2CO c ,K ; (4)保持密闭容器体积不变,升高温度,则平衡 ,)(CO c ,K ; 迁移1.在某温度下,将2H 和2I 各mol 10.0的气态混合物充入L 10的密闭容器中,充分反应,达到平衡后,测得L mol H c /0080.0)(2=。 (1)求该反应的平衡常数。 (2)在上述温度下,该容器中若通入2H 和2I 蒸气的浓度各为L mol /020.0,试求达到化学平衡状态时各物质的浓度。 知识点三 化学平衡常数的应用 (1)K 值越大,说明平衡体系中生成物所占的比例越大,它的正向反应进行的程度越大,即该反应进行得越完全,反应物转化率越大;反之,就越不完全,转化率就越小。 (2)若用任意状态的浓度幂之积的比值(称为浓度商,用c Q 表示)与K 比较,可判断可逆反应是否达到平衡状态和反应进行的方向。即: K Q c < 反应向正反应方向进行 K Q c = 反应达到平衡状态

等效平衡练习题含答案

等效平衡 1、向某密闭容器中充入1 mol CO和2 mol H2O(g),发生反应CO+H2O(g)CO2+H2当反应达到平衡时,CO的体积分数为x。若维持容器的体积和温度不变,起始物质按下列四种配比充入该容器中,达到平衡时CO的体积分子大于x的是 A、0.5mol CO+2mol H2O(g)+1mol CO2+1mol H2 B、1mol CO+1mol H2O(g)+1mol CO2 +1mol H2 C、0.5mol CO+1.5mol H2O(g)+0.4mol CO2+0.4molH2 D、0.5mol CO+1.5mol H2O(g)+0.5molCO2+0.5mol H2 2、在一定温度下,向容积固定不变的密闭容器中充入a mol NO2,发生如下反应:2NO2(g) N2O4(g);△H<0。达平衡后再向容器中充入amol NO2,再次达到平衡后,与原平衡比较,下列叙述不正确的是 A.相对平均分子质量增大B.NO2的转化率提高 C.NO2的质量分数增大D.反应放出的总热量大于原来的2倍 3、已知甲为恒温恒压容器,乙为恒温恒容容器。初始时,两容器的温度、体积相同,两容器中均充入2molSO2和lmolO2,且发生反应为2SO2(g)+O2(g) 2SO3(g);△H<0;当两容器都达到平衡后,为使两者中的SO2在平衡混合物中的物质的量分数相同,下列措施中不可行的是 A.向甲容器中再充人一定量的氦气B.向乙容器中再充人2mol的SO3气体 C.适当降低乙容器的温度D.缩小甲容器的体积 4、将4mol SO2与2 mol O2的混合气分别置于容积相等的甲、乙两容器中,发生反应:2SO2(g)+O2(g)2SO3(g);△H<0,在相同温度下,使其均达到平衡状态。甲是恒压容器,乙是恒容容器。甲容器达到平衡状态时,测得混合气体的物质的量为 4.2mol;乙容器经50s达到平衡状态。请回答: (1)甲容器达到平衡时SO2的转化率是,其所需时间50s(填“大于”、“小于”或“等于”)。 (2)达到平衡状态后,要使甲、乙两容器中SO2物质的量相等,可采取的措施是(填字母)。 A.保持温度不变,适当扩大甲容器的容积 B.保持容积不变,使乙容器升温 C.保持容积和温度不变,向乙容器中加入适量SO3(g) D.保持容积和温度不变,向甲容器中加入适量SO3(g) 5、t℃时,将3mol A和1mol B气体通入容积为2L的密闭容器中(容积不变),发生如下反应3A(G)+B(x)xC(g),2min时反应到达平衡状态(温度不变),此时容器内剩余了0.8mol B,并测得C的浓度为0.4mol·L-1。请填写下列空白:

分配系数和化学反应平衡常数的测定

西安交通大学实验报告 课程:物理化学实验 系别:化学系 专业班号: 组别: 实验日期:2016年3月 日 姓名: 学号: 交报告日期:2016年3月 日 同组者: 实验名称:分配系数和化学反应平衡常数的测定 一、 实验目的 (1)测定碘在四氯化碳和水中的分配系数。 (2)测定水溶液中碘与碘离子之间配合反应的标准平衡常数。 二、 实验原理 1. 碘在水和四氯化碳中分配系数的测定 在一定温度下,将一种溶质A 溶解在两种互不相溶的液体溶剂中,当系统达到平衡时此溶质在这两种溶剂中分配服从一定的规律。即如果溶质A 在这两种溶剂中既无解离作用,也无蒂合作用,则在一定温度下平衡时,该平衡可以表示如下: A(溶剂1) B (溶剂2) 根据相平衡规则,此时A 在这两种溶剂中的化学势相等。进一步根据溶质型组分的化学势表达式,,A 在这两种溶剂中的活度之比是一常数,可用K d 表示。若两种溶液都比较稀,则它们相对浓度之比近似等于K d ,称为分配系数; 12 12//c c c c c c K d ==θ θ 如果溶质A 在溶剂1和溶剂2中的分子形态不同,则分配系数的表示式就不同。例如,如果A 发生蒂合作用并主要以A n 形式存在,则该平衡可以表示为: A(溶剂1) nA (溶剂2) 其中n 是缔合度,它表明缔合分子A n 是由单分子组成的。此时分配系数可表示为: θ θc c c c K n d /)/(12= 若将I 2加入CCl 4和H 2O 这两种互不相溶的液体中,则会在这两相中建立如下平衡:

I 2 (H 2 O) I 2(CCl 4) 分别滴定CCl 4层和H 2O 层中I 2的浓度。 2. 在水溶液中碘与碘离子配合反应的标准平衡常数的测定 在水溶液中会发生配合反应并建立碘负离子与碘三负离子平衡,其平衡 常数可表示为: ) /()/() /(23 2 3 2 3 θ θθθγγγc c c c c c a a a K I I I I I I I I I ?? ?= ?= --- --- 若溶液比较稀,则溶液中各组分活度系数都近似为1,那么 θθθ c K c c c c K c I I I ?=??≈ -- 2 3 在一定温度和压力下,把浓度为c 的KI 水溶液与I 2的CCl 4溶液按一定比 例混合后,用滴定方法测得浓度后可得出水层中配合碘的浓度为d=(b+d)-b,进一步可得出水溶液中碘和碘离子配合反应的标准平衡常数为: b d c c d c K K c ?-?= ?=)(θ θ θ 三、 仪器和药品 150ml 分液漏斗3个,250ml 磨口锥形瓶3个,100ml 量筒1个,5ml 微量滴定管1支,20ml 移液管(有刻度)2个,5ml 移液管3支,25ml 移液管3支,CCl 4(分析纯),0.1mol/L 的KI 溶液,0.1mol/L 的Na 2S 2O 3溶液,I 2的CCl 4溶液(饱和),淀粉指示剂。 四、 实验步骤 (1) 先将三个洗净烘干的锥形瓶按实验表加入不同液体。 (2) 将上述装好溶液的锥形瓶塞号塞子,并剧烈摇动30min ,使碘在CCl 4 层和水层充分达到分配平衡。摇动时勿用手握瓶壁,以免温度发生变化,然后倒入分液漏斗静置。 (3) 待两层完全清晰后,用移液管吸取各样品的CCl 4层5ml 放入干净的锥 形瓶中,并用量筒加入KI 溶液10ml ,促使I 2被提取到水层中。摇动锥形瓶,然后用Na 2S 2O 3滴定。待淡至淡黄色时,加入淀粉指示剂继

相关文档
最新文档