GTO的基本结构和工作原理

GTO的基本结构和工作原理
GTO的基本结构和工作原理

门极可断晶闸管(gate turn-off thyristor,GTO)是一种具有自断能力的晶闸管。处于断态时,如果有阳极正向电压,在其门极加上正向触发脉冲电流后,GTO可由断态转入通态,已处于通态时,门极加上足够大的反向脉冲电流,GTO由通态转入断态。由于不需用外部电路强迫阳极电流为0而使之关断,仅由门极加脉冲电流去关断它;所以在直流电源供电的DC—DC,DC—AC变换电路中应用时不必设置强迫关断电路。这就简化了电力变换主电路,提高了工作的可靠性,减少了关断损耗,与SCR相比还可以提高电力电子变换的最高工作频率。因此,GTO是一种比较理想的大功率开关器件。

一、结构与工作原理

1、结构

GTO是一种PNPN4层结构的半导体器件,其结构、等效电路及图形符号示于图1中。图1中A、G和K分别表示GTO的阳极、门极和阴极。α1为P1N1P2晶体管的共基极电流放大系数,α2为N2P2N1晶体管的共基极电流放大系数,图1中的箭头表示各自的多数载流子运动方向。通常α1比α2小,即P1N1P2晶体管不灵敏,而N2P2N1晶体管灵敏。GTO导通时器件总的放大系数α1+α2稍大于1,器件处于临界饱和状态,为用门极负信号去关断阳极电流提供了可能性。

普通晶闸管SCR也是PNPN4层结构,外部引出阳极、门极和阴极,构成一个单元器件。GTO称为GTO元,它们的门极和阴极分别并联在一起。与SCR不同,GTO是一种多元的功率集成器件,这是为便于实现门极控制关断所采取的特殊设计。

GTO的开通和关断过程与每一个GTO元密切相关,但GTO元的特性又不等同于整个GTO器件的特性,多元集成使GTO的开关过程产生了一系列新的问题。

2、开通原理

由图1(b)所示的等效电路可以看出,当阳极加正向电压,门极同时加正触发信号时,GTO导通,其具体过程如图2所示。

显然这是一个正反馈过程。当流入的门极电流I G足以使晶体管N2P2N1的发射极电流增加,进而使晶体管P1N1P2的发射极电流也增加时,α1和α2增加。当α1+α2>1之后,两个晶体管均饱和导通,GTO则完成了导通过程。可见,GTO开通的必要条件是

α1+α2>1,(1)

此时注入门极的电流

I G=[1-(α1+α2)I A]/ α2 (2)

式中,I A——GTO的阳极电流;

I G——GTO的门极电流。

由式(2)可知,当GTO门极注入正的电流I G但尚不满足开通条件时,虽有正反馈作用,但器件仍不会饱和导通。这是因为门极电流不够大,不满

足α1+α2>1的条件,这时阳极电流只流过一个不大而且是确定的电流值。当门极电流IG撤销后,该阳极电流也就消失。与α1+α2=1状态所对应的阳极电流为临界导通电流,定义为GTO的擎住电流。当GTO在门极正触发信号的作用下开通时,只有阳极电流大于擎住电流后,GTO才能维持大面积导通。{{分页}}

由此可见,只要能引起α1和α2变化,并使之满足α1+α2>1条件的任何因素,都可以导致PNPN4层器件的导通。所以,除了注入门极电流使GTO导通外,在一定条件下过高的阳极电压和阳极电压上升率du/dt,过高的结温及火花发光照射等均可能使GTO触发导通。所有这些非门极触发都是不希望的非正常触发,应采取适当措施加以防止。

实际上,因为GTO是多元集成结构,数百个以上的GTO元制作在同一硅片上,而GTO元的特性总会存在差异,使得GTO元的电流分布不均,通态压降不一,甚至会在开通过程中造成个别GTO元的损坏,以致引起整个GTO的损坏。为此,要求在制造时尽可能使硅片微观结构均匀,严格控制工艺装备和工艺过程,以求最大限度地达到所有GTO元的特性的一致性。另外,要提高正向门极触发电流脉冲上升沿陡度,以求达到缩短GTO元阳极电流滞后时间,加速GTO元阴极导电面积的扩展,缩短GTO开通时间的目的。

3、关断原理

GTO开通后可在适当外部条件下关断,其关断电路原理与关断时的阳极和门极电流如图3所示。关断GTO时,将开关S 闭合,门极就施以负偏置电压U G。晶体管P1N1P2的集电极电流I C1被抽出形成门极负电流-I G,此时晶体管N2P2N1的基极电流减小,进而引起I C1的进一步下降,如此循环不已,最终导致GTO的阳极电流消失而关断。

GTO的关断过程分为三个阶段:存储时间(t s)阶段,下降时间(t f)阶段,尾部时间(t t )阶段。关断过程中相应的阳极电流i A、门极电流i G、管压降u AK 和功耗P off随时间的变化波形如图3(b)所示。

(1)t s阶段。GTO导电时,所有GTO元中两个等效晶体管均饱和,要用门极控制GTO关断,首先必须使饱和的等效晶体管退出饱和,恢复基区控制能力。为此应排除P2基区中的存储电荷,t s阶段即是依靠门极负脉冲电压抽出这部分存储电荷。在t s阶段所有等效晶体管均未退出饱和,3个PN结都还是正向偏置;所以在门极抽出存储电荷的同时,GTO阳极电流i A仍保持原先稳定导电时的数值I A,管压降u AK也保持通态压降。

(2)t f阶段。经过t s阶段后,P1N1P2等效晶体管退出饱和,N2P2N1晶体管也恢复了控制能力,当i G变化到其最大值-I GM时,阳极电流开始下降,于是α1和α2也不断减小,当α1+α2≤1时,器件内部正反馈作用停止,称此点为临界关断点。GTO的关断条件为

α1+α2<1,(3)

关断时需要抽出的最大门极负电流-I GM为

|-I GM|>[(α1+α)-1]I ATO/α2,(4)

式中,I ATO——被关断的最大阳极电流;

I GM——抽出的最大门极电流。

由式(4)得出的两个电流的比表示GTO的关断能力,称为电流关断增益,用βoff表示如下:βoff=I ATO/|-I GM|。(5)

βoff是一个重要的特征参数,其值一般为3~8。

在t f阶段,GTO元中两个等效晶体管从饱和退出到放大区;所以随着阳极电流的下降,阳极电压逐步上升,因而关断时功耗较大。在电感负载条件下,阳极电流与阳极电压有可能同时出现最大值,此时的瞬时关断损耗尤为突出。{{分页}}

(3)t t阶段。从GTO阳极电流下降到稳定导通电流值的10%至阳极电流衰减到断态漏电流值时所需的时间定义为尾部时间t t。

在t t阶段中,如果U AK上升du/dt较大时,可能有位移电流通过P2N1结注入P2基区,引起两个等效晶体管的正反馈过程,轻则出现I A的增大过程,重则造成GTO再次导通。随着du/dt上升减慢,阳极电流I A逐渐衰减。

如果能使门极驱动负脉冲电压幅值缓慢衰减,在t t阶段,门极依旧保持适当负电压,则t t时间可以缩短。

二、特性与参数

1、静态特性

(1)阳极伏安特性

GTO的阳极伏安特性如图4所示。当外加电压超过正向转折电压U DRM时,GTO即正向开通,这种现象称做电压触发。此时不一定破坏器件的性能;但是若外加电压超过反向击穿电压U<, /SPAN>RRM之后,则发生雪崩击穿现象,极易损坏器件。

用90%U DRM值定义为正向额定电压,用90%U RRM值定义为反向额定电压。

GTO的阳极耐压与结温和门极状态有着密切关系,随着结温升高,GTO的耐压降低,如图5所示。当GTO结温高于125℃时,由于α1和α2大大增加,自动满足了α1+α2>1的条件;所以不加触发信号GTO即可自行开通。为了减小温度对阻断电压的影响,可在其门极与阴极之间并联一个电阻,即相当于增设了一短路发射极。

GTO的阳极耐压还与门极状态有关,门极电路中的任何毛刺电流都会使阳极耐压降低,开通后又会使GTO擎住电流和管压降增大。图(6)表示门极状态对GTO阳极耐压的影响,图(6)中i G1和i G2相当于毛刺电流,i G0

(2)通态压降特性

GTO的通态压降特性如图(7)所示。结温不同,GTO的通态压降U A随着阳极通态电流I A的增加而增加,只是趋势不尽相同。图(7)中所示曲线为GFF200E型GTO的通态压降特性。一般希望通态压降越小越好;管压降小,GTO的通态损耗小。{{分页}}

2、动态特性

GTO的动态特性是指GTO从断态到通态、从通态到断态的变化过程中,电压、电流以及功率损耗随时间变化的规律。

(1)GTO的开通特性

GTO的开通特性如图(8)所示。当阳极施以正电压,门极注入一定电流时,阳极电流大于擎住电流之后,GTO完全导

通。开通时间t on由延迟时间表t d和上升时间t r组成。t on的大小取决于元件

特性、门极电流上升率di G/dt以及门极脉冲幅值的大小。

由图可知,在延迟时间内功率损耗比较小,大部分的开通损耗出现在上

升时间内。当阳极电压一定时,每个脉冲GTO开通损耗将随着峰值阳极电流I A的增加而增加。

(2)GTO的关断特性

GTO的门极、阴极加适当负脉冲时,可关断导通着的GTO阳极电流。关断过程中阳极电流、电压及关断功率损耗随时间变化的曲线,以及关断过程中门极电流、电压及阳极电流、电压随时间变化的曲线如图(9)所示。

由图(9)可以看出,整个关断过程可由3个不同的时间间隔来表示,即

存储时间t s、下降时间t f和尾部时间t t。存储时间t s对应着从关断过程开始,到出现α1+α2=1状态为止的一段时间间隔,在这段时间内从门极抽出大量过剩载流子,GTO的导通区不断被压缩,但总的电流几乎不变。下降时间t f对应着阳极电流迅速下降,门极电流不断上升和门极反电压开始建立的过程,在这段时间里,GTO中心结开始退出饱和,继续从门极抽出载流子。尾部时间t t则是指从阳极电流降到极小值开始,直到最终达到维持电流为止的电流时间。在这段时间内仍有残存的载流子被抽出,但是阳极电压已建立;因此很容易由于过高的重加du/dt,使GTO关断失效,这一点必须充分重视。

GTO的基本结构和工作原理

GTO的基本结构

GTO是一种电流控制型的自关断双极器件,当门极引入正向电流时导通,引入反向电流是关断,但不能像GTR那样在门极信号撤除时也能自行关断。这就是说,GTO跟普通晶闸管一样,一旦导通即能在导通状态下自锁(Latch-up),是一种必须靠门极电流的极性变化来改变通断状态的晶闸管。

图3-1 GTO并联单元结构的断面示意图

GTO的基本结构与基本工作原理与普通晶闸管大同小异,只是为了实现门极关断和提高门极的控制能力而扩大了P基区(门极区)对N+发射区(阴极区)的相对面积,并将N+发射区化整为零,分置与P区环绕之中,这些分离开的微小N+发射区通过共用P基区,N+基区,P发射区,形成GTO的管芯的全部晶闸管单元,每个单元晶闸管各有其独立的阴极,通常用压接方式把他们并联于同一阴极压块上。GTO的阳极通常是烧结在公共P发射区表面的钼片或钨片,而门极则是淀积在P基区表面的梳状铝层。对于面积较大的圆形芯片,门极可做成多级同心梳状环,梳齿与排成环状的单元相间。其中图3-1所示为GTO管芯的局部断面示意图。

GTO的阴极和门极并不在同一平面上,这有利于阴极的压接和门极的引出。同时,每个晶闸管单元为J3结通过台面造型也改善了结表面的电压阻断能力。由此可见,GTO的制造工艺比普通晶闸管的制造工艺精细的多,复杂的多。

3.1.2GTO的工作原理

GTO同普通晶闸管在结构上的主要区别,除了化整为零这一点外,还有两个显著之点。其一是GTO用门极包围阴极,而普通晶闸管用阴极包围门极,不管是

中央门极结构还是放射状门极结构;其二是GTO没有阴极短路点。为了改善GTO 关断特性和高温特性,有在阳极设短路点的所谓阳极短路型GTO,这种GTO的反向阻断能力较差。

就每个单元而言,GTO的开通过程与普通晶闸管完全相同,也是靠门极注入正向电流来满足导通条件:α1+α2>1,并且也是在N+发射区邻近门极的边沿首先导通,然后通过等离子体扩展实现全面导通,略有不同的是,GTO的导通是同时在各个单元里发生的,等离子体在各个单元里同时从边沿向中心扩展,而普通晶闸管作为一个完整的大单元来开通,等离子体的扩展面积要大的多。

GTO的关断过程也是在各个单元里同时进行的,但其关断方式和原理与普通晶闸管不同,它是靠反偏门极对P基区中空穴的抽取来实现关断的。对于晶闸管类型的器件来说,P基区中的等离子体是维持导通的必要条件。当等离子体中的空穴随着门极负电流流走时,J2结和J3结的正偏条件被消弱,N+发射区通过J3结向P基区注入额外电子的注入效率相对下降,直至完全失去正偏条件,停止额外电子的注入。当然,这个过程也是在每个单元里从边沿向中心逐渐推进的,等离子体从外向里逐渐缩小,J3结从外向里逐渐恢复阻断作用。当等离子体收缩到一定限度时,J3结仍然保持正偏状态的中央部分有限的注入已难以通过内部电流的再生正反馈作用维持整个单元的导通状态,于是J3结恢复反偏状态,GTO的每个单元都恢复了J2结的反向阻断能力时即被关断。

GTO(以P型门极为例)是由PNPN四层半导体材料构成,其三个电极分别为阳极A、阴极K和门极G,图3-2是其结构及电路图形符号。

图3-2 GTO的结构、等效电路及图形符号

当在晶闸管的阳极与阴极之间加反向电压时,这时不管控制极的信号情况如何,晶闸管都不会导通。当在晶闸管的阳极与阴极之间加正向电压时,若在控制

极与阴极之间没有电压或加反向电压,晶闸管还是不会导通。只有当在晶闸管的

阳极与阴极之间加正向电压时,在控制极与阴极之间加正向电压,晶闸管才会导通。但晶闸管一旦导通,不管控制极有没有电压,只要阳极与阴极之间维持正向电压,则晶闸管就维持导通。

电特性,即当其阳极A、阴极K两端为正向电压,在门极G上加正的触发电

压时,晶闸管将导通,导通方向A→K。

当GTO处于导通状态,若在其门极G上加一个适当负电压,则能使导通的晶闸管关断(普通晶闸管在靠门极正电压触发之后,撤掉触发电压也能维持导通,只有切断电源使正向电流低于维持电流或加上反向电压,才能使其关断)

GTO的关断损耗在下降时间t f阶段内相当集中,其瞬时功耗与尖峰电压U P有关。过大的瞬时功耗会出现类似晶体管二次击穿的现象,造成GTO损坏。在实际应用中应尽量减小缓冲电路的杂散电

感,选择电感小的二极管及电容等元件,以便减小尖峰电压U P。

阳极电流急剧减小以后,呈现出一个缓慢衰减的尾部电流。由于此时阳极电压已经升高,因此GTO关断时的大部分功率损耗出现在尾部时间。在相同的关断条件下,GTO型号不同,相应的尾部电流起始值I T1和尾部电流的持续时间均不同。在存储时间内过大的门极反向电流上升率di RG/dt会使尾部时间加长。此外,过高的重加du/dt会使GTO因瞬时功耗过大而在尾部时间内损坏器件。因此必须很好地控制重加du/dt,设计适当的缓冲电路。一般来说,GTO关断时总的功率损耗随阳极电流的增大而增大,随缓冲电容的增加而减小。

门极负电流、负电压波形是GTO特有的门极动态特性,如图(9)所示。门极负电流的最大值随阳极可关断电流的增大而增大。门极负电流增长的速度与门极所加负电压参数有关。如果在门极电路中有较大的电感,会使门极-阴极结进入雪崩状态。在雪崩期间,阴极产生反向电流。与阴极反向电流对应的时间为雪崩时间t BR,在这段时间内,阳极仍有尾部电流,门极继续从阳极抽出电流。门极负电流中既有从阳极抽出的电流又有阴极反向电流。如果门极实际承受的反向电流不超过门极雪崩电压U GR,则不会出现阴极反向电流。实际应用中,多数情况下不使门极-阴极结产生雪崩现象,以防止因雪崩电流过大而损坏门极-阴极结。

除了以上特别提出讨论的几个工作特性外,GTO的其他工作特性及参数都与普通晶闸管没有多少差别,这里不再赘述。

汽车起重机构造与原理

汽车起重机构造与原理 一、汽车起重机基本术语 1、汽车起重机 起重作业部分安装在专用或通用汽车底盘上的起重机。参见图一 2、整机。 具有齐全的上车、下车及附属装置的起重机。 3、上车(起重机部分) 包括回转支承及其以上的全部机构的总和。 4、下车(运载车部分) 回转支承以下部分,包括底架、底盘、支腿等各部件、机构和装置的统称。(包括支腿在内的装载上车而行走的运载车)。 5、起重性能参数(参见表一) 5.1起重量:起吊物体的质量。 5.2总起重量:起吊物体的质量与取物装置质量之和。 5.3额定总起重量 起重机在各种工况和规定的使用条件下所允许起吊的最大总起重量。(工况,指不同的臂长和仰角;规定的使用条件,如打支腿、地面的平整度、风力、设备状况等规定的使用条件) 5.4最大额定总起重量 起重机用基本臂处于最小额定幅度,用支腿进行作业所允许的额定总起重量,并以此作为起重机的名义起重量。 6、幅度(参见图二、图三) 6.1幅度:起重机空钩时,回转中心垂线与吊钩中心之间的水平距离。 6.2工作幅度:起重作业时,回转中心垂线与吊钩中心之间的水平距离。 6.3最小工作幅度:起重机处于最大仰角时的工作幅度。 6.4额定幅度:某一额定总起重量所允许的最大工作幅度。 6.5最小额定幅度:最大额定总起重量所允许的最大工作幅度。 7、起重力矩:总起重量与相应的工作幅度的乘积。 8、起升高度:起重机起升到最高位置时,起重钩钩口中心到支承地面的距离。 9、倍率:动滑轮组的承载钢丝绳数与引入卷筒的钢丝绳数之比。 10、起升速度:平稳运动时,起吊物体的垂直位移速度。 10.1单绳速度:动力装置在额定转速下,在卷筒计算直径处第n层的钢丝绳速度。 10.2起重钩的起升(下降)速度 钢丝绳单绳速度除以起升滑轮组倍率得到的值。 11、变幅时间(速度) 变幅作业时,幅度从最大(最小)变到最小(最大)所用的时间。 12、最大回转速度 空载状态下,基本臂在最大仰角时,所能达到的最快回转速度。 13、起重臂伸(缩)时间(速度) 空载状态下,起重臂处于最大仰角,使吊臂由全缩(伸)状态运动到全伸(缩)状态所用的时间。 14、支腿收放时间(速度) 支腿以全收(放)状态,运动到全放(收)状态所用的时间。 15、仰角:(参见图二、图三) 在起升平面内,起重臂纵向中心线与水平线的夹角。 16、副臂安装角:(参见图二、图三) 起重机主臂轴线与副臂轴线在起升平面内的夹角。 17、起重臂长: 沿起重臂轴线方向,其根部销轴中心到头部定滑轮组中心的轴线距离。 18、起重特性曲线: 表示起重机作业性能的曲线。 18.1起重量特性曲线(参见表一) 在以总起重量和工作幅度为坐标轴的直角坐标系中,以一定臂长在不同工作幅度时的额定起重量为坐标点编制的曲线。

第4章程序设计三种基本结构

第4章程序设计三种基本结构 一、选择题: 【例1】(2002年4月)下面的程序的输出结果是( )。#include main( ) { int i=010,j=10; printf("%d,%d",++i,j--); } A. 11,10 B. 9,10 C. 010,9 D. 10,9 【答案】B (i的值是以八进制定义的) 【例2】(2002年4月)以下的程序的输出结果是( )。main( ) { int a=5,b=4,c=6,d; printf(("d\n",d=a>b?)(a>c?a:c):(b)); } A. 5 B. 4 C. 6 D. 不确定 【答案】C 【例3】(2002年4月)以下程序的输出结果是( )。

{ int a=4,b=5,c=0,d; d=!a&&!b||!c; printf("%d\n",d); } A. 1 B. 0 C. 非0的数 D. -1 【答案】A 【例4】(2002年4月)以下程序的输出结果是( )。 main( ) { char x=040; printf("%o\n",x<<1); } A. 100 B. 80 C. 64 D. 32 【答案】A 【例5】(2002年9月)已知i,j,k为int型变量,若从键盘输入:1,2,3< 回车>,使i的值为1、j的值为2,k的值为3,以下选项中正确的输入语句是(C )。 A. scanf("---",&I,&j,&k); B. scanf("%d %d %d",&I,&j,&k); C. scanf("%d,%d,%d",&I,&j,&k); D. scanf("i=%d,j=%d,k=%d",&I,&j,&k);

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

1.1.2程序框图与算法的基本逻辑结构讲解学习

1.1.2程序框图与算法的基本逻辑结构

1.1.2 程序框图与算法的基本逻辑结构 教学目标 能够正确说出各种程序框图及流程线的功能与作用 能够画出顺序结构、条件结构、循环结构的流程图 能够设计简单问题的流程图 教学重点 程序框图的画法. 教学难点 程序框图的画法. 课时安排 4课时 教学过程 第1课时程序框图及顺序结构 图形符号名称功能 终端框(起止框)表示一个算法的起始和结束 输入、输出框表示一个算法输入和输出的信息 处理框(执行框)赋值、计算 判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N” 流程线连接程序框 连接点连接程序框图的两部分三种逻辑结构可以用如下程序框图表示: 顺序结构条件结构循环结构 应用示例 例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法. 解:程序框图如下:

变式训练 观察下面的程序框图,指出该算法解决的问题. 解:这是一个累加求和问题,共 99 项相加,该算法是求 100 991 431321211?+ +?+?+? 的值. 例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S= ))()((c p b p a p p ---),其中p= 2 c b a ++.这个公式被称为海伦—秦九韶公式) 算法步骤如下: 第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2 c b a ++. 第三步,计算S=))()(( c p b p a p p ---. 第四步,输出S. 程序框图如下:

晶闸管的结构以及工作原理教学内容

晶闸管的结构以及工 作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构 (PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。

高中数学 第二章 算法初步 2_2 算法框图的基本结构及设计第2课时自我小测 北师大版必修31

高中数学第二章算法初步 2.2 算法框图的基本结构及设计第2课 时自我小测北师大版必修3 1.对赋值语句的描述正确的是( ). ①可以给变量提供初值②将表达式的值赋给变量③可以给一个变量重复赋值④不能给同一变量重复赋值 A.①②③ B.①② C.②③④ D.①②④ 2.下列给出的赋值语句正确的是( ). A.3=A B.M=-M C.B=A=2 D.x+y=0 3.将两个数a=1,b=2交换,使a=2,b=1,下面语句正确的是( ). A.a=b,b=a B.b=a,a=b C.a=c,c=b,b=a D.c=b,b=a,a=c 4.阅读算法框图,若输入的a,b,c分别为21,32,75,则输出的a,b,c分别是( ). A.75,21,32 B.21,32,75 C.32,21,75 D.75,32,21 5.下面的语句执行后输出的结果为______. A=2; B=3; B=A*A; A=A+B;

B=B+A; 输出A,B. 6.阅读如图所示的算法框图,若输入a=12,则输出a=________. 7.三个变量x,y,z,试将x置换给y,y置换给z,z置换给x,如图画出的算法框图正确吗?如果不正确,请加以改正. 8.已知函数f(x)=3x-4,求f[f(3)]的值,设计一个算法,并画出算法框图.

参考答案 1.答案:A 2.答案:B 3.解析:“a=b”的含义是把b的值赋给a.选项A得到的结果是a=2,b=2;选项B得到的结果是a=1,b=1;选项C中c的值不明确;选项D正确. 答案:D 4.解析:算法框图的运行过程是: a=21; b=32; c=75; x=21; a=75; c=32; b=21; 则输出75,21,32. 答案:A 5.答案:6,10 6.解析:输入a=12,该算法框图的执行过程是 a=12, b=12-6=6, a=12-6=6. 输出a=6. 答案:6 7.分析:所给的算法框图表示的算法为: 1.y=x,使y的值变为了x; 2.z=y,此时的y应为上一步的y,而非原题中的y,因此其结果是z的值也变为了x;

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

起重机的机械组成及工作原理

起重机的组成及工作原理 起重机由驱动装置、工作机构、取物装置、操纵控制系统和金属结构组成。通过对控制系统的操纵,驱动装置将动力的能量输入,转变为机械能,在传递给取物装置。取物装置将被搬运物体与起重机联系起来,通过工作机构单独或组合运动,完成物体搬运任务。可移动金属结构将各组成部分连接成一个整体,并承载起重机的自重和吊重。 起重机的组成及工作原理 图2-3起重机的工作原理 一、驱动装置 驱动装置是用来驱动工作机构的动力设备。常见的驱动设备有电力驱动、内燃机驱动和人力驱动等,电能是清洁、经济的能源,电力驱动是现代起重机的主要驱动方式。 二、工作机构 工作机构包括:起升机构、运行机构。 a)起升机构是用来实现物体的垂直升降的机构是任何起重机部可缺少的部分,因此它是起重机最主要、最基本的机构。 b)运行机构是通过起重机或起升小车来实现水平搬运物体的机构,可分为有轨运行和无轨运行。 三、取物装置 取物装置是通过吊钩将物体与起重机联系起来进行物体吊运的装置。根据被吊物体不同的种类、形态、体积大小,采用不同种类的取物装置。合适的取物装置可以减轻工作人员的劳动强度,大大提高工作效率。防止吊物坠落,保证工作人员的安全和吊物不受损伤时对取物装置安全的基本要求。 四、金属结构 金属结构是以金属材料轧制的型钢和钢板做为基本构件,通过焊接、铆接、螺栓连接等方法,按一定的组成规则连接,承受起重机的自重和载荷的钢结构。

金属结构的重量大约是整台起重机的40%-70%左右,重型起重机可达到90%;金属结构按照它的构造可分为实腹式和格构式两类,组成起重机的基本受力构件。起重机金属结构的工作特点有受力复杂、自重大、耗材多和整体可移动性。起重机的金属结构是起重机的重要组成部分,它是整台起重机的骨架,将起重机的机械和电气设备连接组合成一个有机的整体,承受和传递作用在起重机上的各种载荷并形成一定的作业空间,以便使起吊的重物搬运到指定的地点。 五、控制操纵系统 通过电气系统控制操纵起重机各机构及整机的运动,进行各种起重作业。 控制操纵系统包括各种操纵器、显示器及相关元件和线路,是人机对话的接口。该系统的状态直接影响到起重机的作业、效率和安全等。 起重机与一般的机器的显着区别是庞大、可移动的金属结构和多机构组合工作。间歇式的循环作业、起重载荷的不均匀性、各机构运动循环的不一定性、机构负载的不等时性、多人参与的配合作业的特点,又增加了起重机的复杂性、安全隐患多、危险范围大。 纽科伦(新乡)起重机有限公司

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

履带式起重机的组成及工作原理

履带式起重机的组成及工作原理 来源: 本站发表日期:08-01-18 09:11 编辑: lxh 一、履带式起重机概况 履带式起重机是在行走的履带式底盘上装有行走装置、起重装置、变幅装置、回转装置的起重机。履带式起重机有一个独立的能源,结构紧凑、外形尺寸相对较小,机动性好,可满足工程起重机流动性的要求,比较适合建筑施工的需要,达到作业现场就可随时技入工作。 履带式起重机按传动方式不同,可分为机械式、液压式和电动式三种。其中,机械式又分为内燃机一机械驱动和电动一机械驱动两种。 目前,工程起重机通常采用以下复合驱动方式: 内燃机一电力驱动内燃机一电力驱动与外接电源的电力驱动的主要区别是动力源不同,前者采用独立的内燃机作动力源,后者外接电网电源。内燃机一电力驱动通常是由柴油机驱动发电机发电,把内燃机的机械能转化为电能,传送到工作机构的电动机上,再变为机械能带动工作机构运转。 内燃机一液压驱动内燃机一液压驱动在现代工程起重机中得到了越来越广泛的应用,主要原因一是柴油发动机机械能转化为液压能后,实现液压传动有许多优越性,二是由于液压技术发展很快,使起重机液压传动技术日趋完美。 二、履带式起重机的组成部分 如下图所示,履带式起重机主要由下列几部分组成。

1. 取物装置 履带式起重机的取物装置主要是吊钩(抓斗、电磁吸盘等作为附属装置)。 2. 吊臂 用来支承起升钢丝绳、滑轮组的钢结构,它可以俯仰以改变工作半径。它直接装在上部回转平台上。吊臂可以根据施工需要在基本吊臂基础上接长。在必要时,还可在主吊臂的顶端装一吊臂,扩大作业范围,这种吊臂称副臂。 3. 上车回转部分 它是在起重作业时可以回转的部分包括装在回转平台上除吊臂、配重、吊钩等以外的全部

起重机的机械组成及工作原理

起重机的机械组成及工 作原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

起重机的组成及工作原理 起重机由驱动装置、工作机构、取物装置、操纵控制系统和金属结构组成。通过对控制系统的操纵,驱动装置将动力的能量输入,转变为机械能,在传递给取物装置。取物装置将被搬运物体与起重机联系起来,通过工作机构单独或组合运动,完成物体搬运任务。可移动金属结构将各组成部分连接成一个整体,并承载起重机的自重和吊重。 起重机的组成及工作原理 图2-3起重机的工作原理 一、驱动装置 驱动装置是用来驱动工作机构的动力设备。常见的驱动设备有电力驱动、内燃机驱动和人力驱动等,电能是清洁、经济的能源,电力驱动是现代起重机的主要驱动方式。 二、工作机构 工作机构包括:起升机构、运行机构。 a)起升机构是用来实现物体的垂直升降的机构是任何起重机部可缺少的部分,因此它是起重机最主要、最基本的机构。 b)运行机构是通过起重机或起升小车来实现水平搬运物体的机构,可分为有轨运行和无轨运行。 三、取物装置 取物装置是通过吊钩将物体与起重机联系起来进行物体吊运的装置。根据被吊物体不同的种类、形态、体积大小,采用不同种类的取物装置。合适的取物装置可以减轻工作人员的劳动强度,大大提高工作效率。防止吊物坠落,保证工作人员的安全和吊物不受损伤时对取物装置安全的基本要求。 四、金属结构 金属结构是以金属材料轧制的型钢和钢板做为基本构件,通过焊接、铆接、螺栓连接等方法,按一定的组成规则连接,承受起重机的自重和载荷的钢结构。 金属结构的重量大约是整台起重机的40%-70%左右,重型起重机可达到90%;金属结构按照它的构造可分为实腹式和格构式两类,组成起重机的基本受力构件。起重机金属结构的工作特点有受力复杂、自重大、耗材多和整体可移动性。起重机的金属结构是起重机的重要组成部分,它是整台起重机的骨架,将起重机的机械和电气设备连接组合成一个有机的整体,承受和传递作用在起重机上的各种载荷并形成一定的作业空间,以便使起吊的重物搬运到指定的地点。

双向可控硅的控制原理

双向可控硅的工作原理 1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化 2,触发导通 在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。 一、可控硅的概念和结构? 晶闸管又叫可控硅。自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

北师大版2.2《算法的基本结构及设计》word教案3篇

北师大版2.2《算法的基本结构及设计》 w o r d教案3篇 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高一数学算法的基本结构及设计北师大版 【本讲教育信息】 一. 教学内容: 算法的基本结构及设计 二. 学习目标 1、通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程。在具体问题(如三元一次方程组求解等问题)的解决过程中,理解流程图的三种基本逻辑结构:顺序结构、选择结构和循环结构; 2、经过分析具体问题,抽象出算法的过程,培养抽象概括能力、语言表达能力和逻辑思维能力; 3、通过算法实例,体会构造性的思想和方法。 三、知识要点 1、流程图——为了使算法的结构更加清晰,可借助图来帮助描述算法。描述算法的图称为算法流程图或算法框图,简称流程图或框图。 一般地,我们把“开始”、“结束”框(起止框)画成圆角矩形: 把“输入”、“输出”框画成平行四边形: 把“计算”框(数据处理框)画成矩形: 把“判断”框画成菱形:

2、顺序结构——按照步骤依次执行的一个算法称为具有“顺序结构”的算法,或者称为算法的顺序结构。 3、选择结构——在执行下一个步骤之前需要先进行判断,判断的结果决定后面的步骤,这样的结构称为选择结构。 4、变量——在研究问题的过程中,可以取不同数值的量称为变量。 5、赋值——将某一数值赋给变量的过程称为赋值。在计算机程序设计中,赋值是通过赋值语句实现的,所赋的值可以是数字,也可以是字符串或表达式。不同的程序设计语言中,赋值语句的写法是不一样的,如将数值1赋给变量x,在VB中是用“x=1”实现的,而在C语言中是用“int x=1”实现的。再如,“x=x+1”这个赋值语句执行后,会将此前计算的x的值再加1后的和赋给x (即使得x的值增加了1)。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图 双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2i b2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IG T。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA 段左移,IGT越大,特性左移越快。 TRIAC的特性 什么是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。TRIA C为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)和G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。 (a)符号(b)构造 图1 TRIAC 二.TRIAC的触发特性: 由于TRIAC为控制极控制的双向可控硅,控制极电压VG极性与阳极间之电压VT1T2四种组合分别如下: (1). VT1T2为正, VG为正。 (2). VT1T2为正,VG为负。 (3). VT1T2为负, VG为正。 (4). VT1T2为负, VG为负。

可控硅的工作原理(带图)

可控硅的工作原理(带图)

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。

精析晶闸管的内部结构及工作原理

1.晶闸管的结构 晶闸管是一种4层功率半导体器件,具有3个PN结,其内部的构造、外形和电路符号如图6 -1所示。其中,最外层的P区和N区分别引出两个电极,称为阳极A和阴极K,中间的P区引出控制极(或称门极)。 2.晶闸管的工作原理 晶闸管组成的实际电路如图6-2所示。 为了说明晶闸管的工作原理,可将其看成NPN和PNP两个三极管相连,用三极管的符号来表示晶闸管的等效电路,如图6-3所示。

其工作过程如图6-4所示。 当晶闸管的阳极A和阴极K之间加正向电压UZ而控制极K不加电压时,中间的PN结处于反向偏置,管子不导通,处于关断状态。 当晶闸管的阳极A和阴极K之间加正向电压UA,M28F101-200 K6且控制极G和阴极K之间也加正向电压UG时,外层靠下的PN 结处于导通状态。若V2管的基极电流为IB2,则集电极电流Ic2为β2IB2,V1管的基极电流IB1等于Vz管的集电极电流,因而V2的集电极电流Icl为βlβ2如,该电流又作为V2管的基极电流,再一次进行上述的放大过程,形成正反馈。在很短的时间(一般几微秒)两只二极管均进入饱和状态,使晶闸管完全导通。当晶闸管完全导通后,控制极就失去了控制作用,管子依靠内部的正反馈始终维持导通状

态。此对管子压降很小,一般为0. 6~1.2 V,电源电压几乎全部加在负载电阻R上,晶闸管中有电流流过,可达几十至几千安。要想关断晶闸管,必须将阳极电流减小到不能维持正反馈过程,当然也可以将阳极电源断开或者在晶闸管的阳极和阴极之间加一反向电压。 综上所述,可得如下结论: ①晶闸管与硅整流二极管相似,都具有反向阻断能力,但晶闸管还具有正向阻断能力,即晶闸管正向导通必须具有一定的条件:阳极加正向电压,同时控制极也加正向触发电压(实际工作中,控制极加正触发脉冲信号)。 ②晶闸管一旦导通,控制极即失去控制作用。要使晶闸管重新关断,必须做到以下两点之一:一是将阳极电流减小到小于维持电流I H;二是将阳极电压减小到零或使之反向。

晶闸管的工作原理教案

教案编号:LNJD-PR08-RE08 课程名称:电力电子技术 适用专业:电气自动化专业、2014级 授课班级:G14111 课程性质:必修 授课章节:1.2晶闸管的工作原理 授课学时:2学时 授课时间:2015年09月09日 教学目标: 知识目标:掌握晶闸管的特性、导通条件和关断条件; 能力目标:能正确使用晶闸管; 素质目标:培养学生分析问题、解决问题的能力 教学重难点: 重点:晶闸管的特性 难点:导通条件和关断条件 授课方式:理论教学(多媒体教室) 教学方法:讲授法、多媒体教学、讨论法、演示教学、问题教学、动画仿真教学 教学设计: 【一、导入】(板书)(15分钟) 复习提问1:晶闸管的内部结构? 2:晶闸管的2种等效电路图? 启发导入:一个PN结能使二极管具有单向导电性;两个PN结能使三极管具有3种状态;那么三个PN结的晶闸管呢?(小组讨论) 【二、讲授新课】(板书+动画模拟+实物演示)(65分钟)一、导通条件(板书+动画模拟+实物演示)(30分钟) 电路图(见板书) 步骤一(见板书) 分析:(结合晶闸管的等效电路图) 启发导入:UA<0,KP截止,UA>0? 步骤二(见板书) 分析:(结合晶闸管的等效电路图) 启发导入:UA>0,KP截止,UG>0? 步骤三(见板书) 分析:(结合晶闸管的等效电路图) 实操:(让学生操作步骤五,观察现象,教师指导) 晶闸管的导通条件:(小组讨论,学生总结) 二、截止条件(板书+动画模拟+实物演示)(35分钟) 启发导入:如何关断晶闸管,控制回路OR主回路? 步骤四(见板书) 启发导入:主回路? 步骤五(见板书) 实操:(让学生操作步骤五,观察现象,教师指导) 晶闸管的截止条件:(小组讨论,学生总结) 总结:晶闸管特性(板书+动画模拟)(15分钟) 启发:综合实验,与二极管进行比较分析,引导学生总结。晶闸管的特性:(类比长江三峡水坝) 【三、小结】(5分钟) 学生总结,教师补充 【四、作业及自主学习】(5分钟) 课本32页,第二题,第十二题; 微课学习KP导通和关断, 教学后记:内容设计饱满,能体现教学重难点,实操部分学生兴趣较浓,可以增加实操内容。 步骤一:UA<0,UG>0/UG<0 灯不亮,i=0,KP截止 {PS}: 主要参考书目: 马宏骞编著,电力电子技术及应用项目教程,北京: 电子工业出版社,2011 *为本章重点,#为本章难点

可控硅的工作原理(带图)

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。 二、可控硅的主要技术参数

程序的基本结构 教学设计

《程序的基本结构》教学设计 一、教学目标 1.知识与技能 让学生掌握顺序、选择、循环三种基本结构,能够使用三种基本结构编写简单的程序解决具体问题。 2.过程与方法 通过具体实例,让学生理解三种结构的基本思想,并对流程图和程序语言进行对照分析,提高学生分析问题的能力,增强学生利用程序设计语言解决实际问题的信心和能力。 3.情感态度与价值观 培养学生对程序设计的兴趣,帮助学生探究计算机解决问题的神秘面纱,鼓励学生自主探索计算机软件的设计,注重学生协作学习习惯的养成。 二、学生分析 在普通高中数学课程中,学生已经对三种基本逻辑结构——顺序、条件分支、循环有了一定的认识。如果学生对数学课中的这部分内容掌握的不够好,则在教学中应注重指导学生理解顺序结构、选择结构和循环结构的基本思想,加强对程序流程图和程序语言进行对照分析;如果学生已经掌握,则在教学中应引导学生对基本结构进行归纳总结。 从前几节的学习来看,有一部分学生对程序设计的兴趣不高,一方面是由于高中阶段学习负担很重,对于信息技术课程的认识不够,另一方面是由于网络的普及也对课程的学习产生了不小的负面影响,而且算法与程序设计本身也比较枯燥,鉴于这种情况,本课程设计的原则是分组探究,结合实际的数学问题,画出相应的流程图,通过适当的引导,再转化成具体实现语句和程序,使学生运用VB程序设计语言的基本知识,学会问题解决的结构化方法,编写程序,体验成功的快乐。 三、教材分析 1.本节的作用和地位 用任何高级语言编写的程序都可分解为三种结构:顺序结构、选择结构和循环结构。牢固掌握这三种基本结构,是学习程序设计的基本要求,是编写出结构清晰、易读易懂程序的前提。同时,本节也将为下一章“算法的程序实现”打下基基础。 2.本节主要内容 在高中阶段,学习程序设计毕竟不同于专业训练,因此,我们应精心选择能激发学生兴趣的实例,帮助学生完成从数学中的“算法”到程序中算法的过度。本课首先用交流讨论解决“已知三边求三角形面积”的算法,画出流程图,转化成程序代码,引入顺序结构,然后依次加强约束条件,逐步修正算法和相应的流程图,引入选择、循环结构,总结出结构的共性,最后是编程实现,巩固和加深对基本结构的认识。 3.重点难点分析 教学重点:引导学生探究问题的算法,画出流程图,然后与程序语言的实现语句进行对照分析,使学生能正确的使用程序语言实现三种基本结构。 教学难点:任何一门程序设计语言,对三种基本结构实现语句的格式都有严格要求,因此,在帮助学生建立算法思想和程序设计认知的同时,应注重培养学生规范编程并养成良好编程习惯。三种结构实现语句的格式和功能,以及同种结构的不同语句之间的差异是本节重点。当然,本节主要还是让学生理解顺序结构、选择结构、循环结构的基本思想,在后续的程序编写中还将不断用到这三种结构,学生可逐步掌握。 4.课时要求:1课时 四、教学理念

相关文档
最新文档