单片机应用系统的抗干扰技术设计

单片机应用系统的抗干扰技术设计
单片机应用系统的抗干扰技术设计

第五章单片机应用系统的抗干扰技术设计

§5.1 干扰源

我们要进行抗干扰措施,首先就得仔细研究干扰产生的原因、途径,掌握或了解其规律后,才能有针对性地提出各种抗干 https://www.360docs.net/doc/5d15095825.html,/ 扰的理论和措施。

5.1.1干扰与噪声的区别

(1) 噪声是绝对的,它的产生或存在不受接收者的影响,是独立的,与有用信号无关。干扰是相对有用信号而言的,只有噪声达到一定数值、它和有用信号一起进入应用系统并影响其正常工作时才形成干扰。

(2) 干扰在满足一定条件时,可以消除;噪声在一般情况下,难以消除,只能减弱。

5.1.2分类

根据产生干扰的物理原因,干扰可以分为如下几种类型:机械干扰、热干扰、光干扰、湿度干扰、化学干扰、电和磁的干扰、射线辐射干扰。其中,电和磁的干扰是最为普遍和严重的干扰,下面对电磁干扰作重点论述。

电磁干扰的分类:

(1) 从噪声产生的来源分类可以分为:

○1固有噪声源固有噪声是指器件内部物理性的无规则波动所形成的噪声。○2人为噪声源人为噪声源主要是各种电气设备所产生的噪声,主要有以下

几种:1. 工频噪声,大功率输电线是典型的工频噪声源。低电平的信号线只要有一段长度与输电线平行,就会受到明显的干扰;即使一般室内的交流电源线,对输入阻抗低和灵敏度高的传感器来说也会是很大的干扰源。在传感器的内部,由于工频感应也会产生交流噪声,它所形成的干扰也不可忽视。2. 射频噪声,高频感应加热、高频焊接等工业电子设备以及广播、电视、雷达及通信设备等通过辐射或通过电源线会给附近的传感器系统带来干扰。3. 电子开关,由于电子通断的速度极快,使电路中的电压和电流发生急剧的变化,形成冲击脉冲,从而成为噪声干扰源。

○3自然噪声源和放电噪声

自然噪声主要指天电形成的放电现象。放电现象的起因不仅是天电,还有各种电

气设备所造成的,主要有:电晕放电、火花放电、放电管放电等。

(2) 从干扰的出现区域来分可分为内部干扰和外部干扰。

(3) 从干扰对电路作用的形成分类

○1差模干扰

也称为串联干扰,差模干扰进入电路后,使传感器系统 https://www.360docs.net/doc/5d15095825.html,/ 的一个信号输入端子相对于另一个信号输入端子的电位发生变化,即干扰信号与有用信号按电势源串联起来作用于输入端。因为这种干扰和有用信号叠加起来直接作

用于输入端,所以它直接影响到测量结果。 Us Rs

Z1

R1

E1Us

Rs Z1

R1I1

(a )串联电压源形式 (b )并联电流源形式

图5-1 差模干扰等效电路

2共模干扰 它是相对于公共的电位基准点,在传感器系统的两个输入端子同时出现同向干扰。它虽然不直接对测量结果造成影响,但当信号输入电路不对称时,它会转化为差模干扰,进而对测量产生影响。在实际工作中,由于共模干扰电压一般比较大,而且它的耦合机理和耦合电路不易搞清楚、排除困难,所以共模干扰对测量的影响更为严重。 Us

R1

R3R2

Un

AGND

图5-2 共模干扰等效电路

(4) 共模干扰抑制比

为了衡量传感器系统对共模干扰的抑制能力,引入共模干扰抑制比,其定义为:作用于传感器系统的共模干扰信号与这个共模干扰信号转换为差模干扰信号之比,通常以对数形式表示:

20lg cm cd

U CMRR U = (dB) (5-1) 式中,cm U ——实际的共模干扰电压;cd U ——共模干扰电压转换成的差模干扰电压。 共模干扰抑制比也可以定义为差模增益与共模增益之比,其表达式为

20lg

d m

K CMRR K = (dB) (5-2) 式中, d K ——差模增益;m K ——共模增益。

从以上定义式,可以看出共模干扰抑制比是传感器系统对共模干扰抑制能力的量度,CMRR 越大,说明抑制共模干扰的能力越强。

(5) 噪声形成干扰的三要素

噪声形成干扰必需具备三个条件,即三要素。这三要素是有噪声源、有对噪声敏感的接收电路和噪声源到接收电路之间的耦合通道。三者之间的联系如图5-3所示:

https://www.360docs.net/doc/5d15095825.html,/

图5-3 耦合通道

分析干扰问题时,要根据这三要素进行,搞清噪声源是什么,噪声的接收电路是什么以及噪声与接收电路之间是通过什么途径进行耦合的。

5.1.3 噪声的耦合方式

噪声进入电路的方式,称为耦合方式,其有多种类型,归纳起来有以下几种:

(1) 电容性耦合 它是由于两个电路之间存在寄生电容,使得一个电路

的电荷变化影响到另一个电路。

(2) 互感耦合 互感耦合又称电磁耦合。它是由于两个电路之间存在互

感,使得当一个电路的电流变化时,通过磁交链影响到另一个电路。

这种干扰耦合方式,多发生在两根导线在较长一段平行架设中,其

中动力线或强信号线成为干扰源;在传感器系统内部的线圈或变压

器漏磁也成为邻近电路的干扰源。

AGND AGND

AGND AGND Un

In

M

图5-4 互感耦合等效电路 (3) 共阻抗耦合 共阻抗耦合是由于几个电路之间有公共阻抗,当一个

电路中有电流渡过时,在公共阻抗上产生一个压降,这一压降对其

它与公共阻抗相连的电路形成干扰。这种干扰耦合形式主要产生在

下述几种情况: ○

1电源内阻抗的共阻抗耦合○2公共地线的耦合○3信号输出电路的相互干扰

(4) 漏电耦合 由于两部分电路之间绝缘不良,高电位电路通过绝缘电阻

向低电平电路漏电,这种漏电电流对低电平电路形成干扰,其等效

电路如图5-5所示:

En Rm

Zi

AGND

AGND Un

A B

图5-5 漏电耦合等效电路 (5) 传导耦合 传导耦合是指经导线检拾到噪声,再经它传输到噪声接收

电路而形成干扰的噪声耦合方式。最常见的是电源线经噪声环境,

它把交变电磁场感应到电源回路中而形成感应电势,再经这条电源噪声源 耦合 接收电路

线传送到各自进入的电子装置,形成干扰。这种干扰不易被发现且

易 https://www.360docs.net/doc/5d15095825.html,/ 被人们所忽视。

(6)辐射电磁场耦合大功率的高频电气设备,广播、电视、通信发射

台等,不断地向外发射电磁波。传感器系统若置于这种发射场中就

会感应到与发射电磁场成正比的感应电势,这种感应电势进入电路

就形成干扰。

5.1.4抑制电磁干扰的基本方法

抑制干扰的基本方法是从形成干扰的三要素出发,在噪声源、耦合通道、接收电路方面采取措施。

(1) 消除或抑制噪声源

消除或抑制噪声源是最积极主动的措施,因为它能从根本上消除或减少干扰,但在实际工作当中,消除或抑制噪声源是有一定限度的。

(2) 破坏干扰的耦合通道

干扰的耦合通道,即传递方式可分为两大类,一种是以“路”的形式,另一

种是以“场”的形式。对不同传递形式的干扰,可采用不同的对策:○1对于“路”的形式侵入的干扰,可以采用阻截或给予低阻通路的办法,使干扰不能进入接收

电路。○2对于以“场”的形式侵入的干扰,一般采用屏蔽措施并兼用“路”的抑制干扰措施,使干扰受到阻截并难以“路”的形式侵入电路。

(3) 消除接收电路对干扰的敏感性

不同的电路结构形式对干扰的敏感程度不同。一般高输入阻抗电路比低输入阻抗电路易于接收干扰;模拟电路比数字电路易于接收干扰;布局松散的电子装置比结构紧凑的易于接收干扰。为消弱电路对干扰的敏感性,可以采用滤波、选频、双绞线、对称电路和负反馈等措施。

(2)采用软件抑制干扰

对于有些已进入电路的干扰,用硬件措施又不易实现或不易奏效,可以考虑在采

用微处理器的智能传感器系统中,通过编入一定的程序进行信号处理和分析判断,达到抑制干扰的目的。

§5.2 硬件抗干扰措施

在上一节中提到,电磁干扰在所有干扰中对传感器系统或电子装置的影响最大,本节着重对其论述。常 https://www.360docs.net/doc/5d15095825.html,/ 采用的用于抑制电磁干扰的基本措施有以下几种:

5.2.1 屏蔽

利用低电阻材料或高磁导率材料制成容器,将需要防护的部分包起来,从而把电力线或磁力线的影响限定在某个范围或阻止它们进入某个范围。这种防静电或电磁感应所采取的措施称为“屏蔽”。屏蔽的目的是隔断“场”的耦合,即抑制各种场的干扰。屏蔽可分为静电屏蔽、电磁屏蔽和磁屏蔽。

(1) 静电屏蔽原理

1静电屏蔽原理 由静电学知道,在静电平衡状态下的导体内部,各点等电位,即导体内部无电力线,利用金属导体的这一性质,并加上接地措施,则静电场的电力线就在接地的金属导体处中断,从而直到电场隔离的作用。

2驱动屏蔽 上述屏蔽原理是在静电平衡条件下,才能实现安全屏蔽。如果导体A 上电荷变化较快,那么在接地线上就会有对应于电荷变化的随时间变化的电流渡过,则在导体B 外侧剩余电荷,于是在导体B 的外部空间将出现静电场和感应电磁场,因此,这时的屏蔽是不完全的。这对于要求高的场合,就不能满足要求了,这时可以考虑采用驱动屏蔽。其原理如图5-6所示。若1:1电压跟随器是理想的,即在工作中导体B 与屏蔽层C 之间的绝缘电阻为无穷大,并且等电位,那么在B 导体之外与屏蔽层内侧之间的空间无电力线,各点等电位。这说明,导体A 产生的噪声电场影响不到导体B 。这时,尽管导体B 与屏蔽层C 之间有寄生电容存在,但是因为B 与C 等电位,故此寄生电容也不起作用。因此,驱动屏蔽能有效地抑制通过寄生电容的耦合干扰。 1

23

UA 74F126Z1AGND C

AGND

A En

B

C

图5-6 驱动屏蔽

(2)电磁屏蔽 电磁屏蔽主要用来防止高频电磁场的影响,对于低频电磁场干扰的屏蔽效果是不明显的。电磁屏蔽是采用导电良好的金属材料做成屏蔽层,利用高频电磁场对金属屏蔽层的作用,在屏蔽金属内产生电涡流,由涡流主生的磁场抵消或减弱干扰磁场的影响,从而达到屏蔽的目的。

(3) 低频磁屏蔽 低频磁屏蔽主要用于防止低频磁场的干扰。它是采用高导磁材料作屏蔽层,使低频干扰磁通限制在磁阻很小的磁屏蔽层的内部,防止其干扰作用。

5.2.2 接地 https://www.360docs.net/doc/5d15095825.html,/

(一)接地的目的与作用

1保证人身和设备安全的需要○2抑制干扰的需要。良好、正确的接地,可以消除或降低各种形式的干扰,从而保证传感器系统、电子设备或控制系统可靠而稳定地工作。通过接地给干扰电压以低阻通路,以防止对电子设备形成干扰;消除各电路电流流经一公共地线阻抗所产生的噪声电压,即共阻抗干扰;避免磁场或地电位差的影响,使其不形成地环路。

(二)地线的种类

根据设计的目的,地线可分为两大类,即实际地和虚地。实际地就是大地;虚地是不接大地的地,是作为信号的参考点,以建立系统的基准电位。在传感器系统、电子设备或控制系统中,就形成了各种各样的地线:保安地线 信号源地线 信号地线(包括模拟信号地和数字信号地两种)负载地线 屏蔽层地线(机壳地线)

(三)各种地线的处理原则

对于各种不同的地线,在实际的系统中怎样处理才合理,下面提出一些处理原则:

(1)低频电路的一点接地原则 所谓低频电路的“一点接地,就是把多个接地点用导线把它们汇集到一点,再从这点接地。采用一点接地,可以有效地克服地电位差的影响和共用地线的共阻抗引起的干扰;

(2)高频电路的多点接地原则 对于高频电路,地线上顺具有电感而示增加了地线阻抗,同时各地线间又产生互感耦合。当地线长度等于1/4波长的奇数倍时,地线阻抗就会变得很高,这时地线变成了天线,而向外辐射噪声。为了防止辐射干扰,地线长度应小于信号波长的1/20,这时也同时降低了地线阻抗,在这种情况下,可采用一点接地。如果地线长度超过信号波长的1/20,则应采用多点接地;

(3)强电地线与信号地线分开设置 所谓强电地线,主要是指电源地线、大功率负载地线等,它上边流过的电流大,在地线电阻上会产生几级电压降。若这种地线与信号地线共用,就会产生很强的干扰,因此,信号地线与它分别设置;

(4)模拟信号地线与数字信号地分开设置 数字信号一般比较强,而且是交变的脉冲,流过它的地线 https://www.360docs.net/doc/5d15095825.html,/ 电流也呈脉冲。模拟信号比较弱。如果两种信号共用一条地线,数字信号就会通过地线电阻对模拟信号构成干扰,故这两种地线应分开设置。

(四)接地方法常有:埋设铜板、接地棒、网状地线。

5.2.3 浮置

它指的是电子设备的输入信号放大器公共线不接机壳或大地,测量放大器与机壳或大地之间无直流联系。浮置的目的在于阻断干扰电流的通路。

5.2.4 对称电路

对称电路又称平衡电路。它是指双线电路中的两根导线与连接到这两根导线的所有电路,对地或对其它导线的结构对称,且对应的阻抗相等。对称电路有抑制干扰的能力,实际的电路很难做到完全对称。这时,电路抑制噪声的能力取决于电路的对称程度。在不对称电路中,为使传输导线在传递信号过程中所检拾的噪声不对电路造成干扰,可通过采用两个变压器把信号传输线变成对称电路。

5.2.5 隔离技术

在采用两点以上接地的检测或控制系统中,为了抑制地电位差所形成的干扰,运用隔离技术切断地环路电流是十分有效的方法。这种方法主要用于信号隔离和电源隔离。从原理上,可分为电磁隔离和光电隔离。

(1) 电磁隔离 这种方法是在两个电路间加一个隔离变压器。 隔离变压器

AGND AGND AGND 电网微机电源微机

图5-7 电源隔离

(2) 光电隔离这种方法是在两个电路间加入一个光电耦合器。光电耦合器是由发光二极管和光电三极管组成。电路Ⅰ的信号加到发光二极管上,使发光二极管发光,它的光强正比于电路1输出的信号电流;这个光被光电三极管接收,再产生正比于光强的电流输送到电路Ⅱ由于光电耦合器的线性范围有限,它用于数字信号传输更有利。

U1

OPT OISO1U2

OPT OISO1

检测信号微机被控对象

图5-8 微机控制系统隔离

(3) 隔离放大器隔离放大器又称隔离器,其输入电路、输出电路和电源没有直接的耦合。隔离放大器主要用于要求共模干扰抑制比高的模拟电信号的传递过程中。

5.2.6 滤波 https://www.360docs.net/doc/5d15095825.html,/

滤波是一种只允许某一频带信号通过或只阻止某一频带信号通过的抑制干扰措施之一。滤波方式有无源滤波、有源滤波,它主要应用于信号滤波和电源滤波。在前面章节3.3.2---(三)滤波电路中有较为详细的介绍。

§5.3 单片机系统软件抗干扰方法

在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好而越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行阐述。

5.3.1软件抗干扰方法的研究

在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声 (如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法:

1. 指令冗余

CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。

在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后而的指令被当作操作数执行,程序自动纳入正轨。此外,对系统流向起重要作用的指令如LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。

2. 拦截技术

所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。

(1) 软件陷阱的设计

当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞

程序引向复位入口地址0OOOH的 https://www.360docs.net/doc/5d15095825.html,/88yulecheng/指令。通常在EPROM 中非程序区填入以下指令作为软件陷阱: https://www.360docs.net/doc/5d15095825.html,/88yulecheng/ NOP By-gnksguybb

NOP

LJMP,OOOOH

其机器码为00000200000

(2) 陷阱的安排

通常在程序中未使用的EPROM空间填00000200000最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。

当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断1,外部中断1的中断服务程序可为如下形式:

NOP

NOP

RETI

返回指令可用“RETI”,也可用“LJMP OOOOH"。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP OOOOH”作返回指令可直接进入故障诊断程序,尽早地处理故障,恢复程序的运行。

考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。

3. 软件“看门狗”技术

若失控的程序进入“死循环”,通常采用“看门狗”技术使程序脱离“死循环”。通过不断检测程序循环运行时间,若发现程序循环时间超过最大循环运行时间,则认为系统陷入“死循环”,需进行出错处理。

“看门狗”技术可由硬件实现,也可由软件实现。在工业应用中,严重的干扰有时会破坏中断方式控制字,关闭中断。则系统无法定时“喂狗”,硬件看门狗电路失效。而软件看门狗可有效地解决这类问题。

在实际应用中,采用环形中断监视系统。用定时器TO监视定时器T1,用定时器T1监视主程序,主程序监视定时器TO。采用这种环形结构的软件“看门狗”具有良好的抗干扰性能,大大提高了系统可靠性。对于需经常使用T1定时器进行串口通讯的测控系统,则定时器T1不能进行中断,可改由串口中断进行监控(如果用的是MCS-52系列单片机,也可用T2代替T1进行监视)。

这种软件“看门狗”监视原理是:主程序、TO中断服务程序、T1中断服务程序中各设一运行观测变量,假设为MWatch, TOWatch:、T1Watch,主程序每循环一次,MWatch加1,同样T0、T1中断服务程序执行一次,TOWatch、1Watch 加1。

在TO中断服务程序中通过检测T1Watch的变化情况判定T1运行是否正常,在T1中断服务程序中检测MWatch的变化情况判定主程序是否正常运行,在主程序中通过检测TOWatch的变化情况判别TO是否正常土作。若检测到某观测变量变化不正常,比如应当加1而未加1,则转到出错处理程序作排除故障处理。

当然,对主程序最大循环周期、定时器TO和T1定时子周期应以全盘合理考虑。

5.3.2 系统故障处理、自恢复程序的设计

单片机系统因干扰复位或掉电后复位均属非正常复位,应进行故障诊断,自动恢复非正常复位前的状态。

1. 非正常复位的识别

程序的执行总是从OOOOH开始,导致程序从OOOOH开始执行有四种可能:一、系统开机上电复位;二、软件故障复位;三、看门狗超时未喂狗硬件复位;四、任务正在执行中掉电后来电复位。四种情况中除第一种情况外均属非正常复位,需加以识别。

(1)硬件复位与软件复位的识别

此处硬件复位指开机复位与看门狗复位,硬件复位对寄存器有影响,如复位后PC-OOOOH,SP=07H, PSW=OOH等。而软件复位则对SP, SPW无影响。故对于微机测控系统,当程序正常运行时,将SP设置地址大于07H,或者将PSW的第5位用户标志位在系统正常运行时设为1。那么系统复位时只需检测PSW. 4标志位或SP值便可判此是否硬件复位。

此外,由于硬件复位时片内RAM状态是随机的,而软件复位片内RAM则可保持复位前状态,因此可选取片内某一个或两个单元作为上电标志。设40H用来做上电标志,上电标志字为78H,若系统复位后40H单元内容不等于78H,则认为是硬件复位,否则认为是软件复位,转向出错处理。若用两个单元作上电标志,则这种判别方法的可靠性更高。

(2)开机复位与看门狗故障复位的识别

开机复位与看门狗故障复位因同属硬件复位,所以要想予以正确识别,一般要借助非易失性RAM或者ROM。当系统正常运行时,设置一可掉电保护的观测单元。当系统正常运行时,在定时喂狗的中断服务程序中使该观测单元保持正常值(设为:AAH),而在主程中将该单元清零,因观测单元掉电可保护,则开机时通过检测该单元是否为正常值可判断是否为看门狗复位。

(3) 正常开机复位与非正常开机复位的识别

识别测控系统中因意外情况如系统掉电等情况引起的开机复位与正常开机复位,对于过程控制系统尤为重要。如某以时间为控制标准的测控系统,完成一次测控任务需1小时。在已执行测控50分钟的情况下,系统电压异常引起复位,此时若系统复位后又从头开始进行测控则会造成不必要的时间消耗。因此可通过一监测单元对当前系统的运行状态、系统时间予以监控,将控制过程分解为若干步或若干时间段,每执行完一步或每运行一个时间段则对监测单元置为关机允许值,不同的任务或任务的小同阶段有不同的值,若系统正在进行测控任务或正在执某时间段,则将监测单元置为非正常关机值。那么系统复位后可据此单元判别系统原来的运行状态,跳到出错处理程序中恢复系统原运行状态。

2. 非正常复位后系统自恢复运行的程序设计

对顺序要求严格的一些过程控制系统,当系统非正常复位时,一般都要求从失控的那一个模块或任务恢复运行。所以测控系统要作好重要数据单元、参数的备份,如系统运行状态、系统的进程值、当前输入输出的值、当前时钟值、观测单元值等,这些数据既要定时备份,同时若有修改也应立即予以备份。

当在已判别出系统处于非正常复位的情况下,先要恢复一些必要的系统数据,如显示模块的初始化、片外扩展芯片的初始化等;其次再对测控系统的系统状态、运行参数等予以恢复,包括显示界而等的恢复;之后再把复位前的任务、参数、运行时间等恢复,再进入系统运行状态。

应当说明的是,真实地恢复系统的运行状态需要极为细致地对系统的重要数

据予以备份,并加以数据可靠性检杳,以保证恢复的数据的可靠性。

其次,对多任务、多进程测控系统,数据的恢复需考虑恢复的次序问题,恢复系统基木数据是指取出备份的数据覆盖当前的系统数据。系统基本初始化是指对芯片、显示、输入输出方式等进行初始化,要注意输入输出的初始化不应造成误动作。而复位前任务的初始化是指任务的执行状态、运行时间等。

对于软件抗干扰的一些其它常用方法如数字滤波、RAM数据保护与纠错等,限于篇幅,本文未作讨论。在工程实践中通常都是几种抗干扰方法组合用,互相补充、完善,才能取得较好的抗干扰效果。从根本上来说,硬件抗干扰是主动的,而软件抗干扰是被动的。细致周到地分析干扰源,硬件与软件抗干扰相结合,完善系统监控程序,设计一稳定可靠的单片机系统是完全可行的。

第六章 PCB设计

印制电路板(PCB)是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。随着电子技术的飞速发展,PCB的密度(集成度)越来越高。PCB设计的好坏对抗干扰能力影响很大,因此,在进行PCB设计时,必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。

§6.1 PCB设计的一般原则

要使电子电路获得最佳性能,元器件的布局及导线的布设是很重要的。为了设计质量好、造价低的PCB,应遵循以下一般原则:

6.1.1 布局

1. 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后,再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。

2. 在确定特殊元件的位置时要遵守以下原则:

(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

(3)重量超过15g的元器件,应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。

(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

(5)应留出印制扳定位孔及固定支架所占用的位置。

3. 根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:

(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接。

(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。

(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。

6.1.2 布线

布线的原则如下:

(1)输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。

(2)印制导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。

当铜箔厚度为0.05mm、宽度为1-15mm时,通过2A的电流,温度不会高于3℃,因此导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02-0.3mm导线宽度。当然,只要允许,还是尽可能用宽线,尤其是电源线和地线。

导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5-8mm。

(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状,这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。

6.1.3焊盘

焊盘中心孔要比器件引线直径稍大一些,焊盘太大易形成虚焊。焊盘外径D 一般不小于(d+1.2)mm,其中d为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

§6.2 PCB及电路抗干扰措施

印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。

6.2.1电源线设计

根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

6.2.2地线设计

地线设计的原则是;

(1)数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分

串联后再并联接地。高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。

(2)接地线应尽量加粗。若接地线用很细的线条,则接地电位随电流的变化而变化,使抗噪性能降低。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线应在2-3mm以上。

(3)接地线构成闭环路。只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗噪声能力。

6.2.3退藕电容配置

PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。退藕电容的一般配置原则是:

(1)电源输入端跨接10-100uf的电解电容器。如有可能,接100uF以上的更好。

(2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4-8个芯片布置一个1-10pF的胆电容。

(3)对于抗噪能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。

(4)电容引线不能太长,尤其是高频旁路电容不能有引线。此外,还应注意以下两点:

○1在印制板中有接触器、继电器、按钮等元件时。操作它们时均会产生较

大火花放电,必须采用附图所示的RC电路来吸收放电电流。一般R取1-2K,C 取2.2-47UF。

○2CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接

正电源。经常使用排阻做为上拉或下拉。排阻的公共端接电源或地线,在实际使用过程中发现,如果排阻值较大则通过公共端耦合引起误动作。排阻值较小则增加系统功耗。结论:排阻阻值要慎选,公共端接线或电源线要粗,最好有退耦电容。

系统抗干扰和PCB设计

系统抗干扰 一、下面的一些系统要特不注意抗电磁干扰: 1、微操纵器时钟频率特不高,总线周期特不快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微操纵器: 选用外时钟频率低的微操纵器能够有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。尽管方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微操纵器产生的最有阻碍的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微操纵器要紧采纳高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段专门长线引到输入阻抗相当高的输入端,反射问题就专门严峻,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

信号在印制板上的延迟时刻与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。能够粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微操纵器构成的系统中常用逻辑电话元件的Tr(标准延迟时刻)为3到18ns之间。 当信号的上升时刻快于信号延迟时刻,就要按照快电子学处理。现在要考虑传输线的阻抗匹配,关于一块印刷线路板上的集成块之间的信号传输,要幸免出现T d>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时刻不应大于所用器件的标称延迟时刻。 3、减小信号线间的交叉干扰: A点一个上升时刻为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时刻是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和A B线的延迟,Td时刻以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时刻的两倍,即2Td的正脉冲信号。这确实是信号间的交叉干扰。干扰信号的强度与C 点信号的di/at有关,与线间距离有关。当两信号线不是专门长时,AB上看到的实际是两个脉冲的迭加。 CMOS工艺制造的微操纵由输入阻抗高,噪声高,噪声容限也专门高,数字电路是迭加100~200mv噪声并不阻碍其工作。若图中AB线是一模拟信号,这种干

计算机控制系统中的抗干扰技术

第9章计算机控制系统中的抗干扰技术 ●本章的教学目的与要求 掌握各种干扰的传播途径与作用方式以及软硬件抗干扰技术。 ●授课主要内容 ●干扰的传播途径与作用方式 ●软硬件抗干扰技术 ●主要外语词汇 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●干扰的类型*** ●干扰的传播途径***☆ ●各类干扰的抑制方法*** ●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●干扰的类型 ●干扰的传播途径 ●各类干扰的抑制方法 ●参考资料 刘川来,胡乃平,计算机控制技术,青岛科技大学讲义

干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。 9.1 干扰的传播途径与作用方式 干扰是指有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。产生干扰信号的原因称为信号源。干扰源通过传播途径影响的器件或系统称为干扰对象。干扰源、传播途径及干扰对象构成了干扰系统的三个要素。 9.1.1 干扰的来源 1.外部干扰 2.内部干扰 9.1.2 干扰传播途径 干扰传播途径主要有:静电耦合、磁场耦合、公共阻抗耦合。 1. 静电耦合 静电耦合是通过电容耦合窜入其他线路的。 2. 磁场耦合 在任何载流导体周围都会产生磁场,当电流变化时会引起交变磁场,该磁场必然在其周围的闭合回路中产生感应电势引起干扰,它是通过导体间互感耦合进来的。 3公共阻抗耦合 公共阻抗耦合干扰是由于电流流过回路间公共阻抗,使得一个回路的电流所产生的电压降影响到另一回路。 9.1.3 干扰的作用方式 按干扰作用方式的不同,可分为串模干扰、共模干扰和长线传输干扰。 1. 串模干扰 串模干扰是指叠加在被测信号上的干扰噪声,它串联在信号源回路中,与被测信号相加输入系统. 图9.6 串模干扰示意图图9.7 共模干扰示意图

数字电子系统的抗干扰设计

数字电子系统的抗干扰设计 摘要:主要描述了数字电子系统中不易解决的电源噪声干扰和传导干扰问题,并介 绍了几种解决问题的途径和方法。 关键词:电源;传导;干扰;抑制 1 引言 每个电气工程师和电气工程技术人员都希望他所设计的设备工作可靠,不会被其它设备干扰,也不会干扰其它设备。但是,由于电气噪气和电磁干扰几乎无处不在,所以,我们设计的产品往往达不到这些目标。如果不能有效地解决这些问题,我们可能必须放弃这些项目或者采取修修补补的办法,这样一来既浪费了我们投资项目的所有时问、资金和努力,又可能使产品性能大打折扣。 二:一般在工作的开始就必须将干扰措施设计成产品。这一般包含四个步骤的过程: (1)了解干扰的类型和来源 干扰源:是指产生干扰的元件、 设备或信号,用数学语言描述:du/dt, di/dt大的地方就是干扰源。如:继电器、

雷电、电机、可控硅、高频时钟等都可能 (2)在设计电路时尽量消除或减小这些干扰对系统的影响; (3)设计线路板、导线的结构尽量消除这些问题,必要时,使用干扰抑制器件; (4)将系统分成模块调试,保证每个子系统组装正确无误、工作正常,在进行进一步组装前不会有任何问题。通过一开始就正确地设计系统,经常提前完成任务,成本也较低。 干扰一般有电源噪声干扰、空间干扰(即场干扰)和传导干扰。空间干扰都通过电磁波辐射窜人系统;传导干扰则通过与系统相连接的导线,如,以与前向通道和后向通道等进人系统;电源噪声干扰有过压、欠压、浪涌电压、尖峰电压等。2.1抗干扰设计的几个原则: 即尽可能的减小干扰源的du/dt, di/dt。这是抗干扰设计中最优先考虑和 最重要的原则,常常会起到事半功倍的 效果。减小干扰源的du/dt主要是通过 在干扰源两端并联电容来实现。减小干 扰源的di/dt则是在干扰源回路串联电 感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: ①继电器线圈增加续流二极管,消

PLC控制系统抗干扰技术设计策略

PLC控制系统抗干扰技术设计策略 中文摘要 自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。 关键词PLC,industry automation,anti-interference,可编程控制器,自动化

Title:PLC control system anti-jamming technology design strategy Abstract Automation systems used in various types of PLC , some centrally installed in the control room , some installation on production sites and electrical equipment , most of them in a harsh electromagnetic environment formed by the strong electric circuits and power installations . Keywords PLC industry automation anti-interference Programmable controllers automation

抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件

数控车床如何抗干扰 数控车床作为cnc机床自然也会像其他的电子仪器仪表一样受到众多的干扰,所以面对有可能发生的干扰我们必须有应对的措施,抗干扰的措施主要包括屏蔽、隔离、滤波、接地和软件处理等。 ①屏蔽技术:屏蔽是目前采用最多也是最有效的一种方式。屏蔽技术切断辐射电磁噪声的传输途径通,常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的场相互隔离,切断电磁辐射信号,以保护被屏蔽体免受干扰,屏蔽分为电场屏蔽、磁场屏蔽及电磁屏蔽。在实际工程应用时,对于电场干扰时,系统中的强电设备金属外壳(伺服驱动器、变频器、驱动器、开关电源、电机等)可靠接地实现主动屏蔽;敏感设备如智能纠错装置等外壳应可靠接地,实现被动屏蔽;强电设备与敏感设备之间距离尽可能远;高电压大电流动力线与信号线应分开走线,选用带屏蔽层的电缆,对于磁场干扰,选用高导磁率的材料,如玻莫合金等,并适当增加屏蔽体的壁厚;用双绞线和屏蔽线,让信号线与接地线或载流回线扭绞在一起,以便使信号与接地或载流回线之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;敏感设备应远离干扰源强电设备变压器等。 ②隔离技术:隔离就是用隔离元器件将干扰源隔离,以防干扰窜入设备,保证电火花机床的正常运行。常见的隔离方法有光电隔离、变压器隔离和继电器隔离等方法。 (1)光电隔离:光电隔离能有效地抑制系统噪声,消除接地回路的干扰。在智能纠错系统的输入和输出端,用光耦作接口,对信号及噪声进行隔离;在电机驱动控制电路中,用光耦来把控制电路和马达高压电路隔离开。 (2)变压器隔离是一种用得相当广泛的电源线抗干扰元件,它最基本的作用是实现电路与电路之间的电气隔离,从而解决地线环路电流带来的设备与设备之间的干扰,同时隔离变压器对于抗共模干扰也有一定作用。隔离变压器对瞬变脉冲串和雷击浪涌干扰能起到很好的抑制作用,对于交流信号的传输,一般使用变压器隔离干扰信号的办法。 (3)继电器隔离,继电器的线圈和触点之间没有电气上的联系。因此,可以利用继电器的线圈接受电气信号,而用触点发送和输出信号,从而避免强电和弱电信号之间的直接联系,实现

单片机应用系统设计工程实践报告

2016-2017学年第1学期 单片机应用系统设计/工程实践 (课号:103G06B/D/E) 实验报告 项目名称:基于AT89C51单片机温度报警系统 学号 姓名 班级 学院信息科学与工程学院 完成时间

目录 一、项目功能及要求 (3) 1.1、课程设计的性质和目的 (3) 1.3、项目设计要求 (3) 二、系统方案设计及原理 (3) 2.1、设计主要内容 (3) 2.2 、AT89C51单片机简介 (3) 2.3 、DS18B20简介 (4) 2.4 、数码管显示 (5) 2.5、报警电路 (6) 三、系统结构及硬件实现 (7) 3.1、总电路图 (7) 3.2、单片机控制流程图 (8) 四、软件设计过程 (8) 五、实验结果及分析 (8) 5.1 、Proteus仿真 (8) 5.2 、C程序调试 (9) 六、收获及自我评价 (14) 七、参考文献 (15)

一、项目功能及要求 1.1、课程设计的性质和目的 本温度报警器以AT89C51单片机为控制核心,由一数字温度传感器DS18B20测量被控温度,结合7段LED以及驱动LED的74LS245组合而成。当被测量值超出预设范围则发出警报,且精度高。 利用现代虚拟仿真技术可对设计进行仿真实验,与单片机仿真联系紧密的为proteus仿真,利用keil软件设计单片机控制系统,然后与proteus进行联合调试,可对设计的正确性进行检验。 1.2、课程设计的要求 1、遵循硬件设计模块化。 2、要求程序设计结构化。 3、程序简明易懂,多运用输入输出提示,有出错信息及必要的注释。 4、要求程序结构合理,语句使用得当。 5、适当追求编程技巧和程序运行效率。 1.3、项目设计要求 1、基于AT89C51单片机温度报警系统; 2、设计3个按键分别为:设置按钮、温度加、温度减; 3、DS18B20温度传感器采集温度,并在数码管上显示按键的区别; 二、系统方案设计及原理 2.1、设计主要内容 本设计以AT89C51单片机为核心,从而建立一个控制系统,实现通过3个按键控制温度,以达到设置温度上下限的功能,并在数码管上显示三个数字当前的温度上下限设置值和DS18B20温度采集值的显示(精确到小数点后一位),当温度高于上限或者低于下限蜂鸣器报警。 2.2 、AT89C51单片机简介 AT89C51是一个低功耗,高性能CMOS8位单片机,片内含4kBytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用A TMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及89C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89C51可为许多嵌入式控制应用系统提供高性价比的解决方案.AT89C51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器,32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,片内时钟振荡器。 此外,AT89C51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。AT89C51单片机的基本结构和外部引脚如下图所示。

电子系统中的抗干扰技术_介绍

电子系统中的抗干扰技术 摘要:应用硬件抗干扰措施是必不可少的一种有效方法。本文中介绍了几种形式的干扰以及解决方法,如信号如何走线、接地的安全可靠、印制电路板避免干扰的设计、电源使用注意事项等几方面进行了阐述。通过合理的硬件电路设计,可以削弱或 抑制绝大部分干扰。实践应用取得了良好的效果。 关键词:抗干扰、屏蔽、电磁辐射。 0 引言 干扰是无处不在的,干扰可导致系统工作不正常,输出信息失真,严重可导致系统瘫痪。抗干扰设计是设备长期稳定运行的保证;随着电子技术的发展、电子设备的普及应用,抗干扰技术的研究显得越来越重要,应用也越来越普及。电子工程师从设备的研制阶段就应使用抗干扰技术,抗干扰技术始终贯穿于设备的设计、制造、安装、使用等各个阶段。 1 抗干扰技术应用 1.1 电源使用方面 有些电源在通断的一瞬间会对小功率电子设备造成损害,对附近的电子设备形成干扰。例如,显示器附近有电源设备时,有时开关电源设备的一瞬问会导致显示器闪一下,如果电源功率较大或靠的太近,而显示器屏蔽效果又达不到要求,显示器就会出现波纹,影响使用。 解决方法是:电源设备加装屏蔽层,采取有效的接地措施,电源线也应带屏蔽层,显示器等易受干扰的设备应尽量远离电源。 1.2 信号传输方面 信号在传输过程中由于线缆过长、过细,绝缘性能不好,没有采取有效的屏蔽、接地措施,信号传输就会受到干扰,特别是正电平信号受干扰影响较大。解决方法有: (1)信号采用负电平传输。 (2)容易相互干扰的信号分开传输。 (3)高频信号单独采用同轴电缆传输。 (4)模拟信号、数字信号分开传输。 (5) (内部可采用一根信号线附近一根地线的接线形式)。 (6)尽量采用带有屏蔽层的电缆,屏蔽层接地。线缆的绝缘性能要好。 (7)正确使用双绞线可起到消除电磁干扰的作用,通常网络线缆都是采用双绞的形式。

软件抗干扰的几种办法

软件抗干扰的几种办法 在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中,软件抗干扰研究的内容主要是:一、消除模拟输入信号的噪声(如数字滤波技术);二、程序运行混乱时使程序重入正轨的方法。本文针对后者提出了几种有效的软件抗干扰方法。 (1) 指令冗余 CPU取指令过程是先取操作码,再取操作数。当PC受干扰出现错误,程序便脱离正常轨道“乱飞”,当乱飞到某双字节指令,若取指令时刻落在操作数上,误将操作数当作操作码,程序将出错。若“飞”到了三字节指令,出错机率更大。 在关键地方人为插入一些单字节指令,或将有效单字节指令重写称为指令冗余。通常是在双字节指令和三字节指令后插入两个字节以上的NOP。这样即使乱飞程序飞到操作数上,由于空操作指令NOP的存在,避免了后面的指令被当作操作数执行,程序自动纳入正轨。 此外,对系统流向起重要作用的指令如RET、RETI、LCALL、LJMP、JC等指令之前插入两条NOP,也可将乱飞程序纳入正轨,确保这些重要指令的执行。 (2) 拦截技术

所谓拦截,是指将乱飞的程序引向指定位置,再进行出错处理。通常用软件陷阱来拦截乱飞的程序。因此先要合理设计陷阱,其次要将陷阱安排在适当的位置。 软件陷阱的设计 当乱飞程序进入非程序区,冗余指令便无法起作用。通过软件陷阱,拦截乱飞程序,将其引向指定位置,再进行出错处理。软件陷阱是指用来将捕获的乱飞程序引向复位入口地址0000H的指令。通常在EPROM中非程序区填入以下指令作为软件陷阱: NOPNOPLJMP 0000H其机器码为0000020000。 陷阱的安排 通常在程序中未使用的EPROM空间填0000020000。最后一条应填入020000,当乱飞程序落到此区,即可自动入轨。在用户程序区各模块之间的空余单元也可填入陷阱指令。当使用的中断因干扰而开放时,在对应的中断服务程序中设置软件陷阱,能及时捕获错误的中断。如某应用系统虽未用到外部中断 1,外部中断1的中断服务程序可为如下形式: NOPNOPRETI返回指令可用“RETI”,也可用“LJMP0000H”。如果故障诊断程序与系统自恢复程序的设计可靠、完善,用“LJMP0000H”作返回指令可直接进入故障诊断程序,尽早地处理故障并恢复程序的运行。 考虑到程序存贮器的容量,软件陷阱一般1K空间有2-3个就可以进行有效拦截。 (3)软件“看门狗”技术

单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计 摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对 单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确 保系统能够稳定运行。 关键词:单片机;控制系统;抗干扰设计 引言 单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工 业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工 业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而 受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响, 严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单 片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提 高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。 1系统干扰源及干扰因素 1.1现场干扰源 电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、 电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳 和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰 的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。 在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传 递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰 信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。 1.2单片机控制系统自身干扰源 单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模 噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随 即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热 噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端 出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往 难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对 称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。 2单片机硬件抗干扰设计 2.1电源电路的设计 在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去 除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单 片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片, 对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改 善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

控制系统抗干扰设计与措施

控制系统抗干扰设计与措施 发表时间:2019-01-25T15:03:19.950Z 来源:《基层建设》2018年第35期作者:刘江山[导读] 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。 国网新疆电力有限公司电力科学研究院新疆维吾尔自治区乌鲁木齐市 830011 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。抗干扰设计可以通过设备选型和综合抗干扰设计进行,采用优质电源、铠装屏蔽电缆以及选择正确的接地方式等措施提高抗干扰能力。 关键词:控制系统、电磁干扰、抗干扰设计 1概述 随着科学技术的发展,控制系统在工业中的应用越来越广泛。控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力关系到整个系统的可靠运行。自动化系统中所使用的各种类型控制系统,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多在强电电路和设备所造成的恶劣电磁环境中运行。要提高控制系统可靠性,这就要求控制系统生产厂家用提高设备的抗干扰能力;同时在工程设计、安装调试和使用维护中引起高度重视,增强系统的抗干扰性能。 2控制系统中电磁干扰源及对系统的影响 2.1系统信号的干扰 控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损坏。对于隔离性能差的系统,还将导致信号间互相干扰。控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。 接地是提高电子设备电磁兼容性的有效手段之一。正确的接地,既能抑制电磁干扰,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使控制系统无法正常工作。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,形成干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响控制系统内逻辑电路和模拟电路的正常工作。控制系统工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响控制系统的逻辑运算和数据存储,造成数据混乱、程序故障或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 2.2控制系统内部的干扰 主要由系统内部元器件及电路间的互相电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器间的互相不匹配使用等。这属于控制系统制造厂对系统内部进行电磁兼容设计内容,但要选择具有较多应用业绩或经过考验的系统。 3控制系统工程的抗干扰设计为了保证系统在工业电磁环境中免受或减少内外电磁干扰,必须从设计阶段开始便采取抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。 控制系统的抗干扰是一个系统工程,要求制造单位设计生产有较强抗干扰能力的产品,使用部门在工程设计、安装调试和运行维护中予以全面考虑,才能保证系统的电磁兼容性的运行可靠性。 3.1设备选型 在选择设备时,首先要选择有较高抗干扰能力的产品,尤其是抗外部干扰能力,如采用浮空技术、隔离性能好的控制系统系统;其次还应了解生产厂给出的抗干扰指标,如共模拟制比、差模拟制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作;另外是靠考查其在类似工作中的应用实绩,国内工业现场的电磁干扰相比欧美地区高许多,对系统抗干扰性能要求更高,因此要求进口设备的抗干扰能力更高。 3.2综合抗干扰设计 主要考虑来自系统外部的几种干扰抑制措施。主要包括:对控制系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆,分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的安全可靠性。 4抗干扰措施 4.1采用性能优良的电源 在控制系统中,电源占有极重要的地位。电源干扰串入控制系统主要通道(如CPU电源、I/O电源等)、变送器供电电源和与控制系统具有直接电气连接的仪表供电电源等耦合进入的。现在,对于控制系统供电的电源,一般都采用隔离性能较好电源,而对于变送器和控制系统的供电电源,并没受到足够的重视,虽然采取了一定的隔离措施,但效果不大。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少控制系统的干扰。目前采用在线式不间断供电电源(UPS)供电,提高供电的安全可靠性。并且UPS还具有较强的干扰隔离性能,是一种理想电源。 4.2电缆的选择及敷设 为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆,采用了铠装屏蔽动力电缆,从而降低了动力线产生的电磁干扰。 不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,以减少电磁干扰。 4.3正确选择接地方式,完善接地系统 接地的目的通常有2个,其一为了安全,其二为了抑制干扰。完善的接地系统是控制系统抗电磁干扰的重要措施之一。 信号源接地时,屏蔽层应在信号侧接地;不接地时,应在控制系统侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理。选择适当的接地处单点接地。

单片机系统抗干扰

单片机系统的抗干扰 抗干扰问题是单片机控制系统工程实现中须解决的关键问题之一。对干扰产生的机理及其抑制技术的研究,受到国内外普遍重视。大约在50年代,就开始了对电磁干扰的系统研究,逐步形成了以研究干扰的产生、传播、抑制和使装臵在其所处电磁环境中既不被干扰又不干扰周围设备,从而都能长期稳定运行等为主要内容的技术学科—电磁兼容技术、EMC技术。 按国家军用标准GJB 72—85《电磁场干扰和电磁兼容性名词术语》其定义为:“设备(分系统、系统)在共同的电磁环境中能一齐执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其它设备(分系统、系统),因受其电磁发射而导致或遭受不允许的降级。” 一、干扰的作用机制及后果 干扰对单片机系统的作用可分为三个部分,第一个部位是输入系统,它使模拟信号失真,数字信号出错,系统如根据该信号做出的反应必然是错误的。第二个部位是输出系统,使各输出信号混乱,不能正常反映系统的真实输出量,从而导致一系列严重后果。第三个部位是单片机的内核,干扰使三总线上的数字信号错乱,使CPU工作出错。 对单片机系统而言,抗干扰有硬件和软件措施,硬件如设臵得当,可将绝大多数的干扰拒之门外,但仍然有部分的干扰窜入系统,引起不良后果,因此,软件抗干扰也是必不可少的。但软件抗干扰是以CPU的开销为代价的,如果没有硬件措施消除大部分的干扰,CPU将忙于应付,会影响到系统的实时性和工作效率。成功的抗干扰系统是由硬件和软件相结合而构成的。硬件抗干扰具有效率高的优点,但要增加系统的成本和体积,软件抗干扰具有投资低的优点,但要降低系统的工作效率。 由于应用系统的工作现场,往往有许多强电设备,它们的启动和工作过程将对单片机产生强烈的干扰;也由于被控制对象和被测信号往往分布在不同的地方,即整个控制系统的各部分之间有较远的距离,信号线和控制线均可能是长线,这样电磁干扰就很容易以不同的途径和方式混入应用系统之中。如果上述来源于生产现场的干扰称为系统内部的干扰源的话,那么还有来源于现场以外的所谓外部干扰源,如外电源(如雷电)对电网的冲击,外来的电磁辐射等。 不管哪种干扰源,对单片机的干扰总是以辐射、电源和直接传导等三种方式进入的,其途径主要是空间、电源和过程通道。按干扰的作用形式分类,干扰一般有串模干扰和共模干扰两种。抗干扰的方法则针对干扰传导的源特征和传导方式,采取抑制源噪声,切断干扰路径,和强化系统抵抗干扰等三种方式。 控制干扰源的发射,除了从源的机理着手降低其产生电磁噪声的电平之外,广泛的应用着屏蔽(包括隔离)、滤波与接地技术。屏蔽主要用于切断通过空间的静电耦合、感应耦合或交变电磁场耦合形成的电磁噪声传播途径。此三种耦合分别对应于采取的静电屏

开关量输入输出通道中抗干扰措施的分析与可实现方案设计说明

科技学院 课程设计报告 ( 2010 -- 2011 年度第2 学期) 名称:计算机控制系统A 题目:开关量I/O通道中抗干扰措施 的分析与可实现方案设计 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数:

成绩: 日期:2011 年月日

《计算机控制系统A》课程设计 任务书 一、目的与要求 1.通过本课程设计教学环节,使学生加深对所学课程内容的理解和掌握; 2.结合工程问题,培养提高学生查阅文献、相关资料以及组织素材的能力; 3.培养锻炼学生结合工程问题独立分析思考和解决问题的能力; 4.要求学生能够运用所学课程的基本理论和设计方法,根据工程问题和实际应用方案的要求,进行方案的总体设计和分析评估; 5.报告原则上要求依据相应工程技术规范进行设计、制图、分析和撰写等。 二、主要内容 1、数字控制算法分析设计; 2、现代控制理论算法分析设计 3、模糊控制理论算法分析设计 4、过程数字控制系统方案分析设计; 5、微机硬件应用接口电路设计; 6、微机应用装置硬件电路、软件方案设计; 7、数字控制系统I/O通道方案设计与实现; 8、PLC应用控制方案分析与设计; 9、数据通信接口电路硬软件方案设计与性能分析; 10、现场总线控制技术应用方案设计; 11、数控系统中模拟量过程参数的检测与数字处理方法; 12、基于嵌入式处理器技术的应用方案设计 13、计算机控制系统抗干扰技术与安全可靠性措施分析设计 14、计算机控制系统差错控制技术分析设计 15、计算机控制系统容错技术分析设计 16、工程过程建模方法分析 三、进度计划

四、设计成果要求 1.针对所选题目的国内外应用发展概述; 2.课程设计正文内容,包括设计方案、硬件电路和软件流程,以及综述、分析等; 3.课程设计总结或结论以及参考文献; 4.要求设计报告规范完整。 五、考核方式 《计算机控制系统》课程设计成绩评定依据如下: 1.撰写的课程设计报告; 2.独立工作能力及设计过程的表现; 3.答辩时回答问题情况。 成绩以五级分制综合评定分为优、良、中、及格、不及格五个等级。

北斗卫星导航系统抗干扰技术研究与实现

109 1 北斗卫星导航系统抗干扰技术概述 1.1 北斗卫星导航系统的概述 北斗卫星导航系统是一项高效的定位、导航技术,目前已被应用于我国的很多城市中。然而,由于我国领土面积广阔,不同省市地区的地形地貌等方面存在一定的差异,而卫星导航会在一定程度上受到环境条件、电磁波变化等因素的影响,因此在北斗卫星导航系统运行过程中,很容易受到干扰影响。相关技术人员应不断加强对导航系统抗干扰技术的研究,确保该系统能够正常稳定地运行下去,为使用者提供更加安全的定位导航服务。 1.2 北斗卫星导航系统受到的干扰类型 目前来看,北斗卫星导航系统所受到的干扰类型可以大致分为两种类型:(1)欺骗型的干扰方式,即通过对非正式基站进行操作,向北斗卫星导航系统发送一系列错误的信号,从而导致导航终端的定位信息发生错误。(2)压制型的干扰方式,即通过操作干扰能力较强的干扰机,发出具有一定的干扰性信号来对导航终端进行干扰,从而导致卫星导航系统无法对正确信号进行科学的处理,进而对接收设备的功能受到极大的破坏。 1.3 北斗卫星导航系统抗干扰技术类型 当前国内外已存在的卫星导航抗干扰技术类型主要包括几种[1]:(1)空域滤波抗干扰技术,该技术通过对大量阵元进行排列,从而将正确信号与错误信号有效进行分隔,进而将干扰程度降到最低。(2)时域滤波抗干扰技术。该技术通过对数字信号进行科学的处理,从而对分贝较大的干扰信号产生较强的削弱效果,该技术能够对单频、窄带等类型的干扰信号产生很好的抑制效果,但与此同时,该技术也会对原本的信号产生一定的影响,从而对信号的接收产生较大的不良影响。(3)空时自适应滤波抗干扰技术。该技术的原理就是在二维空间内对干扰信号进行抑制和处理,很好地弥补了空域滤波抗干扰技术中所存在的缺陷。 2 北斗卫星导航系统抗干扰技术当前应用状况 2.1 滤波技术的应用情况 滤波技术分为以阵列天线为基础的空域滤波抗干扰技术及空时二维滤波抗干扰技术,以及以单天线为基础的频域滤波抗干扰技术和时域滤波抗干扰技术。在应用过程中,滤波技术当前所存在的优缺点如下: (1)空域滤波技术的应用。该技术通过处理器与天线阵之间的连接,来实现降低干扰信号的功能,然而该技术存在的缺陷为其自身 移项机的精准度有限,因此会对最终所测得的相位结果产生一定的影响。此外,该技术所能处理的干扰信号数量有限,在高强度的工作环境下,其自身的性能损耗相对来说比较明显。(2)空时二维滤波技术的应用。该技术相对于空域滤波技术来说做出了一定的调整,即在各阵源内加设一定量的延迟抽头。这样一来,能够使整个天线阵的自由度得到明显的增强,进而有效提高系统的抗干扰能力。(3)频域滤波技术的应用。该技术是利用傅立叶变换来对信号进行处理,相较于其他抗干扰技术来说,此类技术的处理过程更加简便,所能提供的零态深度及处理范围也更加广泛。然而频域滤波技术对带宽不同的干扰信号来说,其抑制效果往往也不同,对于窄带的抑制能力明显要强于对宽带的抑制。(4)时域滤波技术的应用。该技术是通过对数字信号进行接收和处理,从而完成对三十分贝以上窄带干扰信号的抑制。该技术往往可以同时对大量的窄带信号进行处理,但是在对宽带信号的处理方面明显不具有优势。 2.2 波束形成技术的应用情况 波束形成技术是通过对阵列天线进行利用,以提高正确信号在传播过程能够受到增益的效果,进而对其他干扰信号起到很好的抑制作用。相较于滤波抗干扰技术的应用,波束形成技术具有更强大的性能,能够明显降低滤波技术应用过程中所出现的误差,从而做到更加精准地导航。除此之外,波束形技术还能减小设备自身的受损程度,确保卫星导航系统能够具有更加强大的抗干扰能力。 3 北斗卫星导航系统抗干扰技术的实现 3.1 波束形成抗干扰技术的实现 干扰信号及卫星信号混合而成的信号在经过微波电路中以后,会共同经过一系列的数字变换,最后通过波束形成技术使得干扰信号被分离出来。与此同时,系统通过对相关数据进行处理能够获取相应的控制权值,进而对多重数据信息进行分析组合,确保正确的卫星信号能够得到明显的加强,并同时在干扰信号的方向产生较大的抑制效果。最后,系统通过对混合信号再次进行变换,从而输出相应的中频信号。波束形成抗干扰技术能够同时对大量的卫星信号进行控制,在其应用过程中,技术人员需要对相关的动态放大器进行设计,并选择能够对增益进行自动控制的技术,从而确保微波射频通路能够持续呈现饱和的状态,进而能够对信干噪比进行优化[2]。 3.2 滤波抗干扰技术的实现 滤波抗干扰技术需要通过频域窄带及空时自适应宽带干扰抑制技术的应用来实现,其中频域窄带干扰技术能够对变化较快的干 收稿日期:2019-07-06 作者简介:张高巍(1978—),男,宁夏隆德人,硕士研究生,毕业于北京理工大学,工程师,研究方向:卫星导航定位和惯性导航定位系统的测量。 北斗卫星导航系统抗干扰技术研究与实现 张高巍 (中国人民解放军92785部队,河北秦皇岛 066000) 摘要:本文探讨了北斗卫星导航系统抗干扰技术概述,分析了北斗卫星导航系统抗干扰技术当前应用状况,研究了北斗卫星导航系统 抗干扰技术的实现。 关键词:北斗卫星;导航系统;抗干扰技术中图分类号:TN967.1文献标识码:A 文章编号:1007-9416(2019)08-0109-02 应用研究 DOI:10.19695/https://www.360docs.net/doc/5d15095825.html,12-1369.2019.08.59

电磁抗干扰来源及电路与软件抗干扰(EMC)措施

电磁抗干扰来源及电路与软件抗干扰(EMC)措施 概述 可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。它包括两方面的含义:故障时不拒动和正常时不误动。之所以会存在这两个方面的隐患是因为电磁干扰的存在。因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。 电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。 造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。 电磁干扰的来源 所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。 电源干扰 电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自

电子产品抗干扰与EMC设计要诀

电子产品抗干扰与EMC设计要诀 EMC, 要诀, 抗干扰, 电子, 设计 研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是 时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF 左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号 反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在 4~20ns之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过 孔数目也应尽量少,最好不多于2个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印 刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 3、减小信号线间的交叉干扰: A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和AB线的延迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时间的两倍,即2Td的正脉冲信号。这就是信号间的交叉干

PLC控制系统的抗干扰措施

PLC控制系统的抗干扰措施 0 前言PLC(可编程控制器)是一种用于工业生产自动化控制的设备,生产厂家在设计和制造过程中采用了多层次抗干扰和精选元件措施,所以具有较强的适应恶劣工业环境的能力、运行稳定性和较高的可靠性,因此一般不需要采取什么特殊措施就可以直接在工业环境使用。但是由于它直接和现场的I/O设备相连,外来干扰很容易通过电源线或I/O传输线侵入,从而引起控制系统的误动作。尤其是当生产环境过于恶劣,电磁干扰特别强烈,或者安装使用不当,都不能保证PLC的正常运行。所以要提高PLC控制系统的可靠性,就要从多方面提高系统的抗干扰能力。 1 干扰源及其分类 影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。 干扰类型通常按噪声产生的原因、噪声干扰模式和噪声的波形性质的不同划分。 1、按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等。 2、按噪声的波形、性质不同,分为持续噪声、偶发噪声等。 3、按噪声干扰模式不同,分为共模干扰和差模干扰。 (1)共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。 (2)差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。 2 PLC控制系统干扰的主要来源 1、来自空间的辐射干扰。空间的辐射电磁场(EMI),主要由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生,通常称为辐射干扰,其分布极为复杂。其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关。

相关文档
最新文档