面向智能服装健康监护系统的心电信号基线漂移处理

面向智能服装健康监护系统的心电信号基线漂移处理
面向智能服装健康监护系统的心电信号基线漂移处理

ERP基线校正

52Brain独家发布 王一峰 西南大学 ERP数据分析中的基线校正就是一个线性平移。说来简单,内中却有很深的学问。下面从几个方面简单谈一下个人经验: 1 分析时程: 一般而言基线选取不短于分析时长的1/5,由于ERP分析时程多在1000ms之内,基线则多选为100-200ms。分析时程的延长对整个分析过程中参数的选取都产生影响,其中,基线延长也是必须的。就个人经验来看,基线一般没有超过500ms的。除基线选取外,其他参数如滤波、去除伪迹等也要选取适当的参数。由于分析时程增加,受到慢电位漂移及其他伪迹干扰的可能性也增大;此时可以增加伪迹的范围,比如将去伪标准从±80调到±100. 基线的长度也不宜过短,10ms的基线不能保证锁时之前是平稳的。即使是简单的视听觉任务,基线的长度原则上也不应短于50ms。 2 基线位置: 通常基线选取位于刺激呈现前100-200ms。 如果从反应开始分析就比较复杂:做出反应时与动作相关的ERP成分还存在,此时波形还是有一定斜率的,因此单纯选取反应后的200ms或其他时长作为基线有时效果并不好。如果不同条件的反应没有差异,或者说反应后的波形可以重叠到一起,采用反应后基线是可以的。如果不同条件的反应过程存在差异,如混有决策信心等因素,反应阶段的波形就可能不一致。此时,选取反应后基线不是最佳选择。此时,可以在反应后较长时间内(如500ms)检查波形是否恢复平稳。原则上,反应锁定时也是可以用刺激锁定的基线的。由于刺激诱发的心理反应不同,可能在较长时间段内都存在差异,此时,只能假定刺激呈现前的心理过程是一致的,其后的过程就不适宜作为基线了。 还有一种就是灵活基线,说白了就是峰峰检验对应的取基线方法。最近几年ERP分析中用峰峰检验并不多,一个重要原因就是它的使用有很大的局限性。严格地说,前后两个峰值应该具有同样的地形分布,这样才能确定二者确实是相互影响的。宽松一点,前后两个峰值的地形分布应该相似,或者说,所分析的电极点都在两个峰值的主要效应区域内。如果用头皮前中部的N2和中后部的P3做峰峰检验是不合适的。一旦确定了可以做峰峰检验,则前一个峰值就可以作为后一个峰值的基线。在此基线基础上,可以观察到后一个峰值的差异波分布在哪些位置。而如果应该进行峰峰检验时没有用前一个峰值去校正,则后一个峰值处的差异波就会有误差。以前中部的P2和N2为例,如果P2波幅很大,我们往往看到N2的电压值是正的。见过很多人纠结于这个具有正值的负向偏转应该叫什么名字,其实,只要用P2作一下基线校正,N2自然就是负值了。这里要补充一个重要问题:ERP分析中没有绝对电压值,所有值都是减去基线后的相对值。因此,ERP的主要任务是检验差异,而不可建立一个绝对刻度。 3 基线平稳问题: 很多人会纠结于实验的基线不稳,这可能由很多原因造成。 其一,叠加次数过少,噪音过大。此时基线往往产生较大波动,直观感觉就是很乱。这个在可能的范围内增加每个条件的叠加次数就可以解决。

课题二基于MATLAB平台的心电信号分析系统设计与仿真

课题二基于MATLABDE的心电信号分析系统的设计与仿真 一、本课题的目的 本设计课题主要研究数字心电信号的初步分析及滤波器的应用。通过完成本课题的设计,拟主要达到以下几个目的: (1)了解MATLAB软件的特点和使用方法,熟悉基于Simulink的动态建模和仿真的步骤和过程; (2)了解人体心电信号的时域特征和频谱特征; (3)进一步了解数字信号的分析方法; (4)通过应用具体的滤波器进一步加深对滤波器理解; (5)通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 二、课题任务 设计一个简单的心电信号分析系统。对输入的原始心电信号,进行一定的数字信号处理,进行频谱分析。采用Matlab语言设计,要求分别采用两种方式进行仿真,即直接采用Matlab 语言编程的静态仿真方式、采用Simulink进行动态建模和仿真的方式。根据具体设计要求完成系统的程序编写、调试及功能测试。 (1)对原始数字心电信号进行读取,由数字信号数据绘制出其时域波形。 (2)对数字信号数据做一次线性插值,使其成为均匀数字信号,以便后面的信号分析。 (3)根据心电信号的频域特征(自己查阅相关资料),设计相应的低通和高通滤波器。 (4)编程绘制实现信号处理前后的频谱,做频谱分析,得出相关结论。 (5)对系统进行综合测试,整理数据,撰写设计报告。 三、主要设备和软件 (1)PC机一台。 (2) MATLAB6.5以上版本软件,一套。 四、设计内容、步骤和要求 4.1必做部分 4.1.1利用Matlab对MIT-BIH数据库提供的数字心电信号进行读取,并还原实际波形 美国麻省理工学院提供的MIT-BIH数据库是一个权威性的国际心电图检测标准库,近年来应用广泛,为我国的医学工程界所重视。MIT-BIH数据库共有48个病例,每个病例数据长30min,总计约有116000多个心拍,包含有正常心拍和各种异常心拍,内容丰富完整。

心电数据处理与去噪

燕山大学 课程设计说明书题目心电数据处理与去噪 学院(系):电气工程学院 年级专业: 11级仪表一班 学号: 110103020036 学生姓名:张钊 指导教师:谢平杜义浩 教师职称:教授讲师

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年7月 5 日

摘要 (2) 第1章设计目的、意义 (3) 1.1 设计目的 (3) 1.2设计内容 (3) 第2章心电信号的频域处理方法及其分析方法 (4) 2.1小波分析分析 (4) 2.2 50hz工频滤波分析 (10) 第3章 GUI界面可视化 (14) 学习心得 (15) 参考文献 (15)

信号处理的基本概念和分析方法已应用于许多不同领域和学科中,尤其是数字计算机的出现和大规模集成技术的高度发展,有力地推动了数字信号处理技术的发展和应用。心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电的。心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电 它属于随机信号的一种,用数字信号处理的方法和Matlab软件对其进行分析后,可以得到许多有用的信息,对于诊断疾病有非常重要的参考价值。 关键字:信号处理心电信号Matlab

第一章设计目的、意义 1 设计目的 进行改革,增大学生的自主选择权,让学生发展自己的兴趣,塑造自己未来的研究发展方向。课程设计的主要目的: (1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。 (2)培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力。 (3)培养学生综合分析问题、发现问题和解决问题的能力。 (4)培养学生用maltab处理图像与数据的能力。 2 设计内容 2.1 设计要求: 要求设计出心电数据处理的处理与分析程序。 (1) 处理对象:心电数据; (2) 内容:心电数据仿真,心电数据处理(仿真数据,真实数据); (3) 结果:得到处理结果。 2.2 设计内容: (1)心电数据仿真; (2)心电数据处理; (3)分析处理结果。 (4)可视化界面设计 2.3 实验原理 2.3.1心电产生原理 我们常说的心电图一般指体表心电图,反映了心脏电兴奋在心脏传导系统中产生和传导的过程。正常人体的每一个心动周期中,各部分兴奋过程中

心电信号

昆明理工大学信息工程与自动化学院学生实验报告 ( 2016 —2017 学年第二学期) 课程名称:生物医学信号处理开课实验室:信自445 设备编号: 实验日期:2017.6.13 年级、专业、 班生医 141 学 号 2014104 07114 姓名赵丽莎成 绩 实验项目名称心电信号处理指导教师相艳 教 师 评 语教师签名: 年月日 1、实验目的 1、对心电信号的记录、处理,心电信号的特点、心电信号的噪声抑制,工频干扰的抑制与基线纠漂有总体了解。 2、能利用MATLAB GUI设计简单GUI程序。 2、实验原理 1、心电信号属生物医学信号,具有如下特点: 信号具有近场检测的特点,离开人体表微小的距离,就基本上检测不到信号;心电信号通常比较微弱,至多为mV量级;属低频信号,且能量主要在几百赫兹以下;干扰特别强。干扰既来自生物体内,如肌电干扰、呼吸干扰等;也来自生物体外,如工频干扰、信号拾取时因不良接地等引入的其他外来串扰等;干扰信号与心电信号本身频带重叠(如工频干扰等)。

2、工频干扰抑制:现在使用较多的方法是使用滤波器对工频干扰进行抑制。 3、基线漂移:基线漂移是因为呼吸,肢体活动或运动心电图测试所引起的,故这样使得ECG信号的基准线呈现上下漂移的情况。 3、实验内容及步骤 1、查询心电信号处理相关资料。了解心电信号的记录、处理,心电信号的特点、心电信号的噪声抑制,工频干扰的抑制与基线纠漂。 (1)心电信号相关资料 人体心电信号是非常微弱的生理低频电信号,通常最大的幅值不超过 5mV,信号频率在0.05~100Hz之间。心电信号是通过安装在人体皮肤表面的 电极来拾取的。由于电极和皮肤组织之间会发生极化现象,会对心电信号产生 严重的干扰。加之人体是一个复杂的生命系统,存在各种各样的其他生理电信 号对心电信号产生干扰。同时由于我们处在一个电磁包围的环境中,人体就像 一根会移动的天线,从而会对心电信号产生50Hz左右的干扰信号。心电信号具有微弱、低频、高阻抗等特性,极容易受到干扰,所以分析干扰的来源,针对 不同干扰采取相应的滤除措施,是数据采集重点考虑的一个问题。 (2)心电信号具有以下几个特点: 信号极其微弱,一般只有0.05~4mV,典型值为1mV;频率范围较低,频率范围为0.1~35Hz,主要集中在5~20Hz;存在不稳定性。人体内部各器官问的相互影响以及各人的心脏位置、呼吸、年龄、是否经常锻炼等因素,都会使心电信 号发生相应变化;干扰噪声很强。对心电信号进行测量时,必然要与外界联系,但由于其自身的信号非常微弱,因此,各种干扰噪声非常容易影响测量。其噪 声可能来自工频(50Hz)干扰、电极接触噪点、运动伪迹、肌电噪声、呼吸引起 的基线漂移和心电幅度变化以及其他电子设备的机器噪声等诸多方面。 2、编译、理解所提供的程序 程序 clear; %清空工作区

心电信号采集电路实验报告.doc

心电放大电路实验报告 一概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 普通心电图有一下几点用途 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。 6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。 二系统设计 心电信号十分微弱,频率一般在0.5HZ-100HZ之间,能量主要集中在17Hz附近,幅度大约在10uV-5mV之间,所需放大倍数大约为500-1000倍。而50hz工频信号,极化电压,高频电子仪器信号等等干扰要求心电信号在放大的过程中始终要做好噪声滤除的工作。下图为整体化框图。 三具体实现 电路图如下: 1 导联输入: 导联线又称输入电缆线。其作用是将电极板上获得的心电信号送到放大器的输入端。心脏

分光光度计基线校正的原理和方法

【原创】关于分光光度计基线校正的原理和方法 对于双光束 分光光度计 而言在使用前必须要做基线校正(也称为基线记忆),对于此项工作的原理和 操作方法许多使用者的认识不尽相同;为此谈谈我的认识。 (一)为何要做基线校正? 众所周知、光度计的光学系统基本是由光源(氘灯、钨灯) 一单色器(光栅、狭缝) 一检测器(光敏 二极管、光电倍增管)等三部分组成的。在我们使用的波长区域中(一般紫外可见仪器均在 190 nm 110Onm 范围里,)上述部件在不同的波长下的响应值(光源的发射强度、单色器的色散强度、检测 器的放大倍数)均不相同;通俗地说、即使没有样品,仪器如果不做基线校正,那么在 190nm 至110 Onm 的范围中,吸光值或透过率不会是一条直线,这是 尽管上图反映的是单光束的能量图,但在基线未校正状态下,即使改用双光束测量方式来扫描一个样 品,其所得到的图谱或吸光值也是不可信的。 (二)被校正的基线种类和用途 (1)系统基线: 所谓系统基线就是仪器固有的波长范围的总基线;例如一台仪器出厂设计的波长全程范围是 190nm 至 110Onm ,那么它的系统基线就是这个范围。一般来讲,作为分析人员对一台仪器做全程扫描测试是比45.000 -a.2oo eoo.oo 种客观的物理现象,如下图; 4C.000 30.000 20.000 10.000 190.00 细 DOO SOOOO

较少见的;之所以要做系统基线的目的一般是将仪器的光学系统的响应值校正到基本一致;这就类似马拉松赛跑一样,只要大家在同一起跑处(注意:不是起跑线)比赛,前后差几米出发无所谓。 (2)用户基线: 所谓用户基线就是分析者自己设定的测量波长区域的一段基线;由于这是分析所需要的区域,为了保证测试的准确性,故用户基线的校正是非常重要和必要的;这就类似百米赛跑一样,运动员要在同一个起跑线上比赛而不能抢跑,否则无法准确计算成绩。 (三)基线校正的方法 (1)系统基线: 系统基线的校正较为简单,一般情况下样品室内不放样品,仅做光学系统的校正;如果一定要使用全波段的测量那另当别论。同时需要注意的是:系统基线无需经常校正,一般半个月或一个月校正校正一次即可。对有的仪器来说,系统基线校正过于频繁反而会造成基线漂移严重。 (2 )用户基线校正: 正确的校正方法是:两只比色杯盛有空白溶液分别放置在样品及参比光路中,校正波长范围要大于分 析波长范围;例如、分析设定范围为220nm?500nm,那么校正波长就要设定为210nm?510nm ;等 待校正结束后再将波长设定回到原来的220nm?500nm范围。这种校正方法的优点是:如果校正波长 与分析波长完全吻合一致,有可能在校正后的基线两端出现大的噪声;如果校正范围大于实际分析范围并掐头去尾后可以提高分析精度。我将这种校正方法起名为豆芽菜原理”,目的是便于记牢;(因为 我们吃豆芽菜时均要掐头去根,仅吃中间部分,故以前的饭馆将炒豆芽这道菜称为炒掐菜”;对不起、跑题了)。关于这种校正方法,许多使用者往往不知晓或忽略掉了,在此顺便介绍给版友。 值得注意的是,有的仪器操作者在做基线校正时,参比一侧不放参比溶液,也就是用空气来做参比对照。这种方法在可见区对有的样品也许有时影响不大,但在紫外区影响就会很明显了。严格的说,用空气做参比所测得的结果不是真正意义上的校正光谱。 (四)基线校正的注意事项 (1)基线校正时要保证仪器有一定的预热时间 (2 )每更换一种参比溶液后均要重新做基线校正 (3)如果参比溶液的吸光度大于样品的吸光度值时测试结果会出现负值,此时要考虑使用何种溶液做基线校正了。 (4)做基线校正时要考虑试剂的使用波长范围问题,因为有的试齐恠某个波长以下的吸光度值会无限大,这时去做校正会超出仪器的有效量程范围,无法得到真正的结果。关于试剂的使用波长范围,目前一般在试剂瓶的标签上会有标注。我有个简单资料表供大家参考如下:

ECG信号分析与处理系统设计

***************** 实践教学 ******************* 某某理工大学 计算机与通信学院 2015年春季学期 信号处理课程设计 题目:ECG信号分析与处理系统设计 专业班级:通信工程 姓名: 学号: 指导教师: 成绩:

摘要 系统的研究心电信号处理对疾病的早期预测及家庭医疗保健具有十分重要的意义,一直是生物医学工程领域的研究热点。心血管疾病是人类生命的最主要威胁之一,而心电(Electrocardiogram),ECG信号是诊断心血管疾病的主要依据,心电信号是心脏电生理活动在体表的表现,提供了心脏功能等生理状况的有重要价值的临床医学信息,是临床心脏病诊断的基础。因此,设计心电信号处理系统具有重要意义。本论文综合运用数字信号处理的理论知识对心电信号进行分析与处理,实现ECG信号的频谱分析,基线漂移检测等,设计滤波器实现心电信号的滤波,滤去高频和低频干扰,实现ECG信号的增强。同时使用陷波器对50Hz的工频干扰进一步滤除,得到比较纯净的心电信号。 关键词: 心电信号,工频干扰,基线漂移

目录 摘要····································I 一、前言 (1) 二、心电信号 (2) 2.1 原始心电信号分析 (2) 2.2 心电信号中的噪声 (3) 2.3 系统总体设计框图 (4) 三、设计原理及方法 (5) 3.1 数字滤波器简介 (5) 3.2 IIR滤波器的设计原理 (5) 3.3 IIR滤波器的设计 (5) 3.3.1 IIR数字低通滤波器设计过程 (5) 3.3.2 IIR数字带通滤波器设计过程 (9) 3.4 FIR滤波器 (10) 3.4.1 FIR滤波器的设计 (11) 3.4.2 FIR数字低通滤波器设计过程 (11) 3.5 陷波器 (13) 3.5.1陷波器的基本原理及作用 (13) 3.5.2双T法设计陷波器 (13) 四、MATLAB简述 (15) 五、总结 (16) 参考文献 (17) 附录 (18)

心电信号的预处理及瞬时心率的测量

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2011 年 4 月 28 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

心电信号的预处理及瞬时心率的测量 摘要 心电信号作为心脏活动在人体体表的表现,具有信号微弱,而体表检测心电信号中常带有工频干扰、基线漂移、肌电干扰等各种噪声, 给临床对心血管疾病的诊断带来了障碍,也无法准确测得其心率,进而无法进行心率变异分析。因此本文设计出基于FIR的陷波器滤除工频干扰信号,设计出低通滤波器消除肌电干扰信号,以及设计的高通滤波器来消除基线漂移的干扰,利用这三种滤波器对题目中所给的实测数据进行了预处理。对处理后的数据利用连续小波变化的原理给出了测量瞬时心率的算法,在Matlab软件上进行了仿真,利用试题中所给不正常心电信号对该算法进行了验证,并对该算法优缺点进行分析。第三问中我们在第二问的基础上通过对瞬时心率信号的几个参数进行分析,从而判断是否存在心率变异,给出了一个比较简单可行的算法,并利用了试题中所给心电信号对该算法进行了验证。最后我们辩证的分析题目中所建立模型和算法的优缺点,提出了模型的改进方向,并分析了该模型的实用性与可行性。 关键词:凯赛窗滤波器 FIR 小波变换 HRV信号

课题三基于LABVIEW的心电信号分析系统设计与仿真报告

课题一心电信号分析系统的设计 一、本课题的目的 本设计课题主要研究数字心电信号的初步分析方法及滤波器的应用。通过完成本课题的设计,拟主要达到以下几个目的: (1)了解基于LabVIEW的虚拟仪器的特点和使用方法,熟悉采用LabVIEW进行仿真的方法。 (2)了解人体心电信号的时域特征和频谱特征。 (3)进一步了解数字信号的分析方法; (4)通过应用具体的滤波器进一步加深对滤波器的理解。 (5)通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 二、课题任务 利用labVIEW设计一个基于虚拟仪器的简单的心电信号分析系统。对输入的原始心电信号,进行一定的数字信号处理,进行频谱分析。根据具体设计要求完成系统的程序编写、调试及功能测试。 (1)对原始数字心电信号进行读取,由数字信号数据绘制出其时域波形。 (2)对数字信号数据做一次线性插值,使其成为均匀数字信号,以便后面的信号分析。 (3)根据心电信号的频域特征(自己查阅相关资料),设计相应的低通和带通滤波器。 (4)编程绘制实现信号处理前后的频谱,做频谱分析,得出相关结论。 (5)对系统进行综合测试,整理数据,撰写设计报告。 三、主要设备和软件 (1)PC机一台。 (2)LabVIEW软件一套,要求最低版本8.20。 四、设计内容、步骤和要求 必做部分: 1. 利用labVIEW读取MIT-BIH数据库提供的数字心电信号,并还原实际波形 美国麻省理工学院提供的MIT-BIH数据库是一个权威性的国际心电图检测标准库,近年来应用广泛,为我国的医学工程界所重视。MIT-BIH数据库共有48个病例,每个病例数据长30min,总计约有116000多个心拍,包含有正常心拍和各种异常心拍,内容丰富完整。 为了读取简单方便,采用其txt格式的数据文件作为我们的原心电信号数据。利用labVIEW提供的文件I/O函数,读取txt数据文件中的信号,并且还原实际波形。

分光光度计基线校正的原理和方法

【原创】关于分光光度计基线校正的原理和方法 对于双光束分光光度计而言在使用前必须要做基线校正(也称为基线记忆),对于此项工作的原理和操作方法许多使用者的认识不尽相同;为此谈谈我的认识。 (一)为何要做基线校正? 众所周知、光度计的光学系统基本是由光源(氘灯、钨灯)—单色器(光栅、狭缝)—检测器(光敏二极管、光电倍增管)等三部分组成的。在我们使用的波长区域中(一般紫外可见仪器均在190nm~1100nm范围里,)上述部件在不同的波长下的响应值(光源的发射强度、单色器的色散强度、检测器的放大倍数)均不相同;通俗地说、即使没有样品,仪器如果不做基线校正,那么在190nm至110 0nm的范围中,吸光值或透过率不会是一条直线,这是一种客观的物理现象,如下图; 尽管上图反映的是单光束的能量图,但在基线未校正状态下,即使改用双光束测量方式来扫描一个样品,其所得到的图谱或吸光值也是不可信的。 (二)被校正的基线种类和用途 (1)系统基线: 所谓系统基线就是仪器固有的波长范围的总基线;例如一台仪器出厂设计的波长全程范围是190nm至1100nm,那么它的系统基线就是这个范围。一般来讲,作为分析人员对一台仪器做全程扫描测试是比

较少见的;之所以要做系统基线的目的一般是将仪器的光学系统的响应值校正到基本一致;这就类似马拉松赛跑一样,只要大家在同一起跑处(注意:不是起跑线)比赛,前后差几米出发无所谓。(2)用户基线: 所谓用户基线就是分析者自己设定的测量波长区域的一段基线;由于这是分析所需要的区域,为了保证测试的准确性,故用户基线的校正是非常重要和必要的;这就类似百米赛跑一样,运动员要在同一个起跑线上比赛而不能抢跑,否则无法准确计算成绩。 (三)基线校正的方法 (1)系统基线: 系统基线的校正较为简单,一般情况下样品室内不放样品,仅做光学系统的校正;如果一定要使用全波段的测量那另当别论。同时需要注意的是:系统基线无需经常校正,一般半个月或一个月校正校正一次即可。对有的仪器来说,系统基线校正过于频繁反而会造成基线漂移严重。 (2)用户基线校正: 正确的校正方法是:两只比色杯盛有空白溶液分别放置在样品及参比光路中,校正波长范围要大于分析波长范围;例如、分析设定范围为220nm~500nm,那么校正波长就要设定为210nm~510nm;等待校正结束后再将波长设定回到原来的220nm~500nm范围。这种校正方法的优点是:如果校正波长与分析波长完全吻合一致,有可能在校正后的基线两端出现大的噪声;如果校正范围大于实际分析范围并掐头去尾后可以提高分析精度。我将这种校正方法起名为“豆芽菜原理”,目的是便于记牢;(因为我们吃豆芽菜时均要掐头去根,仅吃中间部分,故以前的饭馆将炒豆芽这道菜称为“炒掐菜”;对不起、跑题了)。关于这种校正方法,许多使用者往往不知晓或忽略掉了,在此顺便介绍给版友。 值得注意的是,有的仪器操作者在做基线校正时,参比一侧不放参比溶液,也就是用空气来做参比对照。这种方法在可见区对有的样品也许有时影响不大,但在紫外区影响就会很明显了。严格的说,用空气做参比所测得的结果不是真正意义上的校正光谱。 (四)基线校正的注意事项 (1)基线校正时要保证仪器有一定的预热时间 (2)每更换一种参比溶液后均要重新做基线校正 (3)如果参比溶液的吸光度大于样品的吸光度值时测试结果会出现负值,此时要考虑使用何种溶液做基线校正了。 (4)做基线校正时要考虑试剂的使用波长范围问题,因为有的试剂在某个波长以下的吸光度值会无限大,这时去做校正会超出仪器的有效量程范围,无法得到真正的结果。关于试剂的使用波长范围,目前一般在试剂瓶的标签上会有标注。我有个简单资料表供大家参考如下:

心电信号基线漂移噪声去除算法研究

心电信号基线漂移噪声去除算法研究 Research on Removal of Baseline Wander in ECG Signals Abstract ECG signals can be used to detect and diagnose heart disease.In practice,the ECG signals are often corrupted by baseline wanders that are mainly caused by respiratory activity, body movements,skin-electrode interface,varying impedance between electrodes and skin due to poor electrode contact and perspiration.The presence of baseline wanders can degrade the ECG signal quality and may severely affect the PQRST morphologies.Thus,removal of BW has become an crucial first step in most ECG signal processing applications including cardiac arrhythmias recognition,heart rate variability analysis,continuous blood pressure measurement and so on. ECG signal is a kind of non-stationary and non-linear signal.The traditional methods of removing the baseline wander in the ECG signal are often due to excessive or incomplete denoising when the ECG signal is denoised,which easily results in the loss of a large amount of nonlinear characteristic information.This will destroy the dynamic characteristics of the ECG signal itself,which will adversely affect the subsequent analysis of ECG information. In view of the non-stationary and non-linear characteristics of ECG signal,this paper discusses the application of two kinds of signal decomposition algorithms in the baseline wander removal of ECG signals,namely the variational mode decomposition algorithm and the singular spectrum analysis algorithm.Variational Mode Decomposition was proposed by Konstantin Dragomiretskiy in2014.Variational mode decomposition is a new,entirely non-recursive signal decomposition method,it can decompose the given signal into a set of modes which around the center frequencies.The variational mode decomposition can be used to decompose the ECG signal into several modes.Then removing the mode corresponding to the baseline wander and reconstructing the remaining modes can obtain the ECG signal after the baseline wander is removed.The Singular Spetrum Analysis method was first proposed by Colebrook in1978.Singular spectrum analysis is a powerful method for studying nonlinear time series data.It can extract the different components of the original time series.With SSA applied,the ECG signal can be decomposed into trends,oscillations or noise components based on the singular value decomposition.Only the first eigenvalue component that may be interpretable as basic trend is selected to reconstruct the BW signal and then removal it from the ECG signal. In this paper,we use MATLAB as a simulation tool,use the ECG signals as simulation signals which are provided by arrhythmia database of Massachusetts Institute of Technology.

心电信号采集及系统设计(荟萃内容)

微弱信号检测课题报告 心电信号采集 —噪声分析及抑制 指导老师:宋俊磊 院系:机电学院测控系 班级: 学号: 姓名:

【目录】 【摘要】 (3) 第一章 (4) 1.1人体生物信息的基本特点[1} (4) 1.2 体表心电图及心电信号的特征分析[4] (5) 1.3心电信号的噪声来源[7] (6) 1.4 心电电极和导联体系分析 (7) 1.4.1系统电极选择[8] (7) 第二章硬件电路设计 (8) 2.1 心电信号采集电路的设计要求 (8) 2.2 心电采集电路总体框架 (9) 2.3采集电路模块 (11) 2.4 AD620引入的误差 (11) 2.4.1 电子元件内部噪声 (11) 2.4.2集成运放的噪声模型: (13) 2.4.3 AD620的噪声计算 (14) 2.4.4 前置放大电路改进措施 (15) 2.5 滤波电路设计 (18) 2.6电平抬升电路[14] (21) 2.7心电信号的50Hz带阻滤波器(50Hz陷波)设计[15] (21) 结论 (23) 附录:参考文献 (24)

【摘要】 心脏是人体循环系统的核心,心脏的活动是由生物电信号引发的机械收缩。在人体这个三维空间导体当中,这种生物电信号可以波及人体各个部分,在人体体表产生规律性的电位变化。在人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。 针对心电信号的特点进行心电信号的采集、数据转换模块的设计与开发。设计一种用于心电信号采集的电路,然后进行A/D转换,使得心电信号的频率达到采样要求。人体的心电信号是一种低频率的微弱信号,由于心电信号直接取自人体,所以在心电采集的过程中不可避免会混入各种干扰信号。为获得含有较小噪声的心电信号,需要对采集到的心电信号做降噪处理。运用一个心电信号检测放大电路,充分考虑了人体心电信号的特点,采用前置差动放大+带通滤波器+50Hz陷波器(带阻滤波器)组成的模式,对心电信号进行测量。 关键词:心电信号采集,降噪,A/D转换放大,噪声分析

关于分光光度计基线校正的原理和方法

关于分光光度计基线校正的原理和方法 对于双光束分光光度计而言在使用前必须要做基线校正(也称为基线记忆), 对于此项工作的原理和操作方法许多使用者的认识不尽相同;为此谈谈我的认 识。 (一)为何要做基线校正? 众所周知、光度计的光学系统基本是由光源(氘灯、钨灯)—单色器(光栅、狭 缝)—检测器(光敏二极管、光电倍增管)等三部分组成的。在我们使用的波长 区域中(一般紫外可见仪器均在 190nm~1100nm范围里,)上述部件在不同的 波长下的响应值(光源的发射强度、单色器的色散强度、检测器的放大倍数)均 不相同;通俗地说、即使没有样品,仪器如果不做基线校正,那么在 190nm至 1100nm的范围中, 吸光值或透过率不会是一条直线, 这是一种客观的物理现象, 如下图; 尽管上图反映的是单光束的能量图,但在基线未校正状态下,即使改用双光束测 量方式来扫描一个样品,其所得到的图谱或吸光值也是不可信的。 (二)被校正的基线种类和用途 (1)系统基线:

所谓系统基线就是仪器固有的波长范围的总基线; 例如一台仪器出厂设计的波长 全程范围是 190nm 至 1100nm,那么它的系统基线就是这个范围。一般来讲, 作为分析人员对一台仪器做全程扫描测试是比较少见的; 之所以要做系统基线的 目的一般是将仪器的光学系统的响应值校正到基本一致; 这就类似马拉松赛跑一 样,只要大家在同一起跑处(注意:不是起跑线)比赛,前后差几米出发无所谓。 (2)用户基线: 所谓用户基线就是分析者自己设定的测量波长区域的一段基线; 由于这是分析所 需要的区域,为了保证测试的准确性,故用户基线的校正是非常重要和必要的; 这就类似百米赛跑一样,运动员要在同一个起跑线上比赛而不能抢跑,否则无法 准确计算成绩。 (三)基线校正的方法 (1)系统基线: 系统基线的校正较为简单, 一般情况下样品室内不放样品, 仅做光学系统的校正; 如果一定要使用全波段的测量那另当别论。同时需要注意的是:系统基线无需经 常校正,一般半个月或一个月校正校正一次即可。对有的仪器来说,系统基线校 正过于频繁反而会造成基线漂移严重。 (2)用户基线校正: 正确的校正方法是:两只比色杯盛有空白溶液分别放置在样品及参比光路中,校 正波长范围要大于分析波长范围;例如、分析设定范围为 220nm~500nm,那 么校正波长就要设定为 210nm~510nm;等待校正结束后再将波长设定回到原 来的220nm~500nm范围。这种校正方法的优点是:如果校正波长与分析波长 完全吻合一致,有可能在校正后的基线两端出现大的噪声;如果校正范围大于实 际分析范围并掐头去尾后可以提高分析精度。我将这种校正方法起名为“豆芽菜 原理”,目的是便于记牢;(因为我们吃豆芽菜时均要掐头去根,仅吃中间部分, 故以前的饭馆将炒豆芽这道菜称为“炒掐菜”;对不起、跑题了)。关于这种校正 方法,许多使用者往往不知晓或忽略掉了,在此顺便介绍给版友。 值得注意的是,有的仪器操作者在做基线校正时,参比一侧不放参比溶液,也就 是用空气来做参比对照。这种方法在可见区对有的样品也许有时影响不大,但在 紫外区影响就会很明显了。严格的说,用空气做参比所测得的结果不是真正意义

心电信号采集模块的设计200501

医学仪器与设备课程设计题目:心电信号采集模块的设计 院系:电气工程学院 专业:生物医学工程 姓名: 学号: 指导老师:戴启军 时间:2008年12月29日——2009年1月6日

心电信号采集电路的设计 一、系统概述 心电信号采集模块组成:心电电极;导联线;缓冲放大器;威尔逊电阻网络;差动放大;低通滤波器;高通滤波器;50Hz陷波器;光电隔离器;增益可调电路;调零电路 (1)心电电极 生物电引导电极实际完成人体和测量系统之间的界面作用。为了把生物电信号引入信号处理模块中,引导电极必须具备电流的传导能力。在人体内,电流靠离子导电,而在测试系统内是电子导电。通过引导电极,把离子电流变为电子电流,所以电极实际上起了一个换能器的作用。提取心电信号,采用的是皮肤表面电极(体表电极)。 (2)导联线 此设计中心电采集模块由4个电极组成导联线,包括三个肢体电极和一个右腿接地(右腿驱动)电极。电极获取的心电信号仅为毫伏级,所以导联线均用屏蔽线。 导联线的芯线和屏蔽线之间有分布电容存在(约100pF/m),为了减少电磁感应引起的干扰,屏蔽线可直接接地,但这样会降低输入阻抗。也可以采用屏蔽驱动,这样可减少共模误差和不降低输入阻抗。 (3)缓冲放大器 缓冲放大器保证心电放大器的高输入阻抗要求,起到阻抗变换作用。生物信号源本身是高内阻的微弱信号源,通过电极提取又呈现出不稳定的高内阻源性质。不稳定性将使放大器电压增益不稳定。放大器的输入阻抗应至少大于1MΩ。 (4)威尔逊电阻网络 威尔逊电阻网络是按照标准十二导联心电图定义组成的电阻网络。 (5)差动放大 差动放大是心电前置放大的主要部分,和缓冲放大器一起组成心电图前置放大。差动放大的作用是将幅度仅为毫伏级的微弱心电信号进行放大。同时必须有高抗干扰能力,即具有高共模抑制比。 (6)低通滤波器 心电信号的高频响应界限为100Hz,由100Hz低通滤波器完成。 (7)高通滤波器 心电信号的低频响应界限为0.05Hz,由0.05Hz高通滤波器完成。 (8)50Hz陷波器 50Hz陷波器用于加强滤除50Hz干扰。有的心电图机还设有40Hz低通滤波器用于滤除肌电干扰。

加速度基线校正问题探讨

加速度时程积分中的基线校正问题探讨 1引言 目前,地震反应分析中所采用的地震波源于真实地震动的数据采集和地震动的人工合成。地震动采集的数据大都以加速度时程的形式给出,而速度和位移时程通常由加速度积分得到。但强震仪记录的不仅是地震时纯粹的地面运动信息,还包含复杂的噪音,其中的低频噪音会导致加速度时程出现基线漂移[1]。基线漂移对加速度时程本身的影响很小(一般不超过峰值加速度的2%),但通过积分求速度、位移时程时,基线的漂移被逐步放大,从而对速度、位移时程产生很大的影响[2]。因此,在使用加速度记录时,一般需要对其进行基线校正。 2加速度基线漂移的原因及其影响 对于数字强震仪而言,导致加速度基线漂移的原因主要有传感器的磁滞现象、传感器的背景噪声以及传感器的倾斜等[3]。 传感器的磁滞效应主要源于传感器的物质疲劳。Iwan等人通过对美国凯尼公司生产的PDR-1和FBA-13型强震仪的性能研究发现,当加速度超过一定界限时,相应记录的基线会发生跳跃现象。尽管这种现象对加速度本身影响很小,但通过积分放大,会对速度时程和位移时程产生较大影响。Iwan等人认为,这种现象可能是由于传感器系统机械或电路的微小磁滞作用引起的。对于PDR-1和FBA-13型强震仪,这种磁滞效应在加速度≥50gal时开始出现。 背景噪音与记录场地条件密切相关,主要特征是频率丰富的随机波形。背景噪音导致加速度记录的初始值不为零,从而对加速度基线产生影响。 传感器的倾斜主要发生在近场区强震观测台。在地震中,近场区域可能伴随强烈的地表变形(地表破裂、垂直抬升、水平位移等),从而导致传感器发生倾斜。传感器的倾斜可能导致加速度记录的基线漂移。 强震地面运动反应谱以及峰值加速度(PGA)、峰值速度(PGV)、峰值位移(PGD)、地面永久位移(D-last)在理论研究和工程实践中应用十分广泛,因此研究基线漂移对上述参数产生的影响很有必要。相关研究表明,基线漂移对峰值加速度时程影响很小,但通过积分求速度,基线漂移被放大;当通过积分求位移时程时,基线漂移被进一步放大,往往与真实的位移时程相差甚远。下面以Elcentro波(EW)原始记录为例来简要说明这个问题。为了简便起见,本节假定Elcentro波基线漂移是加速度记录中包含的线性趋势造成的,在此基础之上采用最小二乘拟合进行基线校正。需要注意的是通过去这种方法进行基线校正得到的结果未必是真实可信的,此处只是为了简要说明基线漂移在积分过程中被逐步放大的问题。此处积分采用线性加速度法。作出加速度、速度、位移校正前后比较图,分别见图2.1~2.3。具体matlab程序见附录。

心电信号的采集系统设计开题报告

电气信息工程学院 毕业设计(论文)开题报告 课题名称:小波变换在图像编码中 的应用 专业:通信工程 姓名:王文双 班级学号:06-01-26 指导教师:张海一 二○一○年四月二日

三、完成本课题的工作进度计划 第一、二周:收集资料,做好知识准备。 第三、四周:开题报告。 第五周:进行设计方案论证。 第六—九周:小波理论、图像编码技术。 第十、十一周:计算机仿真。 第十二周:设计收尾工作和毕业设计答辩准备。 四、参考文献 [1] 丁艳,刘榴娣,郭宏. 小波变换在图像压缩中的应用研究[J]. 光学技术. 1999.(01) [2] 陶德元,何小海,李舒平,吴小强. 小波变换及其在图像处理中的应用[J]. 四川大学学报(自然科学版). 1994.(04) [3] 李华峰,丁绪星,钱焕延. 基于整数小波变换的图像压缩算法[J]. 计算机工程与设计. 2006.(11) [4]Mandelbrot,B,B.Self-affine FractalSets.Fractals in Physics[C].Amsterdam: North-Holland,1986: [5] Rioul,O. Regular wavelets: a discrete time approach[J].IEEETransactions on signal Processing,1993,41(12):3572-3579. [6] 韩玉坤. 数字图像压缩编码技术综述[J]. 潍坊学院学报. 2006.(04) [7] 刘洞波. 一种扩展的嵌入零树小波算法[J]. 现代计算机. 2006.(09) [8] 王相海,张福炎. 一种基于零树小波的图像比率可分级编码方法的研究[J]. 南京大学学报(自然科学版). 2002.(02) [9] 张旭东等编著. 图像编码基础和小波压缩技术[M]. 清华大学出版社 2004 [10] 徐佩霞,孙功宪编著. 小波分析与应用实例[M]. 中国科学技术大学出版社1996 [11] 张旭东等编著. 图像编码基础和小波压缩技术[M]. 清华大学出版社 2004 [12] 程正兴[著]. 小波分析算法与应用[M]. 西安交通大学出版社 1998

相关文档
最新文档