求三角函数最值的四种方法

求三角函数最值的四种方法
求三角函数最值的四种方法

求三角函数最值的四种方法

解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性 如有界性等 ,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数 二次函数等 最值问题.下面介绍几种常见的三角函数最值的求解策略

1.配方转化策略

对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2

x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决.

[典例1] 求函数y =5sin x +cos 2x 的最值.

[解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2?

????sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4.

[题后悟道]

这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1].

2.有界转化策略

对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一.

[典例2] 设函数f (x )=4cos ?

????ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值.

[解] f (x )=4? ??

??32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx

=3sin 2ωx +1,

因为-1≤sin 2ωx ≤1,

所以函数y =f (x )的最大值为3+1,最小值为1- 3.

[题后悟道]

求解这类问题的关键是先将所给的三角函数化为一个角的三角函数问题,然后利用三角函数的有界性求其最值.

3.单调性转化策略

借助函数单调性是求解函数最值问题常用的一种转化策略.对于三角函数来说,常常是先化为y =A sin(ωx +φ)+k 的形式,再利用三角函数的单调性求解.

[典例3] 函数f (x )=

22sin ? ????x +π4-32在????

??π,17π12上的最大值为________,最小值为________.

[解析] 由π≤x ≤17π12,得5π4≤x +π4≤5π3

. 因为f (x )=22sin ? ????x +π4-32在??????π,5π4上是减函数,在??????5π4,17π12上是增函数,且f (π)>f ? ????17π12,所以当x =5π4时,f (x )有最小值为22sin ? ????5π4+π4-32=-22-32. 当x =π时,f (x )有最大值-2.

[答案] -2 -

22-32

[题后悟道]

这类三角函数求最值的问题,主要的求解策略是先将三角函数化为一个角的三角函数形式,然后再借助于函数的单调性,确定所求三角函数的最值.

4.数形结合转化策略

对于形如y =b -sin x a -cos x 的三角函数最值问题来说,常常利用其几何意义,将y =b -sin x a -cos x 视为定点(a ,b )与单位圆上的点(cos x ,sin x )连线的斜率来解决.

[典例4] 求函数y =-sin x 2-cos x

(0

,y 可看成连接点A (2,0)与

点P (cos x ,sin x )的直线的斜率.由于点(cos x ,sin x )的轨迹是

单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,

使得相应的直线斜率最小.

设过点A 的直线与半圆相切于点B ,则k AB ≤y <0.

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法 三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下. 1 配方分析法 如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法. 例1求函数y=2cos2x+5sinx-4的值域. 解原函数可化为 当sinx=1时,y max=1; 当sinx=-1时,y min=-9, ∴原函数的值域是y∈[-9,1]. 注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意. “cosx”,再求已知函数的最值 例2求下列函数的最值,并求出相应的x值.

y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max= 3 求反函数法 如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.

∴原函数的值域是 4 应用函数的有界性 上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下. 解由原式可得 (3y-1)sinx+(2y-2)cosx=3-y, 则上式即为 利用函数的有界性有 ∴原函数的值域是

三角函数最大值问题

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为 只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+sin(2x+) 当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。

【智博教育原创专题】三角函数求最值的题型大全

三角函数求最值的归类研究 求函数的最大值与最小值是高中数学中的重要内容,也是高考中的常见题型,本文对三角函数的求最值问题进行归类研究,供同学们借鉴。 一、化成sin()y A x ω?=+的形式 例1. 在直角三角形中,两锐角为A 和B ,求sin sin A B 的最大值。 【解析】1sin sin sin sin()sin cos sin 222A B A A A A A π=-==,由02 A π<<,得02A π<<,则当4 A π=时,sin sin A B 有最大值12。 例2. 求函数44()cos 2sin cos sin f x x x x x =--在0,2π?????? 上的最大值和最小值。 【解析】442222()cos 2sin cos sin (cos sin )(cos sin )sin 2cos2sin 2f x x x x x x x x x x x x =--=+--=- )4x π=-,由02 x π≤≤,得32,sin(2)14444x x ππππ-≤-≤≤-≤,得 )14x π-≤,则当0x =时,max ()1f x =;当38 x π=时,min ()f x = 【点评】这类题目解决的思路是把问题化归为()sin()f x A x k ω?=++的形式,一般而言,max min ()()f x A k f x A k =+=-+,,但若附加了x 的取值范围,最好的方法是通过图象加以解决。例2中,令24u x π=-,画出sin u 在3,44ππ??-???? 上的图象(如图1), 图1 不难看出sin 12u ≤≤,即sin(2)124x π≤-≤。应注意此题容易把两个边界的函数值()2f π和(0)f 误认为是最大值和最小值。 二、形如cos sin c x d y a x b +=+的形式 例3. 求函数sin 1cos 2 x y x -=-的最大值和最小值。 【解析】由已知得cos 2sin 1y x y x -=-,即sin cos 12,)12x y x y x y φ-=-+=-,所以 sin()x ?+sin()1x ?+≤≤,即2340y y -≤,解得403 y ≤≤,故max min 4,03 y y ==。 【点评】上述利用正(余)弦函数的有界性,转化为以函数y 为主元的不等式,是解决这类问题的最佳方法。虽然本题可以使用万能公式,也可以利用圆的参数方程和斜率公式去求解,但都不如上述解法简单易行。有兴趣的同学不妨试一试其他解法。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

三角函数研究性学习

研究性学习 班级: 小组: 组长: 组员: 开题报告 三角学的起源与发展 三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具

一、课题提出的背景 运用数学知识解决现实生活中的实际问题是一项很重要的数学能力,也是新课程标准对学生能力的基本要求。九年级下册锐角三角函数内容不仅是初中数学教学的重点,而且是培养学生运用能力的理想材料,锐角三角函数解实际问题渗透了数形结合的数学思想,通过测量,工程技术等问题,转化为解直角三角形的应用题和数学活动,有助于培养学生的空间想象能力和运用数学的能力,更好地培养学生理论和实践相结合的意识。学生在学习本部分内容时,对概念的形成难以理解,更不能把实际问题抽象成数学模型,造成对实际问题的解决无所适从,学生作业练习中更出现严重错误,利用数学知识解决实际问题的能力欠缺,导致学生对数学学习没有乐趣和积极性,因此,本人把锐角三角函数解决实际问题作为课题进行研究,培养学生数学运用能力。 二、所要解决的主要问题 1、通过实际问题培养学生经历概念的形成能力。 2、研究如何培养学生数形结合的数学思想。 3、研究如何培养学生对实际问题的分析和解决能力。 4、培养学生良好的解决问题的数学思想和方法,使学生对实际问题的探索充满乐趣。

高中三角函数最值问题的一些求法

高中三角函数最值问题的一些求法 关于()f x ω?+型三角函数式的最值,可以由三角函数的性质直接求出,如 sin(),11y x y y ω?=+==-最大最小,; cos(),11y x y y ω?=+==-最大最小,; tan y x =与cot y x =在定义域内无最值。 一、直接应用三角函数的定义及三角函数值的符号规律解题 例1:求函数y = x x x x x x x x cot | cot ||tan |tan cos |cos ||sin |sin +++的最值 分析:解决本题时要注意三角函数值的符号规律,分四个象限讨论。 解: (1)当x 在第一象限时,有sin cos tan cot 4sin cos tan cot x x x x y x x x x = +++= (2)当x 在第二象限时,有sin cos tan cot 2sin cos tan cot x x x x y x x x x =+++=---- (3)当x 在第三象限时,有sin cos tan cot 0sin cos tan cot x x x x y x x x x =+++=-- (4)当x 在第四象限时,sin cos tan cot 2sin cos tan cot x x x x y x x x x =+++=---- 综上可得此函数的最大值为4,最小值为-2. 二、直接应用三角函数的有界性(sin 1,cos 1x x ≤≤)解题 例1:(2003北京春季高考试题)设M 和m 分别表示函数cos 13 x -1 y=的最大值和最小值,则M m +等于( ) (A ) 32 (B )32-(C ) 3 4-(D )-2 解析:由于cos y x =的最大值与最小值分别为1,-1,所以,函数cos 13 x -1 y=的最大值与最小值分别为 32-,34-,即M m +=32-+(3 4 -)=-2,选D. 例2:求3sin 1 sin 2 x y x +=+的最值(值域) 分析:此式是关于sin x 的函数式,通过对式子变形使出现12sin 3 y x y -=-的形式,再根据sin 1x ≤来求解。 解:3sin 1 sin 2 x y x += +,即有sin 23sin 1sin 3sin 12y x y x y x x y +=+?-=-

求三角函数的周期6种方法总结多个例子详细解答

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、定义法 例1. 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切 函数x y tan =的周期是π. 解:∵ )2 3 (32tan )32tan(32tan ππ+=+=x x x , 即

3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 例2. 求函数 (m ≠0)的最小正周期。 解:因为 所以函数(m ≠0)的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4.求函数y =|sin x |+|cos x |的最小正周期. 解:∵)(x f =|sin x |+|cos x | =|-sin x |+|cos x | =|cos(x +2π)|+|sin(x +2π)|

求三角函数最值的四种方法

求三角函数最值的四种方法 解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性 如有界性等 ,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数 二次函数等 最值问题.下面介绍几种常见的三角函数最值的求解策略 1.配方转化策略 对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2 x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决. [典例1] 求函数y =5sin x +cos 2x 的最值. [解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2? ????sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4. [题后悟道] 这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1]. 2.有界转化策略 对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一. [典例2] 设函数f (x )=4cos ? ????ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值. [解] f (x )=4? ?? ??32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx =3sin 2ωx +1, 因为-1≤sin 2ωx ≤1, 所以函数y =f (x )的最大值为3+1,最小值为1- 3.

三角函数最值问题的十种常见解法

- - 总结 三角函数最值问题的十种常见解法 福州高级中学 陈锦平 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法: 一.转化一次函数 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法. 例1.求函数2cos 1y x =-的值域 [分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈- 二. 转化sin()y A x b ω?=++(辅助角法) 观察三角函数名和角,先化简,使三角函数的名和角统一. 例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为 . [分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ω?=++的形式,再借助三角函数图象研究性质,解题时注意 观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +求最值. ()f x ≤ 三. 转化二次函数(配方法) 若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.

例谈三角函数值域(最值)的几种求法

例谈三角函数值域(最值)的几种求法 南县一中 肖胜军 有关三角函数的值域(最值)的问题是各级各类考试考察的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等重常用方法。掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。 一、合理转化,利用有界性求值域 例1、求下列函数的值域: (1)1sin cos y x x =+ (2)cos 3 cos 3 x y x -= + (3)2 2 sin 2sin cos 3cos y x x x x =++ (4)3sin()4cos()44 y x x π π =+ ++解析: (1)根据11sin cos sin 222x x x ≤ ≤可知:13 22 y ≤≤ (2)将原函数的解析式化为:3(1)cos 1y x y += -,由cos 1x ≤可得:1 22 y -≤≤- (3) 原函数解析式可化为:2 1sin 22cos 2sin 2cos 22)4 y x x x x x π =++=++=++ 可得: 22y ≤≤+ (4)根据sin cos )a x b x x φ?+=+∈?可得:55y -≤≤ 二、单调性开路,定义回归 例2、求下列函数的值域: (1)y = (2)y = (3)2cos ,63y x x x ππ?? ??=+∈ ?? ????? (4)y 1sin 02x ≤≤≤解析:(1)由-1知: 1sin 1,cos1cos sin 1 2 2 x x π π ≤-≤≤≤ ≤≤≤≤(2)由- 有()125sin()663366 x x x ππππππ +≤≤≤+≤≤≤(3)y=2由知:由正弦函数的单调性:1y 2 [](4)0,2y == 三、抓住结构特征,巧用均值不等式

高中数学学案:三角函数的最值问题

高中数学学案:三角函数的最值问题 1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域. 2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题. 1. 阅读:必修4第24~33页、第103~116页、第119~122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解? 3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. 基础诊断 1. 函数f(x)=sin x,x ∈? ????π6,2π3的值域为? ?? ??12,1__. 2. 函数f(x)=sin x -cos ? ?? ??x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6),所 以函数f(x)=sin x -cos (x +π6)的值域为[-3,3]. 3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__. 解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ? ????x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ? ????x +π6∈???? ??12,1, 所以当sin ? ?? ??x +π6=1时,f(x)有最大值2. 4. 函数y =2sin 2x -3sin 2x 范例导航 考向? 形如y =a sin 2x +b cos x +c 的三角函数的最值

高三数学求三角函数最小正周期的五种方法

求三角函数最小正周期的五种方法 spacetzs 关于求三角函数最小正周期的问题,是三角函数的重点和难点,教科书和各种教参中虽有讲解,但其涉及到的题目类型及解决方法并不多,学生遇到较为复杂一点的问题时,往往不知从何入手。本文将介绍求三角函数最小正周期常用的五种方法,仅供参考。 一、定义法 直接利用周期函数的定义求出周期。 例1.求函数y m x =-cos( )56π(m ≠0)的最小正周期。 解:因为y m x =-cos()56 π =-+=+-cos( )cos[()]m x m x m 5625106ππππ 所以函数y m x =-cos()56 π(m ≠0)的最小正周期 T m = 10π|| 例2.求函数y x a =cot 的最小正周期。 解:因为y x a x a a x a ==+=+cot cot()cot[()]ππ1 所以函数y x a =cot 的最小正周期为T a =||π。 二、公式法 利用下列公式求解三角函数的最小正周期。

1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最小正周期T =2πω|| 。 2.y A x h y A x h =++=++tan()cot()ωφωφ或的最小正周期T =πω|| 。 3.y x y x ==|sin ||cos |ωω或的最小正周期T =πω|| 。 4.y x y x ==|tan ||cot |ωω或的最小正周期T = πω|| 例3.求函数y x =|tan |3的最小正周期。 解:因为T ==πωω|| 而3 所以函数y x =|tan |3的最小正周期为T = π 3。 例4.求函数y n m x =-cot()3π的最小正周期。 解:因为T n m ==-πωωπ||||而, 所以函数y n m x =-cot()3π的最小正周期为T n m m n =-=ππ||||。 三、转化法 对较复杂的三角函数可通过恒等变形转化为y A x h =++sin()ωφ等类型,再用公式法求解。 例5.求函数y x x =+sin cos 66 的最小正周期。

(精心整理)如何求三角函数的最值

三角函数的最值问题 三角函数的最值问题是三角函数基础知识的综合应用,也是高中数学中经常涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这类问题不仅需要用到三角函数的定义域、值域、单调性、图像和三角函数的恒等变形,而且还常涉及到函数、不等式、方程、几何等众多知识,其概念性强,具有一定的综合性和灵活性。而解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面就介绍几种常见的求三角函数最值的方法: 一、 配方法: 形如y=asin 2x+bcosx+c 型的函数 特点是含有sinx, cosx ,并且其中一个是二次,处理方式是应用sin 2x+cos 2x=1,使函数式只含有一种三角函数,再应用配方或换元法,转化成二次函数来求解。 例1 函数3cos 3sin 2+--=x x y 的最小值为( ). A . 2 B . 0 C . 4 1- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则 ,23,112+-=≤≤-t t y t 配方,得41232-?? ? ??-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B. 例2 求函数y=5sinx+cos2x 的最值 [分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 () 48331612,,221sin 68 3316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+?-=∈+=∴=-=+?-=∈-=-=∴≤≤-+??? ? ?--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二、 引入辅助角法: 形如y=asinx+bcosx 型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。应用课本中现成的公式即可:y=

高考数学大招:三角函数最值问题的十种常见解法

三角函数最值问题的十种常见解法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法: 一.转化一次函数 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法. 例1.求函数2cos 1y x =-的值域 [分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈- 二. 转化sin()y A x b ω?=++(辅助角法) 观察三角函数名和角,先化简,使三角函数的名和角统一. 例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为 . [分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ω?=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一 般可利用 |sin cos |a x b x +≤求最值. ()f x ≤ 三. 转化二次函数(配方法) 若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理. 例3. 求函数3cos 3sin 2+--=x x y 的最小值. [分析]利用22sin cos 1x x +=将原函数转化为2 cos 3cos 2+-=x x y 令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232 -?? ? ??-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y 四. 引入参数转化(换元法) 对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2 x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围. 例4. 求函数sin cos sin .cos y x x x x =++的最大值. [分析]解:令().cos sin 21cos sin 2 x x x x +=+,设sin cos .t x x =+ 则[]() t t y t t x x +-=∴-∈-=21,2,221cos sin 22, 其中[] 2,2-∈t 当.221,14sin ,2max +=∴=??? ? ?+=y x t π 五. 利用基本不等式法 利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.

[三角函数最值求法探究] 几种常见的三角函数值域求法

[三角函数最值求法探究] 几种常见的三角函数 值域求法 2006年第4期 牡丹江教育学院学报 JOURNALOFMUDANJIANGCOLLEGEOFEDUCATION No、4,2006 TotalNo、98 三角函数最值求法探究 宁广祥1 陈 旭2 [摘要]三角函数的曩值问题是对三角函数基础知识的综合应用,也是高考中的一个重点、本文总结了三角函数最值的求法,其中换元法/数形结合是本文的重点,也是解决最值的基本方法、 [关键词]三角函数I最值I换元;数形结合 [中圈分类号]G633、6 [文献标识码]A

[文章编号]1009--232304--0120--01 三角函数的最值问题是对三角函数基础知识的综合应用,此类问题在近几年的高考题中经常出现。也是高考的一个重点必考内容、其出现的形式,或者是在小题中单纯地考察三角函数的值域问题,或者是隐含在解答题中,作为解决解答题所用的知识点之一、它既是三角函数知识的延续和再巩固,又是三角公式运用的具体表现,因此,对于学生来说要熟练掌握这些知识点和基本方法确有一定难度、下面笔者将近几年来的教学点滴心得总结如下? 1、Y2asinx+b塑函数例1求y一3cosx+1的最值、解1、、、一1≤cosx≤1、、、一3≤3cosx≤3、、、一2≤3cosx+1≤4 即,、。一4 y_一一2、 率,而点是单位圆上的点,过的直线系方程y一2一k 篆表示的是过点与点的斜 解法2, 1y 由点到直线的距离公式,d一上二宅掣一1 解法3t 解得,量一丁4-t-V/7"故舳一学,№一业3

设t2t+2一y一0, 弋≯ X、<}一 叉 解,原式可化简为y一2sin,由一1≤sin≤1得y一一2,y_、COaX。 解l令sinx+cosx=t, 则1+2sinxcosx=t2,所以2sinxcosx2+警 口1 所以y1+t一一÷ 所以y~一7,y_一警、 此类题型主要是应用了换元法将问题转化为学生熟知的一元二次函数有条件限制的最值问题,体现了化归的重要数学思想的应用、 性。 根据二次函数的图像,解出Y的最大值是1+压 这种问题再次反映出二次函数性质和化归思想的重要 6、y2asin2x+bsinxcosx+cos,?x型的函数 4、y=竺箸掣型的函数 f5ln、Z。1一a

求三角函数最值的方法

求三角函数最值的方法 三角函数最值问题是三角函数中的基本内容,也是高中数学中经常涉及的问题。这部分内容是一个难点,不易让学生掌握,它对三角函数的恒等变形能力及综合应用要求较高。求函数的最值是历届高考数学考查的热点之一,以三角函数为载体的问题已成为高考中的热点问题。 一、一角一次一函数形式 在学习了三角函数的内容以后可以知道,要求关于三角函数最值只能转化到B x A y ++=)sin(?ω或者B x A y B x A y ++=++=)tan(,)cos(?ω?ω这种形式才可以求其最值,我把这种形式称为“一角一次一函数形式”。 例1:求x x y cos 3sin +=的最值。 解:)cos 2 3sin 21(2cos 3sin x x x x y +=+= )3sin cos 3cos (sin 2ππx x +?=)3sin(2π+=x ∴当πππk x 223+=+ 即Z k k x ∈+=,26ππ 时,2max =y 当πππk x 223+-=+即Z k k x ∈+-=,26 5ππ时,2max -=y 变式1:再加上?? ????∈2,0πx 是,结果如何? 在化到y )3sin(2π+=x 时,??????∈+∴?? ????∈32,66,2,0ππππx x ?? ????∈+∴1,21)3sin(πx ,[]2,1∈y . 变式2: 求函数x x x x y cos sin cos sin +-=,?? ????-∈12,12ππx 的最值. 解:)4tan(1tan 1tan π+=+-=x x x y ,??????∈+∴?? ????-∈3,64,12,12πππππx x ∴当12π -=x 时,3 3min =y ;当12π=x 时,3max =y . 变式3:??? ??++??? ? ??--=4sin 2323cos sin 41)(222πx x x x f ,??????∈3,4ππx ,求)(x f

三角函数最值问题的十种常见解法

-可编辑修改- 三角函数最值问题的十种常见解法 福州高级中学 陈锦平 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法: 一.转化一次函数 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法. 例1.求函数2cos 1y x =-的值域 [分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈- 二. 转化sin()y A x b ω?=++(辅助角法) 观察三角函数名和角,先化简,使三角函数的名和角统一. 例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为 . [分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ω?=++的形式,再借助三角函数图象研究性质,解题时注意

-可编辑修改- 观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +求最值 . ()f x ≤ 三. 转化二次函数(配方法) 若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理. 例3. 求函数3cos 3sin 2 +--=x x y 的最小值. [分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2 +-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232 -??? ??-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y 四. 引入参数转化(换元法) 对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围. 例4. 求函数sin cos sin .cos y x x x x =++的最大值. [分析]解:令().cos sin 21cos sin 2 x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=2 1,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=??? ? ?+=y x t π 五. 利用基本不等式法

三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

相关文档
最新文档