基于遗传算法的图像分割

基于遗传算法的图像分割
基于遗传算法的图像分割

基于遗传算法的图像分割研究

摘要:遗传算法是对生物进化论中自然选择和遗传学机理中生物进化过程的模拟来计算最优解的方法。遗传算法具有众多的优点,如鲁棒性、并行性、自适应性和快速收敛,可以应用在图像处理技术领域中图像分割技术来确定分割阈值。图像分割是图像处理技术的研究对象之一,它对于图像特征提取、图像识别等图像处理技术等有着重要意义。主要研究基于遗传算法的图像分割效果,采用Matlab 软件进行仿真实验,对不同图像分割算法的效果进行比较。实验表明,遗传算法是处理图像分割的优秀算法,图像分割效果相比于传统的图像分割算法效果更佳。

关键词:图像分割; 阈值计算; 遗传算法; 图像特征

指导老师签名:

Study on Image segmentation based

on genetic algorithm

Abstract:Genetic algorithm is an optimal solution method of using natural selection in biological evolution and biological evolution in genetic mechanism. Genetic algorithm has many advantages such as robustness , parallel , adaptive , and fast convergence , can be used in the field of image processing to determine the threshold value. Image segmentation is one of the object s of image processing , it is meaningful to the image feature extraction , image recognition and other image processing technologies. The image segmentation effect based on genetic algorithm of using MATLAB software to simulate the different image segmentation algorithms and compare the result . Experiments indicate that the genetic algorithm is out standing to deal with the image segmentation ,the result s is more outstanding than traditional image segmentation algorithm.

Keywords : image segmentation ;threshold computation ;genetic algorithm; image feature

Signature of supervisor:

第一章绪论

1.1遗传算法

1.1.1遗传算法的提出

智能计算也有人称之为“软计算”,是人们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,主要包括遗传算法、群体智能算法等。各种智能计算方法有以下一些共同的特点:(1)它们大都引入了随机因素,因此具有不确定性。不少计算过程实际上是在计算机上作随机过程的模拟。

(2)它们大都具有自适应机制的动力体系或随机动力体系,有时在计算机过程中体系结构还在不断调整。

(3)这些算法都是针对通用的一般目标而设计的,它们不同于针对特殊问题而设计的算法。

(4)其中不少算法在低维或简单的情况下的效果不佳,但是到了高维复杂情况下具有很强的竞争力。

1975年,美国密歇根大学的心理学教授、电子工程学与计算机科学知名教授Holland和他的同事与学生共同研究了具有开创意义的遗传算法理论和方法。遗传算法最初被研究的出发点不是为专门解决最优化问题而设计的,它与进化策略、进化规划共同构成了进化算法的主要框架,都是为当时人工智能的发展服务的。迄今为止,遗传算法是进化算法中最广为人知的算法。该算法是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法。概括地讲,它使用了群体搜索技术,将种群代表一组问题解,通过对当前种群施加选择、交叉和变异等一系列遗传操作,从而产生新一代的种群,并逐步使种群进化到包含近似最优解的状态。由于其思想简单、易于实现以及表现出来的鲁棒性,遗传算法广泛地渗透到许多应用领域,特别是近年来在问题求解、优化和搜索、机器学习、智能控制、模式识别和人工生命等领域取得了许多令人鼓舞的成就。以遗传算法为核心的进化计算,己与模糊系统理论、人工神经网络等一起成为计算智能研究中的热点,受到广泛的关注。

1.1.2遗传算法研究概况

对遗传算法的研究主要集中在算法的理论基础,算法结构,算法参数选择,

算法与其他算法的比较,算法的应用等方面。

在算法的数学基础研究方面,Holland的模式理论奠定了GA的数学基础,进而Bertoni和Dorigo推广了此研究。模式定理中模式适合度是难以计算和分析的,Bethke运用了walsh函数和模式转换发展了有效的分析工具,Holland扩展了这种算.Goldberg首先运用.walsh模式转换法设计出了最小GA一欺骗问题并进行了详细分析。遗传算法全局收敛性的分析已经取得了突破,使用的主要数学工具是马尔科夫链。Goldberg和Segrest首先使用了马尔科夫链分析了遗传算法,Eiben 等用马尔科夫链证明了保留最优个体的GA的概率性全局收敛,Rudolph用齐次有限马尔科夫链证明了带有复制、交换、突变操作的标准遗传算法收敛不到全局最优解,不适合于静态函数优化问题,建议改变复制策略以达到全局收敛用。Back 和Muhlenbein研究了达到全局最优解的遗传算法的时间复杂性问题。

遗传算法计算中的瓶颈是群体适合度函数的计算,为了克服群体数大造成的计算费时,Krishnakumar提出了称为uGA的小群体方法,群体数取为五,其仿真结果显示了较高的计算效率和适用于动态系统优化的潜力,但理论上的分析与更严格的实验尚待进行。二进制编码的遗传算法进行数值优化时,有精度不高的缺点。Schraudo1ph和Belew提出了参数动态编码(DPE)的策略,类似于Schaffe对搜索空间尺度变换的方法,是一种提高GA精度的新的结构形式。遗传本质上是进行无约束优化的;简单约束尚能处理,复杂约束问题尚待研究。Androulakis等提出一种扩展遗传搜索算法(EGS),采用实数编码,把搜索方向作为独立的变量处理,文中报道对无约束和有约束问题均有较好结果,但无详细实验过程。为了克服早熟收敛,Poths等提出了基于迁移和人工选择的遗传算法(GAMAS),利用四组群体进行宏进化,类似于并行实现的思想,结果显示了较好的性能。遗传算法具有天然并行的结构,目前一般在串行机上实现。遗传算法并行实现的研究由来己久并颇有前景,因为它的计算瓶颈是适合度的计算,Grefenstette全面研究了遗传算法并行实现的结构问题,给出的结构形式有:同步主从式,半同步主从式,非同步分布式及网络式等。

遗传算法的应用研究比理论研究更为丰富,已渗透到许多学科。遗传算法的应用按其方式可分为三大部分,即基于遗传的优化计算,基于遗传的优化编程、基于遗传的机器学习,分别简称为遗传计算,遗传编程,遗传学习。

遗传计算是GA最直接、最简单的应用,其面也最广。自De Jong起,函数优化已成为经典的例子,常规采用二进制编程,目前使用实数编码的研究增多。与

函数优化问题区别最大的是组合优化问题,使用序号编码,使用特殊的交换操作。在自动控制学科中,Michalewic等用浮点数编码的GA研究了离散时间最优控制问题;陈根社运用GA进行了Riccati方程求解。Murdock等用GA分析了控制系统的鲁棒稳定问题, Krisnakumar等用GA进行了航空控制系统的优化。Potter等运用GA 研究了数字PID控制器的调节。Kristinsson和Dumant深入研究了连续和离散的系统的参数辨识问题,用GA寻找零极点。Park等研究了一种新的基于遗传的模糊推理系统,用于产生优化参数集,获得了良好的性能。自动控制是近年来GA应用的活跃领域,由于GA有天然的增强式学习能力,因此在系统辨识、非模型控制系统设计,模糊控制器设计等方面的研究将会更为深入。以上的研究大多只是原理性的,面对实际应用对象的很少,以后的研究将会向实用性推进。在机器人学中,Davidor研究了把机器人当作模型未知的生物体,运用遗传算法优化机器人的连续轨迹精度。Yun和Xi研究了在机器人关节空间运用遗传算法求最优轨迹。Pearce 用遗传算法学习机器人行为之间的协调参数。Parker和Goldberg研究了用GA求解冗余度机器人的逆运动学方程。Uevama和Fukuda等运用GA研究了细胞机器人系统的结构位形优化、运动规划以及行为协调。机器人是复杂的难以精确建模的系统,可以自然地类比为生物体,运用GA对机器人结构、运动行为进行优化的研究将更为活跃和深入。

遗传算法己渗透到了许多学科,如工程结构优化、计算数学、制造系统、航空航天、交通、计算机科学、通信、电子学、电力、材料科学等。

1.2图像分割技术的研究现状

图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出上千种分割算法。但因尚无通用的分割理论,现提出的分割算法大都是针对具体问题的,并没有一种适合所有图像的通用分割算法。另外,还没有制定出选择使用分割算法的标准,这给图像分割技术的应用带来许许多多实际问题。最近几年又出现了许多新思路,新方法或改进算法。根据近年来的研究情况,可将图像分割方法分为如下四类:

1.阈值分割方法.

阈值分割方法的历史可追溯到近40年前,现己提出了大量算法,对灰度图像的取阈值分割就是先确定一个处于图像灰度取值范围之中的灰度阈值,然后将图像中各个象素的灰度值都与这个阈值相比较,并根据比较结果将对应的象素分为两类,这两类象素一般分属图像的两类区域,从而达到分割的目的。从该方法中

可以看出,确定一个最优阈值是分割的关键。现有的大部分算法都是集中在阈值确定的研究上。阈值分割方法根据图像本身的特点,可分为单阈值分割方法和多阈值分割方法;也可分为基于象素值的阈值分割方法、基于区域性质的阈值分割方法和基于坐标位置的阈值分割方法。若根据分割算法所有的特征或准则,还可以分为直方图与直方图变换法、最大类空间方差法、最小误差法与均匀化误差法、共生矩阵法、最大熵法、简单统计法与局部特性法、概率松驰法、模糊集法、特征空间聚类法、基于过渡区的阈值选取法等。

2.基于边缘的分割方法

图像最基本的特征是边缘,它是图像局部特性不连续(或突变)的结果。例如,灰度值的突变、颜色的突变、纹理的突变等。边缘检测方法是利用图像一阶导数的极值或二阶导数的过零点信息来提供判断边缘点的基本依据,经典的边缘检测方法是构造对图像灰度阶跃变化敏感的差分算子来进行图像分割,如Roben算子、S0bel算子、Prewitt算子、Laplacian算子等。根据检测边缘采用方式的不同,边缘检测方法大致包括以下几类:基于局部图像函数的方法、多尺度方法、图像滤波法、基于反应一扩散方程的方法、多分辨分法、基于边界曲线拟合方法、状态空间搜索法、动态规划法、边界跟踪法、哈夫变换法等。

3.基于区域的分割方法

区域分割的实质就是把具有某种相似性质的像素连通起来,从而构成最终的分割区域。它利用了图像的局部空间信息,可有效的克服其它方法存在的图像分割空间不连续的缺点,但它通常会造成图像的过度分割!。在此类方法中,如果从全图出发,按区域属性特征一致的准则,决定每个像元的区域归属,形成区域图,这常称之为区域生长的分割方法;如果从像元出发,按区域属性特征一致的准则,将属性接近的连通像元聚集为区域是区域增长的分割方法;若综合利用上述两种方法,就是分裂—合并的方法。区域生长法的基本思想是将具有相似性质的象素合起来构成区域,具体做法是选给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域的基础上不断将其周围的象素点以一定的规则加入其中,达到最终将代表该物体的所有象素点结合成一个区域的目的,该方法的关键是要选择合适的生长或相似准则。生长准则一般可分为3种:基于区域灰度差准则、基于区域内灰度分布统计性质准则和基于区域形状准则。分裂合并法是先将图像分割成很多的一致性较强的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的。

4.结合特定理论工具的分割方法

图像分割至今为止尚无通用的自身理论。近年来,随着各学科许多新理论和新方法的提出,人们也提出了许多与一些特定理论、方法和工具相结合的分割技术。

(1)基于数学形态学的分割技术:其基本思想是用具有一定形态的结构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。由于形态学对图像分割具有优异的特性,使其在未来的图像分割中起主导作用。但该方法的主要缺陷还不能很好地解决耗时问题,将其与一些节约时间的措施结合起来,是图像分割的一种趋势。

(2)基于模糊技术的图像分割方法:基于模糊集合和逻辑的分割方法是以模糊数学为基础,利用隶属决图像中由于信息不全面、不准确、含糊、矛盾等造成的不确定性问题,该方法在医学图像分析中有广泛的应用。

(3)基于人工神经网络技术的图像分割方法:基于神经网络的分割方法的基本思想是通过训练多层感知机来得到线性决策函数,然后用决策函数对象素进行分类来达到分割的目的。近年来,还出现了人工神经网络技术和模糊技术结合应用于图像分割中。

(4)遗传算法在图像分割中的应用:遗传算法是基于进化论自然选择机制的、并行的、统计的、随机化搜索方法。对此,科学家们进行了大量的研究工作,并成功地将它们运用于各种类型的优化问题,在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值的求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将能解决很多困难。遗传算法的出现为解决这类问题提供了新而有效的方法,它不仅可以得到全局最优解,而且大量缩短了计算时间。

(5)基于小波分析和变换的分割技术:该方法是借助新出现的数学工具小波变换来分割图像的一种方法,也是非常新的一种方法。小波变换是一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测。例如,可利用高斯函数的一阶或二阶导数作为小波函数,利用Mallat算法分解小波,然后基于马尔算子进行多尺度边缘检测,这里小波分解的级数可以控制观察距离的“调焦”,而改变高斯函数的标准差可选择所检测边缘的细节程度。小波变换的计算复杂度较低,抗噪声能力强。理论证明,以零点为对称点的对称二进小波适应检测屋顶状边缘,而以零点为反对称点的反对称二进小波适合检测阶跃状边缘。近几年来多进制

(Multi-Band)小波也开始用于边缘检测。另外,利用正交小波基的小波变换也可提取多尺度边缘,并可通过对图像奇异度的计算和估计来区分一些边缘的类型。利用小波变换和其它方法结合起来用分割技术也是现在研究的热点。

虽然近年来研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大的突破性的进展。仍然存在的问题主要有两个:其一是没有一种普遍使用的分割算法;其二是没有一个好的通用的分割评价标准。

1.3主要研究内容

本课题在研究过程中,参考了大量中外文文献,并借鉴了现有的研究成果,将遗传算法应用于图像分割的研究。本文的主要章节安排如下:

首先对遗传算法的研究现状及图像分割技术的研究现状进行了综述。

第二章对遗传算法进行研究,较全面的介绍了遗传算法,包括遗传算法的基本原理、算法模型、算法特点。

第三章讨论了图像分割算法方法及其应用的研究进展,对多种类型的图像分割方法进行归纳,分析各自特性。

第四章将遗传算法在图像分割中的应用研究阐述了基于遗传算法在图像分割领域的应用现状,给出了遗传算法应用于图像分割的步骤。

最后总结了论文,提出今后有待于研究和探讨的问题。

第二章遗传算法

2.1遗传算法的生物学基础

生物在自然界中的生存繁衍,显示出了其对自然环境的自适应能力。受其启发,人们致力于对生物各种生存特性的机理研究和行为模拟,为人工自适应系统的设计和开发提供了广阔的前景。遗传算法(Genetic Algorithms,简称GAs)就是这种生物行为的计算机模拟中令人瞩目的重要成果。基于对生物遗传和进化过程的计算机模拟,遗传算法使得各种人工系统具有优良的自适应能力和优化能力。遗传算法所借鉴的生物学基础就是生物的遗传和进化。

2.1.1遗传与进化的系统观

虽然人们还未完全揭开遗传与进化的奥秘,即没有完全掌握其机制、也不完全清楚染色体编码和译码过程的细节,更不完全了解其控制方式,但遗传与进化的以下几个特点却为人们所共识:

(1)生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状;

(2)染色体是由基因及其有规律的排列所构成的,遗传和进化过程发生在染色体上;

(3)生物的繁殖过程是由其基因的复制过程来完成的;

(4)通过同源染色体之间的交叉或染色体的变异会产生新的物种,使生物呈现新的性

(5)对环境适应性好的基因或染色体经常比适应性差的基因或染色体有更多的机会遗传到下一代。

2.1.2遗传

世间生物从其父代继承特性或性状,这种生命现象就称为遗传(Heredity),由于遗传的作用,使得人们可以种瓜得瓜、种豆得豆,也使得鸟仍然是在天空中飞翔,鱼仍然是在水中邀游。

构成生物的基本结构和功能的单位是细胞(Cell)。细胞中含有的一种微小的丝状化合物称为染色体(Chromosome),生物的所有遗传信息都包含在这个复杂而又微小的染色体中。经过生物学家的研究,控制并决定生物遗传性状的染色体主要是由一种叫做脱氧核糖核酸(deoxy曲onucleic acid 简称DNA)的物质所构成。DNA在染色体中有规则地排列着,它是个大分子的有机聚合物,其基本结构单位是核苷酸,许多核苷酸通过磷酸二酯键相结合形成一个长长的链状结构,两个链状结构再通过碱基间的氢键有规律地扭合在一起,相互卷曲起来形成一种双螺旋

结构。基因就是DNA长链结构中占有一定位置的基本遗传单位。遗传信息是由基因(Gene)组成的,生物的各种性状由其相应的基因所控制。基因是遗传的基本单位。细胞通过分裂具有自我复制的能力,在细胞分裂的过程中,其遗传基因也同时被复制到下一代,从而其性状也被下一代所继承。遗传基因在染色体中所占据的位置称为基因座(Locus);同一基因座可能有的全部基因称等位基因(Allele);某种生物所特有的基因及其构成形式称为该生物的基因型(Genotype);而该生物在环境中呈现出的相应的性状称为该生物的表现型(Phenotype);一个细胞核中所有染色体所携带的遗传信息的全体称为一个基因组(Genome)。

生物的遗传方式:

(1)复制

生物的主要遗传方式是复制。遗传过程中,父代的遗传物质DNA被复制到子代。即细胞在分裂时,遗传物质DNA通过复制承(Reproduction)而转移到新生的细胞中,新细胞就继承了旧细胞的基因。

(2)交叉

有性生殖生物在繁殖下一代时,两个同源染色体之间通过交叉(Crossover)而重组,亦即在两个染色体的某一相同位置处DNA被切断,其前后两串分别交叉组合而形成两个新的染色体。

(3)变异

在进行细胞复制时,虽然概率很小,仅仅有可能产生某些复制差错,从而使DNA发生某种变异(Mutation),产生出新的染色体。这些新的染色体表现出新的性状。

如此这般,遗传基因或染色体在遗传的过程中由于各种各样的原因而发生变化。

2.1.3进化

地球上的生物,都是经过长期进化而形成的。根据达尔文的自然选择学说,地球上的生物具有很强的繁殖能力。在繁殖过程中,大多数生物通过遗传,使物种保持相似的后代;部分生物由于变异,后代具有明显差别,甚至形成新物种。正是由于生物的不断繁殖后代,生物数目大量增加,而自然界中生物赖以生存的资源却是有限的。因此,为了生存,生物就需要竞争。生物在生存竞争中,根据对环境的适应能力,适者生存,不适者消亡。自然界中的生物,就是根据这种优胜劣汰的原则,不断地进行进化。生物的进化是以集团的形式共同进行的,这样

的一个团体称为群体(Population),或称为种群。组成群体的单个生物称为个体(Individual),每一个个体对其生存环境都有不同的适应能力,这种适应能力称为个体的适应度(Fitness)。

遗传算法中,将n维决策向量X=[x1,x2,…xn]。用n个记号xi(i=l,2,?,n)所组成的符号串X来表示,把每一个xi看作一个遗传基因,这样,x就可看做是由n 个遗传基因所组成的一个染色体。这里的等位基因可以是一组整数。也可以是某一范围内的实数值,或者是纯粹的一个记号。最简单的等位基因是由O和1这两个整数组成的,相应的染色体就可表示为一个二进制符号串。这种编码所形成的排列形式X是个体的基因型,与它对应的X值是个体的表现型。对于每一个个体x,要按照一定的规则确定出其适应度,个体的适应度与其对应的个体表现型X的目标函数值相关联,X越接近于目标函数的最优点,其适应度越大;反之,其适应度越小。遗传算法中,决策变量x组成了问题的解空间。对问题最优解的搜索是通过对染色体X的搜索过程来进行的。从而所有的染色体x就组成了问题的搜索空间。生物的进化是以集团为主体的。与此相对应,遗传算法的运算对象是由M个个体所组成的集合,称为群体(或称种群)。与生物一代一代的自然进化过程相类似,遗传算法的运算过程也是一个反复迭代过程:第t代群体记做P(t),经过一代遗传和进化后,得到t+1代群体,记做P(t+1),这个群体不断地经过遗传和进化操作,并且每次都按照优胜劣汰的规则将适应度较高的个体更多地遗传到下一代,这样最终在群体中将会得到一个优良的个体X,它所对应的表现型x将达到或接近于问题的最优解。

2.1.4遗传算法的运算过程

选择(复制):

根据各个个体的适应度,按照一定的规则或方法,从第t代群体P(t)中选择出一些优良的个体遗传到下一代群体P(t+1)中;

交叉:

将群体P(t)内的各个个体随机搭配成对,对每一对个体,以某个概率(称为交叉概率)交

换它们之间的部分染色体;

变异:

对群体P(t)中的每一个个体,以某一概率(称为变异概率)改变某一个或某一些基因座上的基因值为其他基因值。

图2.1 遗传算法的过程

随着问题种类的不同以及问题规模的扩大,要寻求一种能以有限的代价来解决搜索和优化的通用方法,遗传算法正是提供了一个有效的途径,它不同于传统的搜索和优化方法。主要区别在于:

(1)自组织、自适应和自学习性(智能性)。应用遗传许法求解问题时,在编码方案、适应度函数及遗传算子确定后.算法将利用进化过程中获得的信息自行组织搜索。由于基于自然的选择策略为“适者生存,不适应者被淘汰",因而适应度大的个体具有较高的生存概率。通常,适应度大的个体具有更适应环境的基因结构,再通过基因重组和基因突变等遗传操作,就可能产生吏适应环境的后代。进化算法的这种自组织、自适应特征,使它同时具有能根据环境变化来自动发现

环境的特性和规律的能力。自然选择消除了算法设计过程中的一个最大障碍,即需要事先描述问题的全部特点,并要说明针对问题的不同特点算法应采取的措施。因此,利用遗传算法的方法,我们可以解决那些复杂的非结构化问题。

(2)遗传算法的本质并行性。遗传算法按并行方式搜索一个种群数目的点,而不是单点。它的并行性表现在两个方面,一是遗传算法是内在并行的(inherent parallelism),即遗传算法本身非常适合大规模并行。最简单的并行方式是让几百甚至数千台计算机各自进行独立种群的演化计算,运行过程中甚至不进行任何通信(独立的种群之间若有少量的通信一般会带来更好的结果),等到运算结束时才通信比较,选取最佳个体。这种并行处理方式对并行系统结构没有什么限制和要求,遗传算法适合在目前所有的并行机或分布式系统上进行并行处理,而且对并行效率没有太大影响。二是遗传算法的内含并行性(implicit parallelism)。由于遗传算法采用种群的方式组织搜索,因而可同时搜索解空间内的多个区域,并相互交流信息。使用这种搜索方式,虽然每次只执行与种群规模n成比例的计算,但实质上已进行了大约O(n3)次有效搜索,这就使遗传算法能以较少的计算获得较大的收益。

(3)遗传算法不需要求导或其他辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数。

(4)遗传算法强调概率转换规则,而不是确定的转换规则。

(5)遗传算法可以更加直接地应用。

(6)遗传算核对给定问题,可以产生许多的潜在解,最终选择可以由使用者确定 (在某些特殊情况下,如多目标优化问题不止一个解存在,有一组pareto 最优解。这种遗传算法对于确认可替代解集而言是特别合适的)。

2.2基本遗传算法(GA)

2.2.1基本遗传算法描述

遗传算法在自然与社会现象模拟、工程计算等方面得到了广泛的应用。在各个不同的应用领域,为了取得更好的结果,人们对GA进行了大量的改进,为了不至于混淆,我们把Holland提出的算法称为基本遗传算法,简称GA、SGA(Simple Genetic Algorithm)、CGA(Canonical Genetic Algorithm),将其它的“GA类”算法称为Gas (Genetic Algorithms),可以把GA看作是GAs的一种特例。2.2.1.1基本遗传算法的构成要素

(1)染色体编码方法

基本遗传算法使用固定长度的二进制符号串来表示群体中的个体,其等位基因由二值符号集组成。初始群体中各个个体的基因值用均匀分布的随机数来生成。如:x:l0011 l001000101101就可表示一个个体,该个体的染色体长度是18。

(2)个体适应度评价

基本遗传算法按与个体适应度成正比的概率来决定当前群体中每个个体遗传到下一代群体中的机会多少。为正确计算这个概率,这里要求所有个体的适应度必须为正数或零。这样,根据不同种类的问题,必须预先确定好由目标函数值到个体适应度之间的转换规则,特别是要预先确定好当目标函数值为负数时的处理方法。

(3)遗传算子

基本遗传算法使用下述三种遗传算子:

·选择运算:使用比例选择算子;

·交叉运算:使用单点交叉算子;

·变异运算:使用基本位变异算子。

(4)基本遗传算法的运行参数

基本遗传算法有下述4个运行参数需要提前设定:

·M:群体大小,即群体中所含个体的数量,一般取为20~100;

·T:遗传运算的终止进化代数,一般取为100~500;·

·pc:交叉概率,一般取为O.4~O.99;

·pm:变异概率,一般取为O.0001~0.1。

2.2.1。2基本遗传算法的形式化定义

基本遗传算法可定义为一个7元组:

GA=(M, F, s, c, m, pc, pm)

M——群体大小;

F——个体适应度评价函数;

s——选择操作算于;

c——交叉操作算子:

m——变异操作算于;

pc——交叉概率;

pm——变异概率;

基本遗传算法的执行过程如下:

Procedure GA

Begin

initialize P(O);

t=0:

while(t<=T)do

for i=l to M do

Evaluate fitness of P(t);

end for

for i=l to M do

Select operation to P(t);

end for

for i=l to M/2 do

Crossover operation to P(t);

end for

for i=1 to M do

Mutation operation to P(t);

end for

for i=l to M do

P(t+1)= P(t);

end for

t=t+1

end while

end

2.2.2遗传算子的操作方法

遗传算子包括三个基本操作:选择:交叉和变异。这些基本操作又有许多不同的方法。

(1)选择(selection)

选择是用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。首先计算适应度:

1)按比例的适应度计算(proportional fitness assignment);

2)基于排序的适应度计算(rank—based fitness assignment)。

适应度计算之后是实际的选择,按照适应度进行父代个体的选择。可以挑选以下的算法:

1)轮盘赌选择(roulette wheel selection);

2)随机遍历抽样(stochastic universal sampling);

3)局部选择(10cal selection);

4)截断选择(truncation selection);

5)锦标赛选择(tournament selection)。

(2)交叉或基因重组(crossover/recombination)

基因重组是结合来自父代交配种群中的信息产生新的个体。依据个体编码表示方法的不同,可以有实值重组,离散重组,单点交叉,多点交叉等算法。

(3)变异(mutation)

交叉之后子代经历的变异,实际上是子代基因按小概率扰动产生的变化。几句个体编码表示方法的不同,可以有实值变异和二进制变异算法:

2.2.3遗传算法基本流程

遗传算法在整个进化过程中的遗传操作是随机性的,但它所呈现出的特性并不是完全随机搜索,它能有效地利用历史信息来推测下一代期望性能有所提高的寻优点集。这样一代代地不断进化,最后收敛到一个最适应环境的个体上,求得问题的最优解。遗传算法所涉及的五大要素:参数编码、初始群体的设定、适应度函数的设计、遗传操作的设计和控制参数的设定。

在GA应用过程中,往往结合问题的特征和领域知识对SGA进行各种改变,形成了各种各样的具体的GA,使得GA具备求解不同类型优化问题的能力,以及具备强大的全局搜索能力。

简单遗传算法的基本流程和结构如图l所示。从图中可以看出,遗传算法的运行过程为一个典型的迭代过程,其必须完成的工作内容和基本步骤如下:(1)选择编码策略,把参数集合X和域转换为位串结构空间;

(2)定义适应值函数f(x);

(3)确定遗传策略,包括选择群体大小n,选择、交叉、变异方法,以及确定交叉概率pc,变异概率pm等遗传参数;

(4)随机初始化生成群体P;

(5)计算群体中个体位串解码后的适应值f(x);

(6)按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;

(7)判断群体性能是否满足某一指标,或者已完成预定迭代次数,不满足则返回步骤(6),或者修改遗传策略再返回步骤(6),若满足则退出迭代算法结束。遗传算法中判断的优化准则,一般依据问题的不同有不同的确定方式。可以采用以下的准则之一作为判断条件:

(1)种群中个体的最大适应度超过预先设定值;

(2)种群中个体的平均适应度超过预先设定值;

(3)迭代数超过预先设定值。

第三章图像分割技术与算法

3.1图像分割的发展

图像分割(Image Segmentation)是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已有上千种分割算法。图像分割是指将图像划分为与其中含有的真实世界的物体或区域有强相关性的组成部分的过程,它是图像理解的基础,也是由图像处理进到图像分析的关键步骤,而且是计算机视觉领域低层次视觉中的主要问题。因此对图像分割理论与技术的研究具有非常重要的意义。

尽管它一直受到科研人员的重视,但是它的发展很慢,被认为是计算机视觉的一个瓶颈。迄今为止,还没有一种图像分割方法适用于所有的图像,也没有一类图像所有的方法都适用于它。虽然几乎从数字图像处理问世不久就开始了图像分割的研究,吸引了很多研究人员为之付出了巨大的努力,在不同的领域也取得了相当的进展与成就,人们至今还一直在努力发展新的、更有潜力的分割算法,以期实现更通用、更完美的分割结果,并且针对各种具体问题已经提出了许多不同的图像分割算法,对图像分割的效果也有很好的分析结论。但是,由于图像分割问题的特殊性,再加上问题本身具有一定的难度和复杂性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割算法,还有很大的探索空间。对图像分割的深入研究不仅会不断完善对自身问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。图像分割在计算机视觉和图像识别的各种应用系统中占有相当重要的地位,它是研制和开发计算机视觉系统、字符识别和目标自动获取等图像识别和理解系统首先要解决的问题。只要需对图像目标进行提取,测量等都离不开图像分割。图像分割在实际中已得到广泛的应用,例如在工业自动化,在线产品检验,生产程控,文件图像处理,遥感和

生物医学图像分析,保安监视,以及军事,体育,农业工程等方面。

3.2图像分割问题的描述

图像分割可以利用集合的概念来定义,令集合R代表整个图像区域,对R的分割可看作将尺分成Ⅳ个满足以下五个条件的非空子集(子区域)R1,R2?,RN:

(1) R1∪R2∪…∪Ri=R ;

(2)对所有的i和j,i≠j,有Ri∩Rj=Φ;

(3)对i=1,2,?,N,有P(Ri)=TRUE;

(4)对i≠j,有P(Ri∪Rj)=FALSE;

(5)对i=l,2,?,N,Ri是连通的区域。

条件1指出在对一幅图像的分割结果中全部子区域的总和(并集)应能包括图像中所有像素(就是原图像),或者说分割应将图像中的每个像素都分进某个子区域中。条件2指出在分割结果中各个子区域是互不重叠的,或者说在分割结果中一个像素不能同时属于两个区域。条件3指出在分割结果中每个子区域都有独特的特性,或者说属于同一个区域中的像素应该具有某些相同特性。条件4指出在分割结果中,不同的子区域具有不同的特性,没有公共元素,或者说属于不同区域的像素应该具有一些不同的特性i条5要求分割结果中同一个子区域内的像素应当是连通的,即同一个子区域内的任两个像素在该子区域内互相连通,或者说分割得到的区域是一个连通组元。

目前,存在着很多类型的分割算法,这些方法中主要可划分为三种类型:基于阂值的分割方法、基于边缘的分割方法和基于区域的分割方法;另外,随着新理论、新技术的发展,一些新的图像分割方法也随之出现,如基于人工神经网络的分割方法,基于小波分析和变换的分割方法,基于数学形态的分割方法,基于遗传算法的分割方法,基于模糊集理论的分割方法,基于偏微分方法的图像分割等,下文将对遗传算法和最大熵值法的图像分割作详细介绍。

遗传算法是基于进化论自然选择机制的、并行的、统计的、随机化搜索方法,对此,科学家们进行了大量的研究工作,并成功地将它们运用于各种类型的优化问题,在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值的求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将能解决很多困难。遗传算法的出现为解决这类问题提供了新而有效的方法,它不仅可以得到全局最优解,而且大量缩短了计算时间。

第四章:图形用户界面设计及仿真

4.1图形用户界面设计工具

图形用户界面(Graphical User Interface,GUI)既形象生动,又使用户的操作更加方便与灵活,是现代软件采用的一种重要交互方式。图形用户界面由窗口、菜单、按钮等各种图形对象组成,用户通过一定的方法(如鼠标动作或键盘操作)选择、激活这些图形对象,使计算机产生某种动作或变化,如实现计算、绘图等。MATLAB也提供了图形用户界面设计的功能,使用图形对象可以设计出界面友好,操作方便的图形用户界面。

为了方便快捷地进行用户界面的设计,利用GUIDE可使得界面设计过程变得简单和直接,真正实现“所见即所得”。MATLAB的用户界面设计工具有多个,常用的有图形用户界面设计窗口(Layout Editor)、对象属性查看器(Property Inspector)、菜单编辑器(Menu Editor)、位置调整工具(Align Objects)、Tab顺序编辑器(Tab Order Editor)、工具栏编辑器(Toolbar Editor)、对象浏览器(Object Browser)、M文件编辑器(M-File Editor)等。

4.1.1图形用户界面设计窗口

在MATLAB主窗口里,选择“File”菜单中的“New”菜单项,再选择其中的“GUI”命令,弹出GUI设计模块,如图4.1所示

MATLAB为GUI设计准备了4种模块,分别是Blank GUI()默认、GUI with Uicontrols(带控件对象的GUI模块)、GUI with Axes and Menu(带坐标轴与菜单的GUI模块)与Modal Question Dialog(带模式问话对话框的GUI模块)。

当用户选择不同的模块时,在GUI设计模块界面的右边就会显示出与该模块对应的GUI图形。

在GUI设计模块中选中“Blank GUI(Default)”选项,显示出如图4.2所示设计窗口,GUI设计窗口由菜单栏、工具栏、空间工具栏、图形对象设计区等部分组成。GUI设计窗口的菜单栏有File、Edit、View、Layout、Tools和Help6个菜单项,使用其中的命令可以完成图形用户界面的设计操作。在GUI设计窗口的工具栏上,有Align Objects(位置调整器)、Menu Editor(菜单编辑器)、M-File Editor(M文件编辑器)、Property Inspector(属性查看器)、Object Browser(对象浏览器)、Run Figure等16个命令按钮,通过它们可以方便地调用需要使用的GUI设计工具和实现有关操作。在GUI设计窗口左边的是空间工具栏,包括Push Button、Toggle Button、 Radio Button、Checkbox、Edit Text、Static Text、

Slider、Panel、Listbox、Pop-up Menu等控件对象和Axes坐标轴对象。从中选择一个对象,以拖拽的方式在对象设计区生成该对象,其对象创建方式方便,简单。

4.1.2 GUI设计窗口的基本操作

在GUI设计窗口创建图形对象后,通过双击该对象,就会显示该对象的属性编辑器。在选中图形对象的前提下,单击鼠标右键,则弹出一个快捷菜单,可以从中选择某个子菜单进行相应的设计。如图4.3所示是选中已经创建的Edit Text 对象后创建的快捷菜单。在“View CallBacks”子菜单“CallBack”、“ButtonDownFcn”、“CreateFcn”、“DeleteFcn”等命令是在发生鼠标按下事件时要发生的动作。通过单击这些选项,可以编写事件发生时需要执行的程序代码。在对象设计区单击鼠标右键,则会弹出与图形窗口有关的快捷菜单。

基于神经网络的图像分割

基于遗传神经网络的图像分割 摘要 针对图像分割的复杂性,利用遗传算法对BP神经网络的权值和阈值进行优化,设计出误差最小的神经网络,然后再对图像的像素进行分类识别,实现并提高了图像分割性能。仿真实验表明,与传统的图像分割方法相比,取得了比传统方法更好的图像分割效果。 关键词:图像分割;神经网络;遗传算法;遗传优化 A Study of Genetic Neural Network Used in Image Segmentation ABSTRACT Because of the complexity of image segmentation, the optimization of the weights and thresholds of BP neural network are realized by genetic algorithm, and a BP neural network with minimum error is designed. It classify the image pixels, implement and improve the performance of image segmentation. The results of simulation show that the algorithm neuralnetwork can better achieve the image segmentation, compared with the traditional method. Key word :Image segmentation;Neural Network;Genetic algorithm;Genetic optimization 一、遗传算法 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:

基于模板匹配算法的数字识别讲解

中南民族大学 毕业论文(设计) 学院: 计算机科学学院 专业: 软件工程年级:2009 题目: 基于模板匹配算法的数字识别学生姓名: 李成学号:09065093指导教师姓名: 李波职称: 讲师 2013年5月

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:2013年月日

摘要 (1) Abstract (1) 1 绪论 (2) 1.1 研究目的和意义 (2) 1.2 国内外研究现状 (2) 2 本文基本理论介绍 (3) 2.1 位图格式介绍 (3) 2.2 二值化 (3) 2.3 去噪 (3) 2.4 细化 (4) 2.5 提取骨架 (4) 3 图像的预处理 (5) 3.1 位图读取 (5) 3.2 二值化及去噪声 (5) 3.3 提取骨架 (6) 4 基于模板匹配的字符识别 (8) 4.1 样本训练 (8) 4.2 特征提取 (8) 4.3 模板匹配 (9) 4.4 加权特征模板匹配 (10) 4.5 实验流程与结果 (10) 5 结论 (16) 5.1 小结 (16) 5.2 不足 (16) 6 参考文献 (17)

基于模板匹配算法的数字识别 摘要 数字识别已经广泛的应用到日常生活中,典型的数字自动识别系统由图像采集、预处理、二值化、字符定位、字符分割和字符识别等几部分组成, 这些过程存在着紧密的联系。传统的模板匹配算法因为图像在预处理之后可能仍然存在较大的干扰,数字笔画粗细不均匀,有较大的噪声,识别效率不高。本文采的主要思想就是对字符进行分类,之后对字符进行细化,提取细化后字符的特征矢量,与模板的特征矢量进行加权匹配,误差最小的作为识别结果。本文在模板匹配法的基础上, 采用了特征值加权模板匹配法, 并且改进了匹配系数的求法。应用该法取得了满意的效果, 提高了识别率。 关键词:模板匹配;数字识别;特征值加权;字符识别; Template matching algorithm-based digital identification Abstract Digital identification has been widely applied to daily life, the typical digital automatic identification system by the image acquisition, pre-processing, binarization, character positioning, character segmentation and character recognition several parts, there is a close link these processes. Traditional template matching algorithm because the image may still exist after pre-greater interference, digital strokes uneven thickness, the noise, the identification efficiency is not high. Adopted herein main idea is to classify the character after character refinement, the characters feature vector extraction refinement, and the template feature vector is weighted matching, the minimum error as a recognition result. Template matching method based on feature weighted template matching method, and improve the matching coefficient method. The application of the method to obtain satisfactory results, to improve the recognition rate. Key words:Template matching; digital identification; characteristic value weighted; character recognition;

部分图像分割的方法(matlab)

大津法: function y1=OTSU(image,th_set) image=imread('color1.bmp'); gray=rgb2gray(image);%原图像的灰度图 low_high=stretchlim(gray);%增强图像,似乎也不是一定需要gray=imadjust(gray,low_high,[]); % subplot(224);imshow(gray);title('after adjust'); count=imhist(gray); [r,t]=size(gray); n=r*t; l=256; count=count/n;%各级灰度出现的概率 for i=2:l if count(i)~=0 st=i-1; break end end %以上循环语句实现寻找出现概率不为0的最小灰度值 for i=l:-1:1 if count(i)~=0; nd=i-1; break end end %实现找出出现概率不为0的最大灰度值 f=count(st+1:nd+1); p=st;q=nd-st;%p和分别是灰度的起始和结束值 u=0; for i=1:q; u=u+f(i)*(p+i-1); ua(i)=u; end

%计算图像的平均灰度值 for i=1:q; w(i)=sum(f(1:i)); end %计算出选择不同k的时候,A区域的概率 d=(u*w-ua).^2./(w.*(1-w));%求出不同k值时类间方差[y,tp]=max(d);%求出最大方差对应的灰度级 th=tp+p; if thth) y1(i,j)=x1(i,j); else y1(i,j)=0; end end end %上面一段代码实现分割 % figure,imshow(y1); % title('灰度门限分割的图像');

opencv实现分水岭,金字塔,均值漂移算法进行分割

using System; using System.Collections.Generic; using https://www.360docs.net/doc/662097301.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Diagnostics; using System.Runtime.InteropServices; using Emgu.CV; using Emgu.CV.CvEnum; using Emgu.CV.Structure; using Emgu.CV.UI; namespace ImageProcessLearn { public partial class FormImageSegment : Form { //成员变量 private string sourceImageFileName = "wky_tms_2272x1704.jpg";//源图像文件名 private Image imageSource = null; //源图像 private Image imageSourceClone = null; //源图像的克隆 private Image imageMarkers = null; //标记图像 private double xScale = 1d; //原始图像与PictureBox在x轴方向上的缩放 private double yScale = 1d; //原始图像与PictureBox在y轴方向上的缩放 private Point previousMouseLocation = new Point(-1, -1); //上次绘制线条时,鼠标所处的位置private const int LineWidth = 5; //绘制线条的宽度 private int drawCount = 1; //用户绘制的线条数目,用于指定线条的颜色 public FormImageSegment() { InitializeComponent(); } //窗体加载时 private void FormImageSegment_Load(object sender, EventArgs e) { //设置提示 toolTip.SetToolTip(rbWatershed, "可以在源图像上用鼠标绘制大致分割区域线条,该线条用于分水岭算法"); toolTip.SetToolTip(txtPSLevel, "金字塔层数跟图像尺寸有关,该值只能是图像尺寸被2整除的次数,否则将得出错误结果"); toolTip.SetToolTip(txtPSThreshold1, "建立连接的错误阀值");

遗传算法在图像处理中的应用

遗传算法在图像处理中的应用 束道胜 P201002117 1引言 遗传算法( genetic algorithm, GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理是计算机视觉中的一个重要研究领域,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求, GA 在这些图像处理中的优化计算方面找到了用武之地,目前已在图像分割、图像恢复、图像重建、图像检索和图像匹配等方面得到了广泛的应用。 2 遗传算法的原理、基本性质和改进 GA把问题的解表示成染色体(也称串) , GA的求解步骤如下: (1) 编码定义问题的解空间到染色体编码空间的映射,一个候选解(个体)用一串符号表示。 (2) 初始化种群在一定的限制条件下初始化种群,该种群是解空间的一个子空间。 (3) 设计适应度函数将种群中的每个染色体解码成适于计算机适应度函数的 形式,计算其数值。 (4) 选择根据适应度大小选择优秀个体繁殖下一代,适应度越高,则选择概率越大。 (5) 交叉随机选择两个用于繁殖下一代的个体的相同位置,在选中的位置实行交换。 (6) 变异对某个串中的基因按突变概率进行翻转。 (7) 从步骤4开始重复进行,直到满足某一性能指标或规定的遗传代数。 步骤1、2和3是实际应用中的关键,步骤4~步骤6进行3种基本基因操作,选择实现

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

图像分割的遗传算法操作

基于有监督分类的地物识别 姓名:周钟娜学号:SA04006104 一实验原理: 图像识别是计算机视觉研究中一个重要而困难的任务。常用的方法很多,有统计模式识别,集群分类等等。其中统计模式识别是根据统计规律进行推测、判断,得出结论。句法模式识别是按照句法分析方法进行判别。图像识别还可以根据有无监督分为有监督分类和无监督分类。有监督分类是有已知训练样本,要通过学习,得出样本的特征和规律等信息,再根据这些信息对图像进行分类识别。无监督分类则没有已知样本,是基于物以类聚来分类。 图像识别方法还可以分为参数方法和非参数方法。参数方法是假设已知函数形式,只要求出其待定的参数。非参数方法没有函数形式,通常用邻近方法来判断。 模式识别的一般步骤如图1所示: 图1 模式识别的一般步骤 下图2所示为监督分类基本步骤。 图2 监督分类基本步骤

二实验步骤 本实验使用的软件环境为Visual C++,采用有监督分类的方法对遥感图像的地物进行识别。使用的源图像为同一区域的12幅遥感综合图象(n1~n12), 并有该地区各类地貌实况数据_图(GT)。 具体步骤如下: 1.事先在GT图中选取一部分作为样本,以图像格式保存在名字为yb.bmp的 文件中。打开该文件,将样本中各类的点分别存在一数组内。 2.分别读入12幅遥感综合图象。 3.样本学习。将每一类的点计算其对应在12幅遥感综合图象中的灰度平均 值。确定迭代次数为5次,则各类的平均灰度趋于稳定。本实验图像中共有7类地物,每类地物在12幅遥感综合图象各有其灰度平均值。 4.分类。将得到的稳定的平均灰度值作为参考值,对每一个点都进行如下计 算:首先计算其在每幅遥感综合图象中的灰度值与每一类灰度平均值的差值,每类对应有12个差值;再将各类的12个差值归一化,即除以对应的灰度平均值;将各类对应归一化的12个差值分别相加,最后选取差值和最小的那一类作为该点的类别,如果差值过大,则认为不属于以上7类。 5.如果该点在12幅遥感综合图象的灰度值均为0则认为该点是水域(海洋 或湖泊)。 三实验结果 采用的原始样本如图3所示,样本学习得到的各地物在各光谱波段的灰度均值在本文末页,根据学习训练得到全图的地物分布如图4所示。 图3 各区域样本图4 实验结果 实验结果图像中,蓝色为水体,黑色部分不属于要分的7类,红色部分为冻土地和苔原,黄色部分为山林,白色部分为草地,绿色部分为灌木,紫色部分为混合农作物,草绿色部分为无作物区域。从结果可以看出分割的效果还比较理想。

基于MATLAB的图像分割算法研究

摘要 本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。与此同时本文还分析了图像分割技术研究的方向。 关键词:图像处理图像分割 Abstract This article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time. Key words: image processing image segmentation operator

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

遗传算法在图像处理中的应用

. . 课程:新技术讲座 题目:遗传算法在图像处理中的应用姓名: 学号:

目录 摘要 (2) 1.引言 (3) 2.遗传算法的基本原理和基本性质 (3) 3.遗传算法在图像处理中的应用 (5) 3.1在图像增强中的应用 (5) 3.2在图像恢复中的应用 (6) 3.3在图像分割中的应用 (7) 3.4在图像压缩中的应用 (8) 3.5在图像匹配中的应用 (9) 4.遗传算法在图像处理中的问题及发展方向 (10) 参考文献 (10)

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism, random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving complex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in computer science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on Genetic Algorithm in digital image processing.Moreover,it studies the problems of the Genetic Algorithm in the field of image processing and the direction of development in the future,Moreover,the author elaborates the personal opinion in the end. keyword :Genetic Algorithm,Digital image processing

数字图像灰度阈值的图像分割技术matlab

1.课程设计的目的 (1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各 种因素对分割效果的影响 (2)使用Matlab软件进行图像的分割 (3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割 性能 (4)能够掌握分割条件(阈值等)的选择 (5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合 理的解释 2.课程设计的要求 (1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作 (2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)(3)封闭轮廓边界 (4)区域分割算法:阈值分割,区域生长等

3.前言 3.1图像阈值分割技术基本原理 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的

图像分割方法综述matlab论文

图像分割方法综述 摘要:图像分割就是根据图像的某些特征或特征集合的相似性准则对图像进行分类,把图像空间分成若干个某些具有一致性属性的不重叠区域。它是图像分析和理解的基础,是计算机视觉领域中最困难的问题之一。图像分割的质量将直接影响着对图像的后续处理,所以图像分割被视为图像处理的瓶颈,具有十分重要的意义。人们很早就开始了对图像分割方法的研究,并且几十年来,这方面的研究从来没有间断过。到目前为止,已经有大量的关于图像分割的理论、技术、方法被人们相继提出并广泛应用。 关键字:图像分割;阈值;区域和边缘;交互式算法;纹理分割彩色图像分割 1.引言 图像分割是一项基于计算机技术的重要的图像分析和处理技术,从其产生至今,已经广泛的应用于各个领域,为人们的生产和生活中图像处理的水平提高做出了重大贡献。 2.国内外发展的状况 人工生命是一个快速发展的多学科交叉的研究领域,是计算机科学新的发展方向之一。目前,已经有科研人员尝试将人工生命应用到图像分割领域中。虽然目前使用人工生命进行图像分割的研究还比较少,但是这些相关研究成果表明将人工生命引入到图像分割中能获得有意义的成功,显示出了巨大的潜力。 在医学数据可视化方面,也有了许多硕果。如:医学图像如CT图像和MRI图像的三维重建、显示与分析处理;大脑生理形态分析,神经细胞中钙活性的可视化;计算机辅助外科手术模拟与计划等。其中值得一提的:如美国国家超级计算机应用中心利用远程的并列计算机资源,用体绘制技术实现了CT扫描三维数据的动态显示。其内容为显示一个狗心脏跳动周期的动态图像。 3.图像分割概述 人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,因此图像信息是非常重要的一类信息。在一幅图像中,人们往往只对其中的某些目标感兴趣,这些目标通常占据一定的区域,并且在某些特性(如灰度、轮廓、颜色、纹理等)上和周围的图像有差别。这些特性差别可能非常明显,也可能很细微,以致人眼觉察不出来。计算机图像处理技术的发展,使得人们可以通过计算机来获取与处理图像信息。现在,图像处理技术已经成功应用于许多领域,其中,纸币识别、车牌识别、文字识别、指纹识别等已为大家所熟悉。 图像分割是指将一幅图像分解为若干互不交叠的、有意义的、具有相同性质的区域。好的图像分割应具有以下特征:(1)分割出来的各区域对某种性质(例如灰度、纹理)而言具有相似性,区域内部是连通的且没有过多小孔。(2)相邻区域对分割所依据的性质有明显的差异。(3)区域边界是明确的。 大多数图像分割方法只是部分满足上述特征。如果强调分割区域的同性质约束,则

遗传算法在图像处理中应用

课程:新技术讲座 题目:遗传算法在图像处理中的应用XX: 学号:

目录 摘要2 1.引言3 2.遗传算法的基本原理和基本性质4 3.遗传算法在图像处理中的应用6 3.1在图像增强中的应用6 3.2在图像恢复中的应用7 3.3在图像分割中的应用8 3.4在图像压缩中的应用10 3.5在图像匹配中的应用11 4.遗传算法在图像处理中的问题及发展方向12 参考文献12

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism,random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving plex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in puter science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

基于MATLAB的图像分割算法研究毕业设计

基于MA TLAB的图像分割算法研究 基于MATLAB的图像分割算法研究 摘要 本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。与此同时本文还分析了图像分割技术研究的方向。 关键词:图像处理图像分割 Abstract This article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time. Key words: image processing image segmentation operator

相关文档
最新文档