数列的极限

数列的极限
数列的极限

一)复习:数学归纳法

1. 归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般.

2. 不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法.

3. 完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.

4.数学归纳法:对于某些与自然数n 有关的命题常常采用下面的方法来证明它的正确性:先

证明当n 取第一个值n 0时命题成立;然后假设当n=k(k ∈N *

,k ≥n 0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法.

5.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确;

(2)假设当n=k(k ∈N *

,且k ≥n 0)时结论正确,证明当n=k+1时结论也正确. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确. 【注】n 0应为n 能取到的最小正整数 【练习巩固】

练1:若f (n )=1+

1

213121++???++n (n ∈N*),则当n =1时,f (n )为 练2:将全体正整数排成一个三角形数阵:

12

3456

7

8

910

L L L L L L L L

按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 。

练3:已知12,,,n a a a ;12,,,n b b b (n 是正整数),令112n L b b b =+++L ,

223

L b b =+,n b ++L L

,n n L b =. 某人用右图分析得到恒等式:

1122n n a b a b a b +++= 112233a L c L c L +++ k k

c L +n n c L ++ ,

则k c =__________(2)k n ≤≤

练4:已知*

N n ∈,证明:n n 211214131211--+???+-+-n

n n 21

2111+???++++=.

练5:试证:当n ∈N *时,f (n )=32n +

2-8n -9能被64整除.

二)数列的极限概念以及简单的应用

1、定义:对于无穷数列{n a },当n 无限增大时,无穷数列{n a }中的n a 无限趋近于一个常数A,那么A叫做数列{n a }的极限,或者数列{n a }收敛于A,记作lim n n a A →∞

=;如果数列

没有极限,那么我们称数列{n a }是发散的。

【注】①一定要注意,n要想无限增大,必须满足这个数列必须有无穷多项,是无穷数列。(判断数列存在不存在极限)

②n a 无限趋近于一个常数A,说明一个数列的极限只有这一个。(判断数列存在不存在极限)

③ 那么lim n n a A →∞

=可变形为lim ||0

n n a A →∞

-=,用绝对值代表距离,这种定义常用于证

明A 是否是n a 的极限。 2、常见求极限题型

(1)常用极限:(1)∞→n lim

C=C (C 为常数)(2)当1

→n

n q ; (3)01

lim

=∞→n

n (2)

()

()n g n a f n =

()f n 、()g n 为n 的多项式,分子分母同除以n 的最高次幂, 起决定作用的

只是分子分母中n 次数最高的项。 ①如果()g n 、()f

n 中的最高次数相同,例如:34lim

n n n →∞+,2246

lim n n n n →∞-++,那么数列存在极限,

其极限即为其最高次幂的系数比;

②如果()g n 中n 的最高次数高于()f n 中n 的最高次数,例如:lim 4n n →∞,367

lim 4n n n →∞++那么数

列不存在极限;

③如果()f n 中n 的最高次数高于()g n 中n 的最高次数,例如:24lim

67n n n →∞++,

1

lim

4n n →∞,那么数

列存在极限,其极限即为0。 【练习巩固】

练1:求下列数列的极限

(1)n n n ++++∞→ 212

lim (2)3423lim +-∞→n n n (3))

1(312lim 2

++∞→n n n n (4)无穷数列{}n a 前n 项和1

13

n n S a =-

(5)n n n n n 2223lim 22+-∞→ (6)∞→n lim αn 1

=0(α>0) (7)∞

→n lim (n n +2-n ) (8

))lim

x x

→+∞

练2:用极限定义证明:1)2

1

1(lim =-

→n n

二)新课:数列极限的运算法则

1、数列极限的运算性质:设数列{a n }、{b n },∞

→n lim a n =A, ∞

→n lim b n =B

(1)∞

→n lim (a n ±b n )=A ±B ;

(2)∞

→n lim (a n ·b n )=A ·B ;

【注】①∞

→n lim (C ·a n )=C ·A ②推广到有限个数列和、差、积的极限:若∞

→n lim c n =C ,∞

→n lim

(a n +b n+c n )=A+B+C (3)∞

→n lim

n n b a =B

A

(b ≠0) 【注】(1)性质公式使用条件:数列{a n }、{b n }都存在极限

(2)性质1、2的使用前提是参与运算的数列个数是有限的 【典型例题】

例1:“B b A a n n n n ==∞

→∞

→lim ,lim ”是“B A b a n n n +=+∞

→)(lim ”成立的( )

(A )充分非必要条件;(B )必要非充分条件; (C )充要条件; (D )既非充分又非必要条件 例2:计算

(1))3

2(lim ++∞→n n n ; (2)22

)12()2(3lim -+∞→n n n ; (3)

)1

100

13312211(

lim 2++++++++∞

→n n n n n

(4)n n n n n 5

335lim 12

1-++++∞→ (5))1131211(lim 2222++++++++∞→n n n n n n

【练习巩固】

练1:已知2lim ,3lim -==∞

→∞

→n n n n b a ,求n

n

n n b b a 2lim

+∞→

练2:计算

(1)lim n →∞2n -12n +1 (2)121lim 22--+∞→n n n n (3)n

n n n n -+-+∞→21lim (4)lim n →∞12)12(312---+++n n n (5)1

1112323lim --++∞→+-n n n n n

练3:已知{a n }、{b n }都存在极限,且满足

)(lim ,1)2(lim ,1)2(lim n n n n n n n n n b a b a b a ?=-=+∞

→∞

→∞

→求的值

练4:若12lim =∞

→n n na ,且n n a ∞

→lim 存在,则求n n a n )1(lim -∞

三)无穷等比数列各项的和

(一)无穷等比数列各项的和的概念

1、复习:等比数列前n 项和公式:等比数列{a n },前n 项和S n =1,1,1)1(1

1≠???

??=?--q q a n q q a n

2、无穷等比数列各项的和的概念:①等比数列{a n }是无穷等比数列 ②公比

1

则当∞→n 时S n 将无限趋向于一个常数

q

a -11

,即q a S n n -=∞→1lim 1

(二)无穷等比数列各项的和的应用

1、化循环小数为分数 【典型例题】

例1:把下列循环小数化为分数

(1)?

?31.0 (2)?

?323.0

例2:设{a n }是无穷等比数列,且公比的取值范围是1

1a ,求a 1取值范围。

【练习巩固】

练1:计算?

?

?

?

+?+++12.067.078.089.0

练2:计算?+-+?++n n 2

1

223212

数列极限的概念(经典课件)

第二章 数列极限 引言: 在第一章中我们已经指出,数学分析课程研究的对象是定义在实数集上的函数,那么数学分析用什么方法研究实数集上的函数呢?从本质上来说,这个方法就是极限。极限思想和方法贯穿于数学分析课程的始终,几乎所有的概念都离不开极限,是我们数学分析课程的基础。 §1 数列极限的概念 教学内容:数列极限的概念,应用定义证明简单数列的极限,无穷小数列。 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念。深刻理解数列发散、单调、有界和无穷小 数列等有关概念。会应用数列极限的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述。 教学重点:数列极限的概念。 教学难点:数列极限的N ε-定义及其应用。 教学方法:讲授为主。 教学学时:2学时。 一、数列概念: 1.数列的定义: 简单的说,数列就是“一列数”,是有一定的规律,有一定次序性的“一列数”。 若函数f 的定义域为全体正整数集合N +,则称:f N R +→或+∈N n n f ),(为数列。 若记()n f n a =,则数列n n n f ,2,1),(=就可写作为:12,,,, n a a a ,简记为{}n a ,其中n a 称为 该数列的通项。 2.数列的例子: (1)(1)111:1,,,, 234n n ??---???? ; (2)11111:2,1,1,1,435 n ? ?+ +++???? (3){}2 :1,4,9,16,25, n ; (4){}1 1(1) :2,0,2,0,2, n ++- 二、数列极限的概念: 1.引言: 对于这个问题,先看一个例子:古代哲学家庄周所著的《庄子. 天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12,第2天截下2111222?=,第3天截下23111222?=,…,第n 天截下1111 222 n n -?=,… 得到一个数列:? ?? ?? ?n 21: 231111 ,,,,,2222n 不难看出,数列12n ?? ? ??? 的通项12n 随着n 的无限增大而无限地接近于零。 一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限。不具有这种特性的数列就不是收敛的数列,或称为发散数列。

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

数列的极限及运算法则

学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思lim n n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情况如,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 二、基本题目 1.判断下列数列是否有极限,若有,写出极限;若没有,说明理由

求数列极限的方法总结

求数列极限的方法总结 万学教育 海文考研 教学与研究中心 贺财宝 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大.极限的计算是核心考点,考题所占比重最大.熟练掌握求解极限的方法是得高分的关键. 极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数. 熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算.以下我们就极限的内容简单总结下. 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法. 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限. 与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验0()f x '存在的定义是极限000(+)-()lim x f x x f x x ???→ 存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限.

(完整版)《数列的极限》教学设计

《高等数学》——数列极限 教学设计

教学过程设计 A 、【课前准备】1、安排学生提前预习本节内容。 2、分组:4~6人为一个学习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。 B 、【组织教学】 检查学生出勤情况,填写教学日志,教材、用具准备等(2分钟) C 、【复习回顾】 数列的定义(2分钟) D 、【教学内容、方法和过程】接下表 教师活动 学 生 活 动 设计意图 (一) 结合实际,情景导入(时间4分钟) 导入1、战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一 尺之棰,日取其半,万世不竭” 也就是说一根长为一尺的木棒,每天 截去一半,这样的过程可以无限制地进行下去 导入2、三国时的刘徽提出的“割圆求周”的方法.他把圆周分成三等分、 六等分、十二等分、二十四等分、··· 这样继续分割下去,所得多边形的 周长就无限接近于圆的周长. 教师引入:不论是庄周还是刘徽,在他们的思想中都体现了一种数列极 限思想,今天我们来学习数列极限。 【学情预设】:有的学生可能没体会到情景导入的目的,教师最后要总结导入中蕴含的数学思想。 (二)归纳总结,形成概念: (时间9分钟) 1.提出问题:分析当无限增大时,下列数列的项的变化趋势及共同特征. (1)1,21,31,41…n 1 …递减 (2)递增 (3)摆动 学生参 与,思 考,感 受 学生参 与,思 考 问题,在 老师的引 导下对数 列极限知 识有一个 形象化的 了解。 通过讨 论,学生 了解以研 究函数值 的变化趋势的观点研究无穷数列,从而体会发现数列极限的过程 通过介绍我国古代哲学家庄周和刘徽,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。同时为学习新知识做准备,使学生更好的承上启下。 (一)概念探索阶段” 在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以

数列极限求法及其应用-毕业论文

数 列 极 限 的 求 法 及 其 应 用 2012年 9 月 28 日

容提要 数列极限可用N ε-语言和A N -语言进行准确定义,本文主要讲述数列极限的不同求法,例如:极限定义求法、极限运算法则法、夹逼准则求法、单调有界定理求法、函数极限法、定积分定义法、Stoltz 公式法、几何算术平均收敛公式法、级数法、收缩法等等.我们还会发现同一数列极限可用不同方法来求. 最后我们还简要介绍了数列极限在现实生活中的应用,如几何中推算圆面积,求方程的数值解,研究市场经营的稳定性及购房按揭贷款分期偿还问题.通过这些应用使我们对数列极限有一个更系统立体的了解. 关键词 ε-定义;夹逼准则;Stoltz公式;函数极限 N

On the Solutions and the Applications as to the Sequence Limit Name: Yang NO. 07 The guidance of teachers: Dong Titles: Lecturer Abstract The limit of a sequence can be accurately defined by N ε-language and A N - language. This paper mainly describes different solutions to finding sequence limit, for example, definition of sequence limit method, fundamental operations of sequence limit method, squeezing law method, the monotone convergence theorem method, function limits method, definite integrals definition method, Stoltz formula method, geomeric and arithmetic convergence formula method, series method, contraction method, etc. We'll also find that different methods can be used to solve the same limit. Finally, we also briefly introduce the applications of sequence limit in real life, such as, infering the area of a circle in geometry, finding the numerial solution of equations, studying the stability of the market operation and the amortization problems of purchase mortgage loans.

数列的极限

数列的极限 【知识概要】 1. 数列极限的定义 1)数列的极限,在n 无限增大的变化过程中,如果数列{}n a 中的项n a 无限趋向于某个常数A ,那么称A 为数列{}n a 的极限,记作lim n n a A →∞ =. 换句话说,即:对于数列{}n a ,如 果存在一个常数A ,对于任意给定的0ε>,总存在自然数N ,当n N >时,不等式 n a A ε-<恒成立,把A 叫做数列{}n a 的极限,记为lim n n a A →∞ =. 注:① 理解数列极限的关键在于弄清什么是无限增大,什么是无限趋近; ② 有限项的数列不存在极限问题,只有无穷项数列才存在极限问题; ③ 这里的常数A 是唯一的,每个无穷数列不一定都有极限,例如:{(1)}n -; ④ 研究一个数列的极限,关注的是数列后面无限项的问题,改变该数列前面任何有限多个项,都不能改变这个数列的极限; ⑤ “无限趋近于A ”是指数列{}n a 后面的项与A 的“距离”可以无限小到“零”. 例1 判断下列结论的正误 (1)若lim 0n n a →∞ =,则n a 越来越小; (2)若lim n n a A →∞ =,且{}n a 不是常数数列,则n a 无限接近A ,但总不能达到A ; (3)在数列{}n a 中,如果对一切n N ∈总有1n n a a +>,则{}n a 没有极限; (4)若lim n n a A →∞ =,则lim 0n n a A →∞ -=. 解:(1)不正确,例如:1 n a n =- ,1n n a a +> (2)不正确,例如:2)21 n n a n n n ?? =??+?,(为偶数,(为奇数),lim 2n n a →∞ =. (3)不正确,例如:1 1n a n =-,1n n a a +>,但lim 1n n a →∞=. (4)正确

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

数列极限练习

练习一 1. 填空题: (1)无穷数列:,,…,,…的极限是________. (2)数列:的极限是________. (3)若,,则 ________,________; (4)若,,则 ________, (5)的极限是________. 2. 选择题: (1)数列:1,-1,1,-1,…,(-1)·1,…的极限为( ); (A)1 (B)-1 (C)1和-1 (D)不存在 (2)若,,则( ); (A)不存在(B)0 (C)3 (D)1 (3)数列各项的和是( ). (A)1 (B) (C)0 (D)不存在. 3. 求下列极限: (1);(2); (3);(4). 4. 求无穷等比数列0.7,0.07,0.007,…各项的和. 5. 已知,,求下列极限:

(1);(2). 6. 求下列极限: (1);(2); (3);(4); (5);(6). 7. 求下列无穷等比数列各项的和: (1) (2) (3),1,,…;(4)1,-,,-,…(||<1) 8. (1)如图,在圆内接正(≥3)边形中,是边心距,是周长,是面积.求证:. (第8题) (2)当圆的内接正多边形的边数无限增加时,的极限是圆的半径,的极限是圆周长2,的极限是圆面积,求证:圆面积等于. 9. 如图,等边三角形的面积等于1,连结这个三角形各边的中点得到一个小三角形,又连结这个小三角形各边的中心得到一个更小的三角形,如些无限继续下去,求所有这些三角形面积的和. (第9题) 答案:提示和解答: 1. (1);(2)0;(3)3,-2,-6;(4);(5)1. 2. (1)D;(2)B;(3)A. 3. (1)10;(2)-2; (3)

考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结 来源:文都教育 数列极限的概念和判断极限存在的夹逼准则和单调有界准则也是考研数学的重要考点,下面文都考研数学教研室老师为大家总结了数列极限部分的知识和考点题型,希望对同学们有帮助。 一、数列极限 1. 数列极限的定义 设{}n a 为一数列,若存在常数A ,对任意的0>ε,总存在0>N ,当N n >时,有ε<-||A a n ,称A 为数列{}n a 的极限,或称数列 {}n a 收敛于A ,记为A a n n =∞ →lim 。 2. 收敛数列的性质 (1)收敛数列极限存在且唯一. (2)收敛数列必为有界数列. (3)收敛数列的保号性. 3. 极限存在准则 (1)夹逼准则 如果数列{}{}{},,n n n a b c 满足下列条件: 从某项起,即0n N ?∈,当0n n >时有,n n n c b a ≤≤,且A c a n n n n ==∞ →∞ →lim lim , 则A b n n =∞ →lim 。 (2)单调有界准则 单调增加(或单调减少)且有上界(或有下界)的数列{}n x 必有极限。 【注】此准则只给出了极限的存在性,并未给出极限是多少。此时一般是在判定了“极限存在”以后通过数列的递推表示,在等式两边取极限得到。 4. 重要结论

(1)若lim lim n n n n a a a a →∞ →∞ =?=. (2)lim 0lim 0 n n n n a a →∞ →∞ =?=. (3)221lim lim ,lim n n n n n n a a a a a a -→∞ →∞ →∞ =?==. 【考点一】数列极限的概念与性质 例1设 ().lim 0,n n n n n x a y y x a →∞ ≤≤-=且为常数,则数列 {}n x 和{}n y ( ) 。 (A )都收敛于a (B )都收敛,但不一定收敛于a (C )可能收敛,也可能发散 (D )都发散 例2设 (){}{} .lim 0,,n n n n n n n n x a y y x x y →∞ ≤≤-=且和 {}n a 均为数列,则lim n n a →∞ ( )。 (A )存在且等于0 (B )存在但不一定等于0 (C )一定不存在 (D )不一定存在 【考点二】(1)单调有界数列必有极限. (2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞. (3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞. 例1 设()()1103,31,2, n n n x x x x n +<<=-=,证明:数列{}n x 极限存在,并求此极限 例2 设 ()2 0110,20,1,2, n n n x x x x n +-<<=+=,证明:数列{}n x 极限存在,并求此极限 【考点三】夹逼准则 【思路提示】在使用夹逼准则时,需要对通项进行“缩小”和“放大”,要注意:“缩小”应该是尽可能的大,而“放大”应该是尽可能的小,在这种情况下,如果仍然“夹不住”那么就说明夹逼准则不适用,改方法。 【考点四】数列连加和的极限 例1. 求极限 111 lim 1111212n n →∞ ? ?+++ ?++++ +??

数列求和及极限

数列求和及极限 【知识及方法归纳】 1、 数列求和主要有以下几种常见方法:(1)公式法;(2)通项转移法;(3)倒序相加法; (4)裂项相消法;(5)错项消法;(6)猜想、证明(数学归纳法)。 2、 能运用数列极限的四则运算法则求数列的极限;求无穷等比数列各项的和。 【学法指导】 1、 在公式法求和中,除等差、等比的求和公式外,还应掌握自然数方幂数列的求和公式,如:+++…+= 6 ) 12)(1(++n n n ;2、对于形式比较复杂而又不能直接用公式求和的数列,可通 过对数列通项结构特点的分析研究,将2其分解为若干个易求和的新数列的和、差;3、将一个数列倒过来排列,当它与原数列相加时,若有公因式可提,并且剩余的项易求和,这样的数列常用倒序相加,如课本中等差数列的求和公式就是用这种办法得到;4、利用裂项变换改写数列的通项公式,通过消去中间项达到求和的目的;5、若通项是由一个等差数列与一个等比数列相乘而得的数列,其求和的方法类似于推导等比数列前n 项和公式的方法,通过乘于等比数列的公比,在错位相减,转化为等比数列的求和问题;6、通过对、、…进行归纳,分析,寻求规律,猜想出,然后再用数学归纳法给予证明。 【典型例题】 例1 求和:+++…+2)12(-n 【分析】这是一个通项为2)12(-n 的数列求前 n 项和,对通项公式展开可得:=1442++n n , 所以对原数列求和分解为3个新数列求和,可用方法2求和。 【简解】+++…+2)12(-n =(114142+?-?)+(124242+?-?)+…+(1442+-n n )=4(+++… +)–4·(1+2+3+…+n )+n =4。 3) 12)(12(2)1(46)12)(1(+-= ++?-++n n n n n n n n n 。 例2 求和:12510257541+++…+1 523-- n n 【分析】这是一个通项为1 5 23--n n 的数列求前n 项和,观察通项,不难发现它是一个等差数列与一个等比数列的积,可用方法5求和。 【简解】设=12510257541+++…+1523-- n n ,则n S 51=25451++…+n n n n 5235531-+--,所以n S )511(-=1+2 5353++…+ n n n 523531 ---=1++++251511(53 (2) 51 -+n ) –n n 523-=1+5 1 1)51(1531 --?-n –n n 523-=n n 5471247?+-,所以=151********-?+-n n 。

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

数学分析9数列极限存在的条件

§3 数列极限存在的条件 教学目的:使学生掌握判断数列极限存在的常用工具。 教学要求:(1)掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;(2)初步理解Cauchy 准则在极限理论中的主要意义,并逐步会应用Cauchy 准则判断某些数列的敛散性。 教学重点:单调有界定理、Cauchy 收敛准则及其应用。 教学难点:相关定理的应用。 教学方法:讲练结合。 教学程序: 引言 在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。在实际应用中,解决了数列{}n a 极限的存在性问题之后,即使极限值的计算较为困难,但由于当n 充分大时,n a 能充分接近其极限a ,故可用n a 作为a 的近似值。 本节将重点讨论极限的存在性问题。 为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。 从收敛数列的有界性可知:若{}n a 收敛,则{}n a 为有界数列;但反之不一定对,即{}n a 有界不足以保证{}n a 收敛。例如{} (1)n -。但直观看来,若{}n a 有界,又{}n a 随n 的增大(减少)而增大(减少),它就有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛)。 为了说明这一点,先给出具有上述特征的数列一个名称——单调数列。 一、 单调数列 定义 若数列{}n a 的各项满足不等式11()n n n a a a a ++≤≥,则称{}n a 为递增(递减)数列。递增和递减数列统称为单调数列. 例如:1n ??????为递减数列;{} 2n 为递增数列;(1)n n ??-????不是单调数列。 二、 单调有界定理 〔问题〕 (1)单调数列一定收敛吗?;(2)收敛数列一定单调吗? 一个数列{}n a ,如果仅是单调的或有界的,不足以保证其收敛,但若既单调又有界,就可以了。此即下面的极限存在的判断方法。 定理(单调有界定理) 在实数系中,有界且单调数列必有极限。 三、 应用

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

上海高中数学数列的极限

7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无 限地趋近于某个常数 a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注: a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01l i m =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞ →)(lim ; b a b a n n n ?=?∞ →)(lim ;)0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在 ②?? ?? ?-=>=<=∞→11||111||0 lim r r r r r n n 或不存在

问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4 323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741( lim 2222n n n n n n -++++∞→ ; (2) ]) 23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限: )2 ,0(,sin cos sin cos lim πθθθθθ∈+-∞→n n n n n 二、极限中的分数讨论: 例4:已知数列 {}n a 是由正数构成的数列,31=a ,且满足 c a a n n lg lg lg 1+=-,其中n 是大于1的整数,c 是正数。 (1) 求数列 {}n a 的通项公式及前n 项和n S ;

数列极限练习题

3322 11 1321.lim _____212.lim _____3(5)33.lim _____(5)3 4 4.lim ______1234....(21)2 5.lim _____1 (2)6.lim ______124...(2)7.lim(n n n n n n n n n n n n n n n n n n n n n n →∞→∞++→∞→∞ →∞+-→∞→∞+=++=+-+=-+=-+-++--=--=-+-+-数列极限练习题 21213)______211118.lim ....(1)______3927319.lim 0,____,_____110.(1)lim(12),_____ (2)4,__11.lim(2)5,lim n n n n n n n n n n n n n n an b a b n x x a a b -→∞→∞ →∞ →∞ →∞ --=+??-+++-=??????+--=== ?+?? -+=则若存在则实数范围已知无穷等比数列的各项和是则首项的取值范围是已知{}1 (3)1,lim()1 13(1) 12.,1342(1)lim (2)lim n n n n n n n n n n n n n a b a b n n n a S a n n a S →∞ -→∞ →∞ -=-??≤≤?+?=???≥??求的值 若为数列的前项和求

{}{}12123101511113.,9,27,,lim 31 14.,1,,, 32lim 15.,321111lim 4lim 1....(1),323927316.{},{}0n n n n n n n n n n n n n n n n n n a a a a a a n S S S a a n S S S a R a a a a b →∞ →∞ ++--→∞→∞+===-=∈-??=-+-++-??+??数列为等比数列前项和为求数列为等比数列前项和为求已知且 求范围 数列都是公差不为的等差数列12211212 22 1121 ,lim 2, ...lim 17.{},1,(...)18.{}(0),,,lim ,lim ...19.{},,lim n n n n n n n n n n n n n n n n n n n n n n n a b a a a nb a a a k a a k a q q a a S S n S S a a a a q n S a S →∞→∞++→∞→∞++→∞=+++==++>=++=求数列为无穷等比数列求实数的范围 数列是公比为的无穷等比数列前项和为求无穷等比数列公比为前项和为2423521 111,1...20.lim ...121.{},lim()12 n n n n n n q q a a a a a a a a a q q q a -→∞→∞-++++++++-= +求范围求等比数列公比为求取值范围

数列极限和数学归纳法练习(有-答案)

数列极限和数学归纳法 一、知识点整理: 数列极限:数列极限的概念、数列极限的四则运算法则、常见数列的极限公式以及无穷等比数列各项的和 要求:理解数列的概念,掌握数列极限的四则运算法则和常见数列的极限,掌握公比q 当01 q <<时无穷等比数列前n 项和的极限公式及无穷等比数列各项和公式,并用于解决简单的问题。 1、理解数列极限的概念:2 1 ,(1),n n n -等数列的极限 2、极限的四则运算法则:使用的条件以及推广 3、常见数列的极限:1 lim 0,lim 0(1),lim →+∞→+∞→+∞ ==<=n n n n q q C C n 4、无穷等比数列的各项和:1lim (01)1→+∞==<<-n n a S S q q 数学归纳法:数学归纳法原理,会用数学归纳法证明恒等式和整除性问题,会利用“归纳、猜想和 证明”处理数列问题 (1)、证明恒等式和整除问题(充分运用归纳、假设,拆项的技巧,如证明22389n n +--能被64 整除,2438(1)9k k +-+-)22 9(389)64(1)k k k +=--++),证明的目标非常明确; (2)、“归纳-猜想-证明”,即归纳要准确、猜想要合理、证明要规范,这类题目也是高考考察数列的重点内容。 二、填空题 1、 计算:1 12323lim -+∞→+-n n n n n =_____3_____。 2、 有一列正方体,棱长组成以1为首项、2 1 为公比的等比数列,体积分别记为ΛΛ,,, ,n V V V 21 =+++∞ →)(lim 21n n V V V Λ87 . 3、 20lim ______313n n n →∞+=+1 3 4、 数列的通项公式,前项和为,则 =______32 _______. 5、 设{}n a 是公比为 2 1 的等比数列,且4)(lim 12531=+???+++-∞→n n a a a a ,则=1a 3. 6、 在等比数列{}n a 中,已知123432,2a a a a ==,则()12lim n n a a a →∞ +++=L _16±______. 7、 数列{}n a 的通项公式是13(2)--+=+-n n n a ,则)(lim 21n n a a a +++∞ →Λ=___76 ____ . 8、已知数列{}n a 是无穷等比数列,其前n 项和是n S ,若232a a +=,341a a +=, 则lim n n S →∞ 的值为 163 . {}n a *1 , 1 ()1 , 2(1)n n a n N n n n =?? =∈?≥?+? n n S lim n n S →∞

相关文档
最新文档