沥青路面车辙形成机理及防治措施

沥青路面车辙形成机理及防治措施
沥青路面车辙形成机理及防治措施

Value Engineering 0引言

沥青路面的主要破坏形式之一是路面产生车辙,在高温季节里,一般情况下比较容易发生车辙现象。沥青面层在行车荷载的反复作用下,进而在一定程度上被碾压密实,沥青面层经过反复的挤压,进而导致轮迹带不断下沉。在剪应力的作用下,路面的内部材料发生横向的流动,在一定程度上使得中间和两侧出现凹陷和隆起,进而在路面层形成波峰和波谷。道路本身及道路的使用性能受到车辙的危害和影响。

1车辙形成机理分析

1.1初始阶段的压密过程碾压混凝土路面前,沥青混合料由沥青、集料,以及空隙组成,因而混合料比较松散。通过压路机对沥青混合料进行碾压,沥青与矿粉组成的胶浆以及半流状态的沥青在高温条件下被挤进矿料的间隙内,在强力排挤的作用下,集料进一步形成骨架结构。经压路机碾压成型后,松散混合物投入使用,在车辆荷载的作用下,沥青混合料在初期阶段被进一步压实,进而在一定程度上形成微小的永久性变形。

1.2沥青混合料的流动在沥青混合料中,沥青与矿料形成的沥青胶浆和自由沥青,在车辆荷载和高温的共同作用下首先发生流动,随之发生沥青混合料的流动性变形。

1.3矿料骨架的重新排列及破坏自由沥青和胶浆在荷载和高温的共同作用下首先发生流动,这时,由于沥青混合料依然处于半凝固状态,所以荷载通常情况下由混合料中粗、细骨料构成的骨架进行承担。随着温度的升高,汽车荷载的增加,在荷载的直接作用下,沿着矿料间的接触面硬度较大的矿料颗粒发生相应的滑动,在一定程度上,导致沥青和胶浆流向富集区域,进一步产生流动性变形。

2沥青路面车辙内因分析

2.1路面结构的影响随着沥青路面厚度的增大(在一定的厚度范围内),永久变形也会出现相应的而增加。对沥青路面通过采用刚性基层或半刚性基层材料进行相应的处理,在抗剪切变形和高温稳定性方面,由于刚性基层

或半刚性基层都具有很强的能力。因此,在路面面层容易发生沥青路面的车辙现象,相对来说,其他层产生车辙的比例比较小。

2.2集料性质的影响沥青混合料的耐热性在一定程度上受到集料性质的影响和制约,这种影响通常情况下,通过集料与沥青相互作用进行显示。由于集料与沥青在一定程度上产生相应的吸附作用,进而沥青混合料抵抗变形能力大大提高。沥青混合料的抵抗变形能力和强度随着沥青内聚力的增大而逐渐增强。

2.3沥青混合料塑性的影响通常情况下,路面的抗剪强度与混合料的塑性存在某种关系,通常情况下,塑性与抗剪强度成反比。抗剪强度随着塑性的减小而逐渐增大,同时,抗变形能力在高温条件下就会增大。沥青混合料的级配和种类影响和制约沥青混合料的塑性。

2.4沥青混合料空隙率的影响经过压路机碾压,路面成型后,在高温条件下,沥青混合料空隙率在一定程度上影响着路面的抗变形能力。沥青混合料的空隙率越大,内摩擦阻力就成为路面抗剪强度的主要决定性因素,但是,对于温度和加载速度来说,其变化通常情况下与内摩擦阻力没有任何关系。

2.5级配的影响一般情况下,沥青混合料的性能受到级配的影响和制约,同时混合料级配对高温稳定性也产生相应的影响。集料的级配通常决定着混合料的密实程度,以及矿料颗粒间嵌挤力的大小,进而在一定程度上影响沥青混合料的高温稳定性。试验研究表明,在常规条件下,除SMA 外,间断级配沥青混合料高温稳定性比有合理密级配的沥青混合料的差。对于形成骨架结构的级配来说,温度造成的影响比较小。

3掺加抗车辙剂

在我国,

主要通过半刚性材料对基层进行处理。由于半刚性材料具有较强的板结性能和强度,所以,在基层和基层以下,只有极小的部位发生变形,通常情况下结构性车辙很少发生,磨损性车辙在我国的路面中很少出现。但是,流动性车辙在我国路面中比较普遍。当前,还没有有效

——————————————————————

—作者简介:李秀凤(1977-),女,黑龙江哈尔滨人,高级工程师,研

究方向为土木工程;景铎(1980-),女,黑龙江哈尔滨

人,讲师,研究方向为土木工程。

沥青路面车辙形成机理及防治措施

Rut Formation Mechanism of Asphalt Pavement and Prevention Measures

李秀凤LI Xiu-feng ;景铎JING Duo

(黑龙江职业学院,哈尔滨150080)(Heilongjiang Polytechnic ,Harbin 150080,China )

摘要:沥青路面使用期内车辙是主要破坏形式之一。本文阐述了车辙的形成过程的三个阶段。

从内因方面进行分了析车辙成因,通过采用抗车辙剂的方式,进而在一定程度上解决克服车辙的病害。

Abstract:Rut is one of the main damage forms in the use process of asphalt pavement rutting.This paper describes the three stages of the formation of ruts,analyzes the rut causes from the internal aspect,thereby solves the rut diseases by using anti-rutting agent.

关键词:抗车辙剂;路面变形;车辙Key words:anti-rut agent ;pavement deformation ;rut 中图分类号:U418.6文献标识码:A 文章编号:1006-4311(2014)05-0081-02

·81·

DOI:10.14018/https://www.360docs.net/doc/5e11689250.html,13-1085/n.2014.05.041

价值工程

1水库防洪分类预报调度设计方法

1.1水库防洪分类预报调度方式基本理念和假定基本理念是利用有限历史样本资料中的气象监测、降雨、暴雨洪水预报信息等所有可以利用的信息,并且将历史洪水过程进行分类,然后根据不同的类型的具体情况制定相关的调度规则。

基本假定是:一类暴雨天气系统对应一类的洪水过程。如果某一类的暴雨天气系统再次出现,则可以依据其

对应的洪水过程的调度规则进行洪水的调节。

1.2水库防洪分类预报调度规则优化设计第一,针对已经建造并且运行多年的水库。在此种情况之下,可以根据不同类型的天气系统的暴雨洪水典型,并且保证在达到安全要求的原则之下,推求相应的类型的防洪预报调度规则。第二,对于刚刚建立不久的水库,除了必须根据不同的类型且满足安全原则之外,每一类的规则可以用实际的进入水库的水的流量或者水库水位作指标,在设计的过程——————————————————————

—作者简介:龙春改(1981-),女,河南平顶山人,助理工程师,研究

方向为洪水预报与调度,工程管理。

水库防洪分类预报调度方式及风险浅析

Flood Control with Reservoir Classification Forecast Scheduling Method and Risk Analysis

龙春改LONG Chun-gai ;魏改琴WEI Gai-qin

(河南省平顶山市昭平台水库管理局,平顶山467337)

(Zhaopingtai Reservoir Administration Authority of Pingdingshan ,Henan ,Pingdingshan 467337,China )

摘要:本文主要是通过对水库防洪分类预报调度方式的设计出发,详细介绍了设计的规则、指标的选择等方面,并设计时可能会

对水库和上下游的防洪带来的风险进行了分析。

Abstract:This article starts from the design of flood control with reservoir classification forecast scheduling method,analyzes the rules of design,selection of indicators and other aspects,as well as analyzes the risks that design might bring to flood control with reservoirs,upstream and downstream.

关键词:水库防洪;预报调度方式;风险分析Key words:flood control with reservoir ;forecast scheduling method ;risk analysis 中图分类号:TV122;X820.4文献标识码:A 文章编号:1006-4311(2014)05-0082-02

的方法维修流动性车辙,办法只有再生改造原有材料后更

换发生车辙的结构层,或是铣刨车辙部位后,采用新的沥青混合料修补。

然而使用抗车辙剂是行之有效的解决方法,在沥青拌和过程中将抗车辙剂颗粒直接投入沥青混合料搅拌缸中。这种方法属于对沥青混合料的改性,它与沥青的改性不同。抗车辙剂的掺量不同能获得抗车辙性能也会存在一定的差异。

①集料改性的作用。在拌和抗车辙剂的过程中,将抗车辙剂与集料进行干拌,通过抗车辙剂将集料的表面进行部分覆盖,进而提高集料的粘结性。

②沥青增粘的作用。在对沥青进行湿拌和运输的过程中,部分抗车辙剂发生溶胀或者溶解在沥青中,进而形成胶结,进而在一定程度上增加了沥青混合料的粘度。

③纤维加筋的作用。形成微结晶区的聚合物,由于具有一定的劲度,部分拉丝在集料骨架内发生搭桥交联,进而在一定程度上发挥纤维加筋的作用。

④细集料骨架的作用。在施工过程中,将抗车辙剂添加在沥青混合料中,在碾压过程中抗车辙剂颗粒受热成型,一方面降低了成型路面的渗透性,另一方面增加了沥青混合料结构的骨架作用。

⑤变形恢复的作用。抗车辙剂的弹性成分在高温环境下,能够恢复路面变形部分的弹性,进而在一定程度上降低成型沥青路面的永久变形。

4结语

在山区公路较长的上坡路段沥青路面的车辙病害尤为严重,目前已经成为山区公路众多的典型病害之一,路面的使用寿命和行车的安全性受到了严重影响。通过对路面车辙的形成机理的详细分析,并且针对不利的气候和交通条件,可以从沥青混合料的配合比设计、选择原材料、施工质量控制、控制路面结构组合设计等方面,制定相应的措施,进而防治沥青路面车辙病害的发生,进而在一定程度上提高沥青路面的抗车辙性能。

提高沥青路面抗车辙能力的主要措施有:①对集料的质量加强控制,使用合格的集料。②择优选用沥青结合料,采用提高沥青结合料的高温稳定性的方法,例如采用添加抗车辙剂或改性沥青。

③优化沥青面层的级配和结构,选择抗车辙性能好的沥青混合料,例如SMA 等。

④对混合料设计方法进行优化。⑤严格施工控制和管理。⑥路政加强管理,严禁车辆超载。

参考文献:

[1]王继山.沥青路面车辙产生的原因及防治措施[J].东北公路,1999(2):46-48.

[2]苏凯,孙立军.沥青路面车辙产生机理[J].石油沥青,2006,20(4):1-7.

[3]刘红瑛.沥青混合料高温车辙评价指标的研究[J].石油沥青,2003,17(4):56-59.

[4]李一鸣.沥青路面车辙形成机理力学分析[J].东南大学学报,1994,24(1):90-95.

·82·

沥青路面车辙成因及防治措施

沥青路面车辙成因及防治措施 摘要:文章在对沥青路面车辙的类型及其特征阐述的基础上,归纳总结车辙产生的内在因素和外在因素,并提出相应的预防和处理措施。实践证明,这些预防和处理措施可以很好地预防车辙,并可以较好地提高原沥青路面的服务功能。 关键词:沥青路面;车辙成因;防治措施 随着我国基础交通事业的逐步发展,道路铺设及维护问题也引起了广大施工人员的关注。车辙是我国沥青路面常见的一种变形情况,多产生在车轮经常碾压的轮迹带上。车辙的出现影响了路面的平整度、路面结构的整体强度,并使路面产生裂缝、坑槽等损伤。当车辙明显时,还会影响驾驶员的舒适性及车辆操控的稳定性,甚至影响行车安全。本次研究阐述了沥青路面车辙的形成原因、类型分类、影响因素等,并结合自身道路施工经验提出了防治车辙的有效措施。本次研究对于更好地预防沥青路面车辙的产生具有较好的实际意义。 1 车辙的形成原因及类型分类 据统计,国内75%以上的高等级公路及大多数新修、新整治的城市道路都采用了沥青路面。如图1所示,车辙的产生不仅会直观地影响到路面的平整,还对沥青路面的安全性和使用寿命造成一定的负面影响。车辙的形成主要包括初始压密过程、沥青混合料流动过程、矿质骨料重新排列过程等环节,影响沥青车辙病害的内在因素为沥青混凝土的强度、面层厚度等,外在因素则包括气候环境、车辆载重及交通管制等。 2 道路车辙的影响因素 2.1 交通荷载 随着交通量及载重车辆的持续增加,车辙的产生情况也出现了同步增长。据相关研究报道:车辙的发展速率随荷载作用次数的增加而减小,但深度却随荷载作用次数的增加而加剧。 2.2 气候及水文条件 一般而言,寒冷地区车辙产生的概率小于炎热地区。由于高温天气下沥青路面的材料发生软化,从而增加了车辙产生的概率。另外,路面内残留的水分会降低结构层的抗变形能力,从而产生车辙。 2.3 路面结构及材料 对于采用刚性或半刚性基层材料的沥青路面,车辙的产生主要在沥青面层内。由于沥青混合料是一种黏弹性塑性材料,其抗变形能力取决于沥青的黏结力

沥青路面车辙病害原因与处治方案

沥青路面车辙病害原因与处治方案 一、什么是车辙: 车辙是车辆在路面上行驶后留下的车轮永 久压痕。过去,人类广泛应用马车,在泥土路 上走,由于土路较软,车过后路面就有压痕, 雨后,路面有泥水压痕更深。古人云:“前面 有车,后面有辙。”车走多了,路上留下两条 平行的很深的车辙。现代路面车辙是路面周期 性评价及路面养护中的一个重要指标。路面车 辙深度直接反映了车辆行驶的舒适度及路面的 安全性和使用期限。路面车辙深度的检测能为 决策者提供重要的信息,使决策者能为路面的 维修、养护及翻修等作出优化决策。 二、沥青路面车辙的类型和产生原因: 沥青路面的车辙分为磨耗磨损型车辙、结构性车辙、失稳型车辙、压密型车辙四种类型1、磨耗型车辙 产生原因:在交通车辆轮胎磨耗和环境条件的综合作用下,路面磨损,面层内集料颗粒逐渐脱落;在冬季路面铺撒防滑料(如:砂)时,磨损型车辙会加速发展。 2、结构型车辙 产生原因:这类车辙主要是基层等路面结构层或路基强度不足,在交通荷载反复作用下产生向下的永久变形,作用或反射于路面。 3、失稳型车辙 产生原因:绝大多数车辙是由于在交通荷载产生的剪切应力的作用下,路面层材料失稳,凹陷和横向位移形成的。此类车辙的外观特点是沿车辙两侧可见混合料失稳横向蠕变位移形成的凸缘。一般出现在车辆轮迹的区域内,当经碾压的路面材料的强度不足以抵抗交通荷载作用于它上面的应力、特别是重载车辆高频率通过,路面反复承受高频重载时,极易产生此类车辙。

此外,在高速公路的进、出口,交费站或一般公路的交叉路口等减速或缓行区,这类车辙也较为严重。因为这些地区车速较低,交通荷载对路面的作用时间较长,易于引起路面材料失稳,横向位移和永久变形。 4、压密型车辙 在施工中碾压不足,开放交通后被车辆压密而形成车辙。不过这类车辙如果是由于路面施工质量控制不严造成的非正常病害,一般在讨论车辙时,多不考虑。 从车辙的形成过程来看,车辙主要是高温下沥青面层因沥青软化而进一步密实,以及沥青变软对矿质骨架的约束作用降低而使得骨架失稳,表明沥青对混合料的高温性能十分重要。当然骨架的稳定性和细集料的多少也会影响车辙形成的进程。在道路的交叉口或变坡路段,此类高温变形更易发生,这主要与较大的水平荷载作用下抗剪强度相对不足有关。 三、影响沥青路面车辙形成及其深度的主要因素: 1、沥青混合料 现行的沥青路面设计的主要依据指标是沥青混合料的强度,其取决于混合料的粘结力和内摩擦角,受集料物理化学性质的影响;粘结力又取决于沥青材料的化学结构、胶体结构、物理化学性质、稠度、沥青膜的厚度、沥青矿料比、沥青与矿粉系的分散结构特征以及沥青与矿料的相互作用,增加内摩擦角和矿料等颗粒间的嵌挤作用可以提高沥青混合料的抗剪稳定性。 ①材料性质。沥青的粘度和沥青与矿料之间的粘附性是影响沥青混合料高温稳定性的两个因素;沥青粘度越大,沥青与矿料之间的粘附越好,那么混合料的高温稳定性越好,因此要选用粘度大的沥青和非酸性矿料以提高混合料的高温稳定性和强度,以便产生较高的抗车辙能力;沥青改性是一种提高沥青高温稳定性的有效手段,据佐治亚洲的加载车轮检测结果证明,改性沥青混合料同标准混合料相比车辙深度有明显减少。 ②矿物集料的表面纹理、料颗粒大小、形状、级配、颗粒相互位置、矿料数量、可以影响混合料的孔隙结构,即孔隙的大小、形状与连通闭合情况、沥青用量状况以及沥青的用量和沥青同集料的互相作用情况,因而可以对车辙的大小表现出不同的影响。采用洁净坚硬的碎石,硬度大、棱角尖锐的砂以及高质量的矿粉对于抵抗永久性变形十分有利。在整个矿料混合料中对沥青温度稳定性影响最大的是矿粉,用石灰岩和冶金矿渣制成的矿粉掺拌的沥青混合料有较高的高温稳定性能。 ③矿料级配。为探讨集料级配对车辙大小的影响,有关研究人员将集料分为过细级配组、细级配组和粗级配组三种,环道试验结果表明:热拌沥青混合料在最佳沥青含量、8%空隙率时粗级配有较大的车辙深度,过细级配次之,细级配组车辙深度最小。另有单轴荷载试验资料:在最佳沥青含量时中粒式沥青混合料车辙最小,细粒式次之,粗粒式大于细粒式,沥青碎石车辙最大。可见,单纯增大矿料粒径并不能提高路面抗车辙能力,而良好的级配和最大的密实度因增加了矿料之间的嵌挤力,而提高了混合料的高温抗车辙能力。 ④空隙率。在进行沥青混合料配合比设计时,对空隙率的选择一般都是根据当地材料和经验进行的,当取值过高时,提高密实度可增加骨料间的接触压力,从而提高路面的抗车辙能力,相应地沥青和矿粉用量也要增加,从而又削弱其抗车辙能力。当空隙率小于某一临界值后,继续减小空隙率,使得混合料内部没有足够的空隙来吸收材料的流动部分,造成混合料外部的整体变形,由此而形成车辙。大量试验表明:各种级配的混合料在最佳沥青含量时,随空隙率的增大车辙有所增加。 2、路面结构组成 沥青路面的抗车辙能力除了受所用材料及其性能影响外,还与路基类型和路面厚度有关。沥青路面厚度与车辙的关系较为复杂,同样的材料在不同的路面结构中会表现出不同的性能,有关室内环道试验表明:当其路基为砂土材料时,面层厚度对车辙影响很大,面层沥青混合料较薄时车辙较深,而且较大部分来自路基的形变;而当面层较厚时,路基基本上不产生车

抗车辙剂沥青混凝土施工工艺

抗车辙剂施工工艺 1、施工控制要点 1.1施工准备 施工现场的抗车辙剂应选择较高较平的位置存放,避免雨淋和长时间浸泡。 1.2拌和 (1)控制集料的加热温度为185~200 ℃。只有在高温条件下,抗车辙剂才能被充分熔融和分散,发挥出最佳效果。 (2)混合料拌和时间以沥青均匀裹覆矿料为度,干拌时间应在原来的基础上延长5~10s左右为宜。 1.3 摊铺 摊铺前熨平板应提前0.5~1小时预热至不低于120℃。 1.4 碾压 (1)根据抗车辙剂沥青混合料的温度特性,抗车辙剂沥青混合料必须在高温区(120~145℃)范围内完成达到规定压实度所必需的压实遍数,最后在80℃进行终压收光。 (2)碾压过程若出现推移现象,应立即停止钢轮压路机碾压,改用胶轮碾压。 1.5 质量控制 施工过程中,不得随意更改混合料的配合比例,施工现场油石比的检测建议采用燃烧炉法。 2、沥青混合料的拌和 为使抗车辙剂能够均匀地分散到沥青混合料中,抗车辙剂加入后应与集料进行干拌,然后再喷入热沥青进行湿拌。掺加抗车辙剂沥青混合料的施工温度应高于普通沥青混合料5℃~10℃。应严格控制拌和温度及拌和时间,每盘料拌和温度差异应小于5℃,拌和时间差异小于5秒。 (1)干拌时间:在拌合加料计量控制下,将抗车辙剂和热集料同时加入到拌合缸中进行干拌。干拌时间比常规集料干拌时间延长5~10秒左右,建议干拌总时间为20秒左右,不超过30秒;

(2)沥青温度:普通沥青预热温度控制在160℃-170℃; (3)湿拌时间:在抗车辙剂和热集料干拌后,喷入预热到160℃-170℃的热沥青,进行湿拌。湿拌时间比常规湿拌时间延长5秒左右,建议湿拌总时间控制在35~40秒左右,以拌合均匀无花白料为宜; (4)出料温度:沥青混合料出厂温度约为170℃-180℃。 3、沥青混合料的运输 3.1运输车辆 根据运距、拌和产量配备数量足够的自卸汽车,要求运力必须大于拌和机产量,要求每台汽车载重量不小于15吨。汽车应有紧密、清洁、光滑的金属底板和墙板,底板应涂一薄层适宜的防粘剂,不得有余残液积留在车厢底部。 防粘剂可以采用洗衣粉水、废机油水等,但不宜采用柴油水混合液。汽车必须备有用于保温、防雨、防污染用的毡布,其大小应能完全覆盖整个车厢。 3.2装料 装料时汽车应按照前、后、中的顺序来回移动,避免混合料级配离析。无论运距远近,无论气温高低,装完料后必须覆盖保温毡布,以防止混合料温度离析。 3.3运输 车辆在进入工程现场时,可以在沥青面层前设置湿草袋等措施,确保轮胎洁净,以免造成污染。 4、沥青混合料的摊铺 4.1施工准备 ⑴抗车辙剂沥青路面的施工,严禁在10℃以下以及雨天、路面潮湿的情况下施工。 ⑵透层油宜采用高渗透性透层油,用量为1.0~1.2kg/m2(沥青含量50%)。 ⑶粘层油宜采用SBS改性乳化沥青,应保证路面均匀满布粘层油,用量0.5~ 0.7 kg/m2(沥青含量50%)。 4.2摊铺机 抗车辙剂沥青混合料应采用履带式摊铺机,每台摊铺机应配备两套长度不小于16m的平衡梁和两套自动滑橇。 4.3找平

沥青面层质量通病及防治措施正式样本

文件编号:TP-AR-L4126 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 沥青面层质量通病及防治措施正式样本

沥青面层质量通病及防治措施正式 样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 沥青路面是位于路面基层上最重要的路面结构 层,它直接承受车轮荷载和大气自然因素的作用,应 具有平整、坚实、耐久及抗车辙、抗裂、抗滑、抗水 害等多方面的综合性能,沥青路面施工质量的好坏, 直接影响到公路的设计使用寿命及行车安全问题,为 此特制订沥青路面常见质量通病、形成原因及防治措 施: 一、路面面层离析形成原因: 1、混合料集料公称最大粒径与铺面厚度之间比 例不匹配。

2、沥青混合料不佳。 3、混合料拌和不均匀,运输中发生离析。 4、摊铺机工作状况不佳,未采用二台摊铺机。 防治措施: 1、适当选择小一级集料公称最大粒径的沥青混合料,以与铺面厚度相适应。 2、适当调整生产配合比矿料级配,使稍粗集料接近级配范围上限,较细集料接近级配范围下限。 3、运料装料时应至少分三次装料,避免形成一个锥体使粗集料滚落锥底。 4、摊铺机调整到最佳状态,熨平板前料门开度应与集料最大粒径相适应,螺旋布料器上混合料的高度应基本一致,料面应高出螺旋布料器2/3以上。 二、沥青面层压实度不合格形成原因: 1、沥青混合料级配差。

路面车辙分析

高速公路路面车辙成因及防治 摘要:最近随着高速公路的突飞猛进的发展,高速公路的各种病害也随之而来。本文主要对病害中的车辙原因进行分析,对车辙简单的分类,研究防治车辙的 各种方法,并简单的介绍几种车辙的处理方法。 关键词:高速公路车辙原因分析维修方法 1 车辙形成原因分析 1.1 路面结构不合理 现行设计规范认为粗粒径混合料比细粒径混合料的抗高温车辙性能强,仅要求层厚大于最大公称粒径的2倍。殊不知,实际施工过程中,粗粒径混合料离析 严重,粗集料“顶天立地”导致碾压难以密实,有时甚至将石料压碎。如铜黄高 速公路,查原竣工图,发现面层结构为:上面层采用4cm中粒式沥青混凝土(AC— 16I)、中面层采用4cm中粒式沥青混凝土(AC—20 I)、下面层采用5cm粗粒式 沥青混凝土(AC—25 I)。此结构存在两个缺陷:一是表层空隙率大,雨水易渗入 并聚积在结构内。二是各层集料最大粒径与层厚不匹配,导致碾压效果不佳,使 后续变形过大。 1.2 面层级配不合理 现行设计规范强调中、上面层主要功能是封水,其次是抗高温车辙性能,导 致中上面层都采用Ⅰ型结构,有的甚至提出中面层的空隙率应降低为2%~4%.实 际上Ⅰ型级配属于悬浮密实结构,内摩阻力小,抗高温车辙性能差,如再将空隙率降低为2%~4%,则高温情况下自由沥青膨胀之后无处去,就会加剧高温形变。另 一方面,中下面层设计虽为中粒式沥青混凝土(AC—20 I)和粗粒式沥青混凝土(AC—25 I),但从对中下面层混合料抽提试验结果看施工配合比级配偏细。 1.3 层间结合处理不当 从多条高速公路取芯发现,基层与面层间没有透层油渗入的痕迹,在取芯过程中,很难取出基层和面层连在一起的整体芯,而是两者分开的,这反映了基层与面层的粘结强度很低,故在陡坡地段发生推移现象是必然的。 1.4 交通荷载考虑不周 在高速公路的交通构成中,重载卡车数量较多,而且行车速度慢。调查发现,大型货车中轴载超过我国标准轴载10t的比例为37%~46%,平均为40.6%,超过国际上最大标准轴载13t的比例为24%~28%,平均为25.7%,有2~4%的甚至超过了 18t,可见超重载现象非常严重。经分析,轴载从10t依次增加到13t、15t、18t,剪应力高值的分布范围从面层下3~6cm依次增加到3~7cm、3~8cm、3~9cm,剪应 力的最大值位置从4cm依次增加到4cm、5cm、5cm。说明随着轴载的增加,剪应 力高值的分布范围由表面层向中面层转移,使产生失稳性车辙的深度增加。因此,承受重载慢速交通要求沥青混凝土有较好的抗车辙能力。但是,目前高速公路设计中没有详细考虑此因素。

抗车辙性能强的合理沥青路面结构初探

抗车辙性能强的合理沥青路面结构初探 孙兆辉 王铁滨 侯 芸 郭祖辛 (辽宁省交通高等专科学校,沈阳110122) (哈尔滨建筑大学交通学院,哈尔滨150008) 摘 要 本文利用系统车辙预估模型,分析研究不同沥青路面结构的车辙反应,为寻求抗车辙性能强的合理路面结构提供了一条研究途径。 关键词 沥青路面结构 车辙预估模型 车辙反应1 前言 综观国内外所进行的有关车辙问题的研究,可以看出普遍存在“重材料轻结构”的现象。大量的技术措施集中在表层材料的选择和沥青混合料的组成设计等方面,随着研究的深入,路面结构是一个不可忽视的因素。 由于缺乏同类地区各高等级公路的路况实测资料,本文仅以西安试验路13种路面结构为研究对象,认为应用系统车辙预估模型(简称V ESRM 模型)分析研究不同路面结构的车辙反应,为寻求抗车辙性能强的合理路面结构提供了一条研究途径。2 VESR M 模型 (1)数学模型 R D = ∫ N 2 N 1U ΒSYS N -ΑSYS dN (1) 式中:U -荷载重复作用下的路表位移(轮下位移); ΑSYS 、Β SYS -路面结构体系永久变形特征参数;N -标准轴载(B ZZ -100)作用次数。 假定每次荷载作用下轮下弯沉不变,故U 值可取在一次荷载作用下的轮下弯沉。本模型U 值采用后轴重为100kN 的汽车在路面投入使用后第n (n ≥1)年不利季节实测的轮下位移值。 (2)参数确定 本模型通过大量预估值与实测值的比较,建立了模型参数ΑSYS 与ΒSYS 二者之间的相关关系,即ΒSYS = U U r (1-ΑSYS )(2) 式中:U -荷载重复作用下的路表弯沉(意义同前);U r -荷载重复作用下的路表回弹弯沉(轮下回 弹弯沉); 其余同前。 其参数确定的具体步骤如下: 1)编制V ESRM 程序,采用高斯积分法计算车辙深度。 2)输入数据U 、N 1、N 2及参数初值ΑSYS0、ΒSYS0。根据服务中的道路车辙深度实测值反算其参数,建议路面结构体系永久变形特征参数初值ΑSYS0取0.75,再由ΒSYS 与ΑSYS 的相关关系确定ΒSYS0。 3)运行V ESRM 程序,将预测结果与实测数据相比较,如果二者数值相接近 ,误差不超过±5%,则停止运行,记录所确定的参数值,否则,通过V ESRM 程序调整参数,直至预估值与实测值非常 接近,误差控制在前述容许误差范围内,从而确定模 型参数ΑSYS 和ΒSYS 值 。其模型参数确定流程见图1。3 西安试验路概况 西安试验路铺筑在西三(西安-三原)线一级公 ?8?东 北 公 路2000年

沥青面层质量通病及防治措施

沥青面层质量通病及防治措施 沥青路面是位于路面基层上最重要的路面结构层,它直接承受车轮荷载和大气自然因素的作用,应具有平整、坚实、耐久及抗车辙、抗裂、抗滑、抗水害等多方面的综合性能,沥青路面施工质量的好坏,直接影响到公路的设计使用寿命及行车安全问题,为此特制订沥青路面常见质量通病、形成原因及防治措施: 一、路面面层离析形成原因: 1、混合料集料公称最大粒径与铺面厚度之间比例不匹配。 。不、沥佳青混合2料 3、混合料拌和不均匀,运输中发生离析。 4、摊铺机工作状况不佳,未采用二台摊铺机。 防治措施: 1、适当选择小一级集料公称最大粒径的沥青混合料,以与铺面厚度相适应。 2、适当调整生产配合比矿料级配,使稍粗集料接近级配范围上限,较细集料接近级配范围下限。 3、运料装料时应至少分三次装料,避免形成一个锥体使粗集料滚落锥底。 4、摊铺机调整到最佳状态,熨平板前料门开度应与集料最大粒径相适应,螺旋布料器上混合料的高度应基本一致,料面应高出螺旋布料器2/3以上。 二、沥青面层压实度不合格形成原因: 1、沥青混合料级配差。 。度碾合压温不 2够料混沥青、。 3 压路小,数遍不实够质机、量压边 4。走、路机压未缘到密。准5 不度准标、 :施措治防 1、确保沥青混合料的良好的级配。 2、做好保温措施,确保沥青混合料碾压温度不低于规定要求。 3、选用符合要求质量的压路机压实,压实遍数符合规定。 4、当采用埋置式路缘石时,路缘石应在沥青面层施工前安装完毕,压路机应从外侧向中心碾压,且紧靠路缘石碾压;当采用铺筑式路缘石时,可用耙子将边缘的混合料稍稍耙高,然后将压路机的外侧轮伸出边缘10cm左右碾压,也可在边缘先空出宽30~40cm,待压完第一遍后,将压路机大部分重量位于压实过的混合料面上再压边缘,减少边缘向外推移。 5、严格马歇尔实验,保证马歇尔标准密度的准确性。 三、沥青面层压实度不均匀形成原因: 1、装卸、摊铺过程中所导致的沥青混合料离析,局部混合料温度过低。 2、碾压混乱,压路机台套不够,导致局部漏压。 3、辗压温度不均匀。 :治措防施 1、料车在装料过程中应前后移动,运输过程中应覆盖保温。 2、调整好摊铺机送料的高度,使布料器内混合料饱满齐平。 3、合理组织压路机,确保压轮的重叠和压实遍数。 四、枯料形成原因: 1、砂及矿料含水量过高,致使细料烘干时,粗料温度过高。 2、集料孔隙较多。 :治防施措 1、细集料以及矿粉的存放应有覆盖,确保细集料烘干前含水量小于7%.

沥青路面车辙测试

实训九沥青路面车辙测试 车辙是路面经汽车反复行驶产生流动变形、磨损、沉陷后,在车行道行车轨迹上产生的纵向带状辙槽,车辙深度以mm计,车辙面积以2 m计。车辙的控制指标,国内没有统一指标,国外以车辙深度作为评价指标。 一、仪器与材料 可选用下列仪具与材料: (1)路面横断面仪,如图9.1所示。其长度不小于一个车道宽度,横梁上有一个位移传感器,可自动记录横断面形状,测试间距小于20cm,测试精度1mm。 图 9.1 路面横断面仪 (二)激光或超声波车辙仪,包括多点激光或超声波车辙仪等类型。通过激光测距技术或激光成像和数字图像分析技术得到车道横断面相对高程数据,并按规定模式计算车辙深度。 要求激光或超声波车辙仪有效测试宽度不小于3.2m,测点不小于13点,测试精度1mm。 (3)路面横断面尺,如图9.2所示。横断面尺为硬木或金属制直尺,刻度间距5cm,长度不小于一个车道宽度。顶面平直,最大弯曲不超过1mm。两端有把

手及高度为10~20cm的支脚,两支脚的高度相同。 图 9.2 路面横断面尺 (4)量尺:钢板尺、卡尺、塞尺,量程大于车辙深度,刻度至1mm。 (5)其他:皮尺、粉笔等。 二、方法步骤 (一)确定车辙测定的基准测量宽度 (1)对高速公路及一级公路,以发生车辙的一个车道两侧标线宽度中点到中点的距离为基准测量宽度。 (2)对二级及二级以下公路,有车道去划线时,以发生车辙的一个车道两侧标线宽度中点到中点的距离为基准测量宽度;无车道区划线时,以形成车辙部位的一个设计车道宽度作为基准测量宽度。 (二)确定车辙测定的间距 以一个评定路段为单位,用激光车辙仪连续检测时,测定断面间隔不大于10m。用其他方法非连续测定时,在车道上每隔50m作为一测定断面,用粉笔画上标记进行测定。根据需要也可按《公路路基路面现场测试规程》(JTG E60—2008)中随机选点方法在车道上随机选取测定断面,在特殊需要的路段如交叉路口前后壳予以加密。 (三)各种仪器的测定方法

沥青路面车辙形成机理及防治措施

Value Engineering 0引言 沥青路面的主要破坏形式之一是路面产生车辙,在高温季节里,一般情况下比较容易发生车辙现象。沥青面层在行车荷载的反复作用下,进而在一定程度上被碾压密实,沥青面层经过反复的挤压,进而导致轮迹带不断下沉。在剪应力的作用下,路面的内部材料发生横向的流动,在一定程度上使得中间和两侧出现凹陷和隆起,进而在路面层形成波峰和波谷。道路本身及道路的使用性能受到车辙的危害和影响。 1车辙形成机理分析 1.1初始阶段的压密过程碾压混凝土路面前,沥青混合料由沥青、集料,以及空隙组成,因而混合料比较松散。通过压路机对沥青混合料进行碾压,沥青与矿粉组成的胶浆以及半流状态的沥青在高温条件下被挤进矿料的间隙内,在强力排挤的作用下,集料进一步形成骨架结构。经压路机碾压成型后,松散混合物投入使用,在车辆荷载的作用下,沥青混合料在初期阶段被进一步压实,进而在一定程度上形成微小的永久性变形。 1.2沥青混合料的流动在沥青混合料中,沥青与矿料形成的沥青胶浆和自由沥青,在车辆荷载和高温的共同作用下首先发生流动,随之发生沥青混合料的流动性变形。 1.3矿料骨架的重新排列及破坏自由沥青和胶浆在荷载和高温的共同作用下首先发生流动,这时,由于沥青混合料依然处于半凝固状态,所以荷载通常情况下由混合料中粗、细骨料构成的骨架进行承担。随着温度的升高,汽车荷载的增加,在荷载的直接作用下,沿着矿料间的接触面硬度较大的矿料颗粒发生相应的滑动,在一定程度上,导致沥青和胶浆流向富集区域,进一步产生流动性变形。 2沥青路面车辙内因分析 2.1路面结构的影响随着沥青路面厚度的增大(在一定的厚度范围内),永久变形也会出现相应的而增加。对沥青路面通过采用刚性基层或半刚性基层材料进行相应的处理,在抗剪切变形和高温稳定性方面,由于刚性基层 或半刚性基层都具有很强的能力。因此,在路面面层容易发生沥青路面的车辙现象,相对来说,其他层产生车辙的比例比较小。 2.2集料性质的影响沥青混合料的耐热性在一定程度上受到集料性质的影响和制约,这种影响通常情况下,通过集料与沥青相互作用进行显示。由于集料与沥青在一定程度上产生相应的吸附作用,进而沥青混合料抵抗变形能力大大提高。沥青混合料的抵抗变形能力和强度随着沥青内聚力的增大而逐渐增强。 2.3沥青混合料塑性的影响通常情况下,路面的抗剪强度与混合料的塑性存在某种关系,通常情况下,塑性与抗剪强度成反比。抗剪强度随着塑性的减小而逐渐增大,同时,抗变形能力在高温条件下就会增大。沥青混合料的级配和种类影响和制约沥青混合料的塑性。 2.4沥青混合料空隙率的影响经过压路机碾压,路面成型后,在高温条件下,沥青混合料空隙率在一定程度上影响着路面的抗变形能力。沥青混合料的空隙率越大,内摩擦阻力就成为路面抗剪强度的主要决定性因素,但是,对于温度和加载速度来说,其变化通常情况下与内摩擦阻力没有任何关系。 2.5级配的影响一般情况下,沥青混合料的性能受到级配的影响和制约,同时混合料级配对高温稳定性也产生相应的影响。集料的级配通常决定着混合料的密实程度,以及矿料颗粒间嵌挤力的大小,进而在一定程度上影响沥青混合料的高温稳定性。试验研究表明,在常规条件下,除SMA 外,间断级配沥青混合料高温稳定性比有合理密级配的沥青混合料的差。对于形成骨架结构的级配来说,温度造成的影响比较小。 3掺加抗车辙剂 在我国, 主要通过半刚性材料对基层进行处理。由于半刚性材料具有较强的板结性能和强度,所以,在基层和基层以下,只有极小的部位发生变形,通常情况下结构性车辙很少发生,磨损性车辙在我国的路面中很少出现。但是,流动性车辙在我国路面中比较普遍。当前,还没有有效 —————————————————————— —作者简介:李秀凤(1977-),女,黑龙江哈尔滨人,高级工程师,研 究方向为土木工程;景铎(1980-),女,黑龙江哈尔滨 人,讲师,研究方向为土木工程。 沥青路面车辙形成机理及防治措施 Rut Formation Mechanism of Asphalt Pavement and Prevention Measures 李秀凤LI Xiu-feng ;景铎JING Duo (黑龙江职业学院,哈尔滨150080)(Heilongjiang Polytechnic ,Harbin 150080,China ) 摘要:沥青路面使用期内车辙是主要破坏形式之一。本文阐述了车辙的形成过程的三个阶段。 从内因方面进行分了析车辙成因,通过采用抗车辙剂的方式,进而在一定程度上解决克服车辙的病害。 Abstract:Rut is one of the main damage forms in the use process of asphalt pavement rutting.This paper describes the three stages of the formation of ruts,analyzes the rut causes from the internal aspect,thereby solves the rut diseases by using anti-rutting agent. 关键词:抗车辙剂;路面变形;车辙Key words:anti-rut agent ;pavement deformation ;rut 中图分类号:U418.6文献标识码:A 文章编号:1006-4311(2014)05-0081-02 ·81· DOI:10.14018/https://www.360docs.net/doc/5e11689250.html,13-1085/n.2014.05.041

巷道围岩破坏机理及防护技术

巷道围岩破坏机理及防护技术 矿产资源的不断开采,开采深度不断加大,渐渐进入深部开采,深部开采引起的三高一绕动严重影响巷道的稳定性,进入千米之后的深部开采围岩压力增大、原始构造应力大、巷道围岩变化剧烈。因此巷道围岩破坏研究机理及技术是我们研究重点,针对围岩稳定的基本状况,提出有针对性的支护方案有重要意义。 标签:巷道围岩;支护;稳定性 1 巷道围岩机理研究 矿井的深部开采的巷道问题已经不能用浅部理论解决,浅部条件下的地质情况以及矿山压力破坏机理都产生变化,深部的地质状况有独特的特点,对于深部要进行特征分析以及重新建立一个符合特点的压力显现理论。根据巷道变形的特点,建立一个科学体系将弹塑性理论以及破碎理论融合,传统的连续介质不适合复杂条件。深部巷道围岩破裂区和完整区多次交替的现象,即分区破裂化。将分区破裂化定义为“在深部岩体中开挖洞室或者巷道时,在其两侧和工作面前的围岩中,会产生交替的破裂区和不破裂区。 在各类的巷道进行施工的过程中,原始的应力场遭到破坏,巷道围岩压力的调整在巷道稳定蠕变期间,一个非线性的复杂的体系是围岩体系的状态,对于深部的巷道破坏不会有明显的显现特征,我们要保证加强对高应力下的巷道控制,做到对于耦合围岩变形的特征还有围岩压力进行控制。对于上覆岩层压力以及扩容压力是围岩失稳的主要方面,破坏扩容及粘土矿物膨胀压力是影响深部软岩巷道稳定的持续性力源。不注重围岩与支护体的变形协调和祸合难以达到理想的支护效果,是不能够合理的分析破坏机理,为此,必须从围岩的变形破坏特征。矿物组成、结构特点、力学作用等多方面深入研究围岩的变形力学机制,只有这样才能设计出一个合理稳定防御体系。对巷道围岩进行分析归类,对于不同的体系采取,对于支护方案进行设计,对参数进行确定,修缮施工工艺,多角度全方位的进行支综合研究。如今支护在材料以及支护设备上有新的突破,在支护材料方面主要研发了锚杆支护、喷射混凝土支护、钢结构支护混凝土预制大弧板结构等,在支护方式是包括锚杆+喷射混凝土、锚喷网、锚喷网+锚索,锚喷网。 2 支护方案 在现场进行锚杆与卸压孔协同作用就行现场应用,评价巷道围岩稳定性。深部测点数据在埋深982m处,最大水平主应力为29.20MPa,垂直应力为23.30MPa,最大水平主应力方向N20.6°E。埋深在1034m,轨道巷中,最大水平主应力33.22/MPa最小水平主应力15.19/MPa垂直应力25.84/MPa最大水平主应力方向N35°E。在1045m深的回风巷最大水平主应力为31.27MPa,最小水平主应力为14.27MPa,垂直应力为22.38MPa,煤矿深部地层应力场类型为H大于V大于A 型应力场,最大水平主应力为最小水平主应力的1.5到2.1倍。地应力数据划分的地应力水平是超高地应力区域,巷道围岩的强度显示,在岩层的完整性来看是

沥青路面破损分类分级

公路沥青路面破损分类分级及换算系数

注:路面综合破损率(DR )100/100/??=?=∑∑A K D A D DR ij ij 路面状况指数(PCI )412.015100DR PCI -=(水泥混凝土路面10.66,0.461;砂石 路面10.10,0.487) 平整度、抗滑性能及破损状况的养护质量标准表4-1

注:(1)对于其他等级公路的平整度方差б:沥青碎石、贯入式应取低值4.5,沥青表面处治取中值5.5,碎砾石及其它粒料类路面取高值7.0; (2)对于其他等级公路的平整度三米直尺指标:沥青碎石、贯入式应取低值10,沥 注:对于其他等级公路不对车辙深度作要求。 (4)沥青路面应保持横坡适度,以利排水,各种路面类型的路拱坡度宜 符合表4-4的规定。 沥青路面横坡度表4-4

注:对于高速、一级公路路拱横坡的养护标准可视情况比表列值低0.5%, 其他等级公路的路拱横坡可视公路等级的情况比《公路工程技术标准》 (1 (2 材料必须具有足够的强度、耐久性和稳定性,以承受车辆的作用和抵抗自然环境的影响。各种维修养护材料都应进行必要的试验,不符合要求的, 不得使用。 2.技术要求 沥青路面养护维修材料的技术要求符合《公路沥青路面设计规范》

(JTJ014),《公路沥青路面施工技术规范》(JTJ032)。这些材料的试验应遵照《公路工程沥青及沥青混合料试验规程》(JTJ052),《公路工程石料试验规程》(JTJ054),《公路工程集料试验规程》(JTJ058)的规定执行。 三、路面使用质量评价指标与评价方法 1.路面现有使用质量评价的内容 2.路面状况指数(PCI) 路面破损状况的评价标准 根据路面破损情况,可将路面质量分为优、良、中、次、差五个等级。评价标准宜符合表4-9的规定,各地可根据当地的使用要求、经济条件、 自然条件对此标准作适当的调整。

车辙的形成原因及预防措施

沥青路面车辙产生的原因及防治措施 随着公路运输量日益增长和运输向重型化发展,尤其是高等级公路渠化交通的运行,高等级公路沥青路面的车辙日趋严重。由于路面上产生过大车辙,会使:1)路表过量的变形影响路面的平整度;2)轮迹处沥青层厚度减薄,削弱了路面整体强度,易于诱发其它病害;3)雨天车辙内积水导致车辆出现水漂,影响高速行车的安全性;4)在冬季车辙槽内聚冰,降低路面的抗滑能力,导致行车危险;5)使车辆在超车或变换车道时方向失控,影响车辆的操纵稳定性。由此可见,由于车辙的出现,会严重影响路面的使用和服务质量。 我国以前公路等级较低,交通量小,基本上未形成渠化交通,且沥青面层较薄,因此车辙没有成为主要问题,路面设计规范也未考虑车辙设计。现在我国广泛采用半刚性基层沥青路面,目前主要表现出来的早期破坏形式是路面裂缝及水损坏,但随着经济建设的快速发展,公路交通量的不断增加,交通渠化以及重型车辆的出现,沥青层厚度增加,路面车辙问题逐渐变得突出,必须引起重视。1.车辙的类型 沥青混合料是一种典型的流变性材料,它的强度和劲度模量随着温度的升高而降低。所以沥青混凝土路面夏季高温时,在交通的作用下,由于交通的渠化,在轮迹带逐渐形成变形下凹,两侧鼓起的所谓“车辙”。根据它形成的原因,可分为下列三种类型:

(1)结构性车辙:这种车辙是指土路基、(底)基层、沥青面层等结构层的强度不够引起的永久变形。它的特点是宽度比较大,两侧没有隆起,横断面呈凹陷。 (2)失稳性车辙:这种车辙是指沥青面层进一步被压实及侧向流动的变形,这种变形主要发生在重载车辆车轮经常作用的部位。其特点是车轮作用的部位下陷,两侧向上隆起,看是一种槽沟。 (3)磨损性车辙:这种车辙是人为性因素造成的。比如:有些车辆在雨雪天气里,为防止轮胎打滑,在车轮上加防滑链或使用镀钉轮胎,多发生在我国北方寒冷地区。 2、车辙形成的过程 我们知道,任何一种形式的沥青路面压实度都没有达到百分之百,也就是说压实完的沥青路面还留有一定的空隙,正因为存在这种空隙,遇到高温天气时,在车轮荷载的作用下,特别是在重载、超载车辆的作用下,路面进一步被压实,使沥青混合料产生了塑性流动,导致混合料中的矿质混合料原有的骨架被重新进行排列。 3、车辙形成的原因 (1)采用的沥青结合料含蜡量高,沥青用量过多 沥青中蜡的存在,在高温时会使沥青路面容易发软,导致沥青路面高温稳定性降低,出现车辙。同样在低温时会使沥青变脆,导致沥青路面低温抗裂性降低,出现裂缝,在水的条件下,会使路面石子产生剥落现象,造成路面破坏,更严重的是含蜡沥青会使沥青路面的抗滑性降低,影响路面的行车安全。 在沥青过多的混合料中,沥青不仅起着粘结剂的作用,而且还起着润滑剂的作用,降低了粗集料的相互密排作用,因而降低了沥青混合料的内摩擦角。这种混合料遇到高温天气时,在车轮的作用下泛油、松软、滑动、发生塑性变形,形成车辙。 (2)粗集料用量少,棱角性差。矿粉用量偏少。 沥青混合料中的粗集料过少,矿质混合料形不成一定骨架。在这种结构的混合料中,集料实际上是悬浮在沥青砂浆中,交通荷载主要有沥青砂浆承受着,在高温浆粘度变小,承受变形的能力急剧降低,容易产生永久变形,形成车辙。再

沥青路面破损分类分级

公路沥青路面破损分类分级及换算系数 注:路面综合破损率(DR )100/100/??= ?=∑∑A K D A D DR ij ij 路面状况指数(PCI ) 412 .015100DR PCI -=(水泥混凝土路面,;砂石路面,) 路面破损状况评价标准

一、公路沥青路面养护质量标准 1.沥青路面养护质量标准 (1)沥青路面平整度、抗滑性能及路面状况的养护质量标准应符合表4-1 的规定。 平整度、抗滑性能及破损状况的养护质量标准表4-1 注:(1)对于其他等级公路的平整度方差б:沥青碎石、贯入式应取低值,沥青表面处治取中值,碎砾石及其它粒料类路面取高值; (2)对于其他等级公路的平整度三米直尺指标:沥青碎石、贯入式应取低值10,沥青表面处治取中值12,碎砾石及其它粒料类路面取高值15; (3)二级公路沥青混凝土路面可参照高速,一级公路的质量标准。 (2)沥青路面强度的养护质量标准应符合表4-2 的规定。 沥青路面强度的养护质量标准表4-2 (3)沥青路面车辙养护质量标准应符合表4-3 的规定。 沥青路面车辙养护质量标准表4-3 注:对于其他等级公路不对车辙深度作要求。 (4)沥青路面应保持横坡适度,以利排水,各种路面类型的路拱坡度宜符合表4-4 的规定。 沥青路面横坡度表4-4 注:对于高速、一级公路路拱横坡的养护标准可视情况比表列值低% ,其他等级公路的路拱横坡可视公路等级的情况比《公路工程技术标准》(JTJ001)中相应得设计值低% 作为养护标准。 2.大修、中修、改建、专项工程的质量标准 (1)对沥青路面采取大修补强、中修罩面、改建及实施专项养护工程时,除参照本技术规定外,还应参照《公路工程质量检查评定标准》(JTJ071)规定执行。

沥青路面车辙产生的原因及处理措施

沥青路面车辙产生的原因及处理措施 【摘要】沥青路面一旦产生车辙,其交通安全就会受到影响。因此,对沥青路面车辙产生的原因及相应处理措施进行研究具有非常大的意义。本文根据沥青路面车辙产生的原因对其提出相应的处理措施,以供同仁参考。 【关键词】水泥;混凝土;道路;质量通病;防治措施 随着近年经济的快速发展,车流量在不断的增加,其沥青路面就出现了各种各样的病害,比如车辙、裂缝、泛油等病害,这些病害的出现将严重影响到了交通安全。因此,就需要对其产生的原因进行研究,并提出科学合理的改善措施。本文主要研究的是车辙产生的原因及相应的处理措施。车辙的出现将会对通行的车辆和路面产生影响,其主要的影响表现在以下几个方面:①车辙的产生会使沥青路面产生变形,其路面平整度受到影响;②车辙会使轮迹处沥青层厚度变得更加薄,其路面的结构和面层的整体强度将会变弱,其他病害很容易就诱发出来了; ③车辙的产生会使雨天的排水变得更加不畅,路面的抗滑能力大大的下降,其交通安全就会受到严重的影响;④车辙的出现会使车辆在更换车道或超车时方向失控,其交通的安全就会受到影响。综上可知,车辙的出现将会严重影响到路面的服务质量和使用状况。 1、车辙产生的原因分析 根据相关研究资料发现,车辙产生的原因有很多种,大致可以分为两个方面:内部影响因素和外部影响因素。内部影响因素主要是指路面施工技术及沥青混凝料性质,外部因素则是指气候、车流量、荷载以及路面坡度等影响因素。其中内部影响因素是可以进行控制的,外部因素就很难控制。 1.1路面结构及材料组成 我国路面大部分采用的材料是沥青混合料。沥青层材料是会发生变形的,其变形量会随着路面结构中厚度的增大而变大。此外,沥青路面中级配碎石也是随之发生一定程度的永久变形。沥青路面采用的材料是半刚性基层或刚性基层,这两种材料具有比较高的高温抗剪变形和稳定性能力,因此,沥青层是产生车辙主要部位,其中土基和刚性基层产生车辙的概率是非常小的。 1.2施工因素 施工质量是造成沥青路面出现车辙病害的内部原因之一,在沥青路面施工过程中如果没有做好以下几个方面的施工工作,那么就很容易导致路面产生车辙病害。其主要的施工因素有:①沥青混合料的离析比较严重时就会造成级配偏差,使得配成的混合料偏软,未达到一定强度;②片面的看重路面的平整度,没有对压实度进行严格要求;③油石比控制不准确等因素;④沥青路面的施工技术和施工过程,在对沥青路面施工时需要做好中间的施工,防止路面层间出现滑动现象。

抗车辙新型沥青路面Word版

得分:_______ 研究生课程论文 2014~2015学年 第2学期

二〇一五年五月 抗车辙新型沥青路面 摘要:我国高速公路沥青路面早期破坏现象严重,其中高温车辙破坏是一个重要的原因。我国从混合料的级配设计方法、改性沥青方法和外掺剂方法三个方面入手研发抗车辙沥青路面,其施工需要注意拌合、运输、摊铺、碾压等关键技术。 关键词:抗车辙;沥青;混合料的级配设计;改性沥青;外掺剂。 0 引言 高速公路沥青路面早期破损问题,己成为影响我国公路健康发展的突出问题,主要表现在三个方面:(1)损坏时间早。有的建成使用后1-2年,就出现严重的损坏现象,个别路段通车当年就出现大面积损坏,远远达不到设计寿命。(2)损坏范围宽。全国各地都不同程度地存在着路面过早损坏问题。(3)损坏程度重。有的损坏不是局限在沥青表面层,而是基层也发生损坏,不得不进行路面重建。在沥青路面的早期损坏中尤其以高温车辙破坏最为突日。 1 车辙的形成 车辙是行车道轮迹带上产生的永久变形,由轮迹的凹陷及两侧的隆起组成。根据车辙的不同形成过程,可将车辙分成三大类型:失稳型车辙,是指当沥青混合料的高温稳定性不足时,沥青路面结构层在车轮荷载作用下,其内部材料因流动而产生横向位移,通常发生在轮迹处,这也是车辙的主要类型;结构型车辙,指沥青路面结构在交通荷载作用下产生的整体永久变形。这种变形主要是由于路基变形传递到路面层而产生的;磨耗型车辙,为沥青路面结构层的材料在车轮磨耗和自然环境因素作用下不断地损失而形成的车辙。汽车使用了防滑链和突钉轮胎后,这种车辙更易发生。 以上三种车辙中以失稳型车辙最为严重,其次为磨耗型车辙。由于我国大多数沥青路面

运用QC提高沥青路面抗车辙性能

运用QC提高沥青路面抗车辙性能 李建松 一、选题理由据国际性的统计资料表明,大约80%的沥青路面维修养护都因车辙变形引起。与其他开裂、水损害等病害相比,车辙病害的危险性最大,它直接威胁交通安全。与其它病害相比,车辙的维修也最难,因为它不仅发生在表面层,也经常发生在中下面层。在我国,随着汽车重车数量急剧增加及轴载的加大(特别是超载重车),车辙破坏表现为沥青混凝土路面最主要的破坏形式。产生车辙破坏的根本原因是因为沥青混凝土高温稳定性不足。如何提高沥青混合料的抗高温性能?通常采取的措施,一选用较粗级配类型,即增加粗集料用量减少细集料用量使沥青混合料类型为骨架密实结构;二采用改性沥青,仅靠混合料级配优化提高抗车辙能力是有限的,大量试验结果表明,再利用重交通A级沥青的条件下,通过减少细集料和增加粗集料将悬浮密实结构优化到骨架密实结构混合料,最多将动稳定度提高到原来的2~2.5倍。在此情况下可采用高温粘度大的低标号沥青或改性沥青,可将动稳定度在提高1~2倍。三添加外掺剂,比如说抗车辙剂、纤维、水泥、石灰等。 连霍国道主干线红山口—鄯善高速公路建设项目第十三合同段,起点:ZK3785+000,终点:ZK3844+600,全长59.6Km。本合同段位于戈壁荒漠地,属百里风区,夏季地表温度高达60多度;冬季风沙大,温度低至零下28.7度;年平均降水量25.5mm。其沥青路面设计型式为: 上面层:12.25米宽4cm中粒式沥青混凝土(AC-16C型); 下面层:12.33米宽6cm粗粒式沥青混凝土(AC-25F型)。 此结构设计与现行规范存在冲突;1结构层厚度与最大公称粒径,规范要求沥青层一层的压实厚度厚度不小于最大公称粒径的2.5~3.0倍,即AC—25沥青混凝土单层铺筑厚度为7~8CM,AC-16沥青混凝土单层铺筑厚度为5CM(在内地基本上如此设计)。结构层厚度与

相关文档
最新文档