单容水箱计算机控制特性测试

单容水箱计算机控制特性测试
单容水箱计算机控制特性测试

实验五 单容水箱计算机控制特性测试

一、实验目的

1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。

2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、实验设备

1. THJ-FCS 型高级过程控制系统实验装置。

2. 计算机及相关软件。

3. 万用电表一只。 三、实验原理图

图5-1单容水箱特性测试结构图

由图5-1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,手动阀V 1和V 2的开度都为定值,Q 2为水箱中流出的流量。根据物料平衡关系,在平衡状态时

Q 10-Q 20=0 (5-1)

动态时,则有

Q 1-Q 2=

dt dV

(5-2) 式中V 为水箱的贮水容积,dt

dV

为水贮存量的变化率,它与h 的关系为

Adh dV ,即dt

dV = A dt dh

(5-3)

A 为水箱的底面积。把式(5-3)代入式(5-2)得

Q 1-Q 2=A

dt

dh

(5-4) 基于Q 2=

S

R h

,R S 为阀V 2的液阻,则上式可改写为

Q1-S R h = A dt dh 即

AR S

dt

dh

+h=KQ 1 或写作

)()(1s Q s H =1

+TS K (5-5) 式中T=AR S ,它与水箱的底面积A 和V 2的R S 有关;K=R S 。 式(5-5)就是单容水箱的传递函数。 若令Q 1(S )=

S

R 0

,R 0=常数,则式(5-5)可改为 H (S )=T S T

K 1/+×S R 0=K S R 0-T

S KR 10+

对上式取拉氏反变换得

h(t)=KR 0(1-e -t/T ) (5-6)

当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 当t=T 时,则有

h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞)

式(5-6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图5-2所示。

图5-2 单容水箱的单调上升指数曲线

当由实验求得图5-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数如式(5-5)所示。

图5-3 单容水箱的阶跃响应曲线

如果对象的阶跃响应曲线为图5-3,则在此曲线的拐点D 处作一切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T ,所得的传递函数为:

H(S)=Ts

Ke s

+-1τ

四、实验控制系统流程图

本实验控制系统的流程图如图5-4所示。

图5-4 实验控制系统流程图

上水箱液位检测信号LT1为标准的模拟信号,直接传送到SIEMENS 的模拟量输入模块SM331,SM331和分布式I/O 模块ET200M 直接相连,ET200M 挂接到PROFIBUS-DP 总线上,PROFIBUS-DP 总线上挂接有控制器CPU315-2 DP (CPU315-2 DP 为PROFIBUS-DP 总线上的DP 主站),这样就完成了现场测量信号到CPU 的传送。

本实验的执行机构为带PROFIBUS-PA 通讯接口的阀门定位器,挂接在PROFIBUS-PA 总线上,PROFIBUS-PA 总线通过LINK 和COUPLER 组成的DP 链路与PROFIBUS-DP 总线交换数据,PROFIBUS-DP 总线上挂接有控制器CPU315-2 DP ,这样控制器CPU315-2 DP 发出的控制信号就经由PROFIBUS-DP 总线到达PROFIBUS-PA 总线来控制执行机构阀门定位器。

五、实验内容与步骤

本实验选择上水箱作为被测对象(也可选择中水箱或下水箱)。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9开至适当开度,其余阀门均关闭。

1、接通控制柜和控制台的相关电源,并启动磁力驱动泵,接通空压机电源。控制柜无需

接线。

2、打开作上位控制的PC机,点击“开始”菜单,选择弹出菜单中的“SIMATIC”选项,再点击弹出菜单中的“WINCC”,再选择弹出菜单中的“WINCC CONTROL CENTER 5.0”,进入WINCC资源管理器,打开组态好的上位监控程序,点击管理器工具栏上的“激活(运行)”按钮,进入实验主界面。

3、鼠标左键点击实验项目“一阶单容水箱对象特性测试实验”,系统进入正常的测试状态,呈现的实验界面如图5-6所示。

图5-6 实验界面

在实验界面的左边是实验流程图,右边是参数整定,下面一排六个切换键的功能如下:“实验流程”键:系统进入正常测试状态时,实验界面左边就会显示实验流程图,当点击“历史曲线”键时,实验流程图将会被历史曲线所覆盖,如需转到实验流程图,应点击“实验流程”键就可在实验界面左边再现实验流程图。

“参数整定”键:系统进入正常测试状态时,实验界面右边就会显示参数整定画面,当你点击“实时曲线”或“数据报表”键时,参数整定画面的下半部分将会被实时曲线或数据报表所覆盖,如需转到参数整定,点击“参数整定”键即可在实验界面右边再现参数整定画面。

“实时曲线”键:系统进入正常测试状态时,实时曲线是不显示的,如果需要观察实时曲线,点击“实时曲线”键,即可在实验界面右下方显示实时曲线。

“历史曲线”键:系统进入正常测试状态时,历史曲线是不显示的,如果需要观察历史曲线,点击“历史曲线”键,即可在实验界面左边显示历史曲线。

“数据报表”键:系统进入正常测试状态时,数据报表是不显示的,如果需要数据报表,点击“数据报表”键,即可在实验界面右下方显示历史曲线。

“返回主菜单”键:实验结束,需退出实验时,点击“返回主菜单”键,即关闭当前

实验界面返回实验主界面。

4.在上位机实验界面窗口给定阀门开度值(既可拉动输出值旁边的滚动条,也可直接在输出值显示框中输入阀门开度值),使水箱的液位处于某一平衡位置。

5、点击实验界面下边的“实时曲线”键,在界面的右下方将显示液位的变化曲线。

6.在上位机实验界面窗口改变给定的阀门开度值,使其输出有一个正(或负)阶跃增量的变化(此增量不宜过大,以免水箱中水溢出),使水箱液位上升或下降,经过一定时间的调节后,水箱的液位进入新的平衡状态,其响应曲线如图5-7所示。

图5-7 单容箱特性响应曲线

7.观察上位机监控界面上水箱液位的历史曲线和阶跃响应曲线。

8.实验曲线所得的结果填入下表。

六、实验报告

1.画出单容水箱特性测试实验的结构框图。

2.根据实验测得的数据和曲线,分析并计算出单容水箱液位对象时的参数及传递函数。

3、实验心得体会。

七、思考题

1.在实验进行过程中,为什么不能任意改变出水口阀开度的大小?

2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?

3、如果采用中水箱做实验,其响应曲线与上水箱的曲线有什么异同?并分析差异原因。

一阶单容上水箱对象特性的测试实验报告

《控制工程实验》实验报告 实验题目:一阶单容上水箱对象特性的测试 课程名称:《控制工程实验》 姓名: 学号: 专业: 年级: 院、所: 日期: 2019.04.05

实验一一阶单容上水箱对象特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3. 掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1. 实验装置对象及控制柜 1套 2. 装有Step7、WinCC等软件的计算机 1台 3. CP5621专用网卡及MPI通讯线各1个 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1 所示为单容自衡水箱特性测试结构图及方框图。阀门F 1-1和F 1-6 全开,设上水箱 流入量为Q 1,改变电动调节阀V1的开度可以改变Q 1 的大小,上水箱的流出量为 Q 2,改变出水阀F 1-11 的开度可以改变Q 2 。液位h的变化反映了Q 1 与Q 2 不等而引起 水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量,h为其输出变量, 则该被控过程的数学模型就是h与Q 1 之间的数学表达式。 根据动态物料平衡关系有: (1) 变换为增量形式有: (2) 其中:,,分别为偏离某一平衡状态的增量; A为水箱截面积

图1 单容自衡水箱特性测试结构图(a)及方框图(b) 在平衡时,Q 1=Q 2 ,=0;当Q 1 发生变化时,液位h随之变化,水箱出口处的 静压也随之变化,Q 2 也发生变化。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2 与h成正比关系,与阀F 1-11 的阻力R成反比,即 或 (3) 式中: R为阀F 1-11 的阻力,称为液阻。 将式(2)、式(3)经拉氏变换并消去中间变量 Q2,即可得到单容水箱的数学模型为 (4) 式中 T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。若令 Q1(s)作阶跃扰动,即,=常数,则式(4)可改写为: (5) 对上式取拉氏反变换得 (6) 当 t—>∞时,,因而有

喷管流动特性与管道截面变化规律的关系

喷管流动特性与管道截面变化规律的关系 摘要:针对管内流动规律的一般应用中存在的问题,着重讨论了喷管内工质流动特性与管道截面变化规律的关系,从而更准确更完整地反映了喷管内工质流动规律。 关键词:喷管;流动特性;变化规律 通常在研究喷管内工质流动特性时,只着重于对喷管外形的确定,所以总是以状态参数变化为前提,去探讨工质流动截面(即管道截面)的相应变化。这时由可逆绝热流动的基本方程组,即连续性方程、能量方程和过程方程,整理出如下两个关系式: 很明显,式(1)、(2)反映了工质流速c、压力P、截面A之间的变化关系。从数学角度而言,这几个量是可以互为变化前提的。但对具体的管内流动来说,究竟谁是其中的决定性因素,从而控制着(导致)其它两个量的相应变化,这自然是一个非常重要的问题。但这一问题在很多文献[1~3]中并无明确地阐述。 显然,要揭示清楚喷管内工质的流动规律,必须揭示清楚上式中各个量的决定与被决定关系,不然问题的实质就不会充分地显现出来,所得结论也是不完整的,也就无法满足实际应用的需要。特别是个别文献还错误地强调了这种关系,从而让人产生各种疑惑甚至是误解。这也是许多人在学习了喷管内流动特性之后,对一些管内流动现象还仍然解释不清,甚至出现概念上的错误的根本原因。 1对喷管内流动特性与管道截面变化规律关系的分析 任何一种流动都是在一定的外部条件作用下产生的。随流动条件的不同,管内流动现象才是多种多样的。就喷管流动而言,其流动条件应包括如下两个方面:(一)力学条件:即喷管前后的压差;(二)几何条件:即喷管长度L和喷管流动方向(设为x方向)的截面变化规律A=f(x)。 工质降压升速、升压减速等流动特性,即工质压力P、比容v、流速c包括流动截面A的相互变化关系,应属流体自身属性,这种属性不会自发地表现出来,它是从属于流动的外部条件而存在的。这里的力学条件是工质流动和膨胀的动力,几何条件是工质连续降压增速的保证。在流动产生前和流动过程中,其力学条件和几何条件都是客观的,两者共同确定了相应的流动特性,缺一不可。比如,即使在力学条件完全具备的情况下,若没有几何条件的保证,流体降压升速等属性也不会自发地表现出来。对此还可以用一个简单的例子来加以说明:设流动的 力学条件为初压P 1与背压P b ,在流动产生之前,只有P 1 、P b 是客观存在的,P 1 与P b 之间的其它压力以及其它参数都不是客观的。只有在流动产生之后才在各

实验报告:单容自横水箱液位特性测试实验报告

过程控制综合实验报告实验名称:单容自衡水箱液位特性测试实验 专业: 班级: 姓名: 学号:

实验方案 一、实验名称:单容自衡水箱液位特性测试实验 二、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。四、实验准备 在所给实验设备准备好时,由实验指导书连线,检查线路之后上电,打开启动按钮,对实验对象进行液位特性测试。通过该实验,我们最后要得到的理想结论是,通过手动控制阀门的开度来对水箱进行液位的特性测试,测试结果应该是,在给实验对象加扰动的情况下,贮蓄容器可以依靠自身重新恢复平衡的过程。 在实验之前,将储水箱中贮足水量,实验过程中选择下水箱作为被测对象,将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭,进行观察实验。

(a)结构图(b)方框图

一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 三相电源(~380V/10A) 远程数据采集模拟量输出模块SA-22、SA-23(24V输入) 三相磁力泵(~380V) 压力变送器 电动调节阀(4~20mA、~220V) 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全 开,设下水箱流入量为Q 1,改变电动调节阀V 1 的开度可以改变Q 1 的大小,下水 箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2 。液位h的变化反映了 Q 1与Q 2 不等而引起水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量, h为其输出变量,则该被控过程的数学模型就是h与Q 1 之间的数学表达式。

减压器特性实验指导书

减压器特性实验 1 实验目的 (1)深入了解减压器工作原理及其工作特性。 (2)研究减压器的静态特性,掌握测定减压器静态特性的方法,掌握减压器静态特性的一般规律。 (3)了解减压器的过渡过程压力曲线测定方法,增加对减压器动态特性的感性认识。 2 实验背景 2.1减压器的应用 减压器不仅广泛应用于油、气工业、化工行业、能源工业、基础设施建设等行业,在航空航天领域也发挥着重要作用。在航天行业中,减压器可应用于地面设备(包括地面试验设备)、导弹/运载火箭和卫星航天器。具体而言,减压器可用于: (1)地面试验吹除系统。受系统工作压力的限制,此类减压器出口压力较低,精度要求也不是很高,但质量流量大,要求有较好的启动稳定性。 (2)地面试验或弹箭体供气系统。对于使用气体推进剂的地面发动机试验系统或弹箭体而言,其供气系统中都必须使用到减压器,以保证稳定的压力和流量供应,对减压器的精度!动态特性要求较高。 (3)地面试验或弹箭体液体推进剂输运系统。减压器为推进剂储箱提供恒定的压力,进而为发动机提供需要的推进剂,其出口压力影响到发动机的工作状态,直接关系到整个系统推进剂供应的准确性与安全性,是影响整个发动机推力稳定性的一个重要因素,因此对减压器精度要求较高。 (4)航天器的姿态和轨道控制。在卫星、探空火箭、宇航控制系统、空间站对接操纵系统中以及弹体姿态控制系统中的的冷气推进系统中,减压器出口的气体直接送至喷管进行姿态或轨道控制,具有开启次数频繁,流量变化大的特点,对动态特性、工作范围、控制精度、可靠性和寿命都有较高的要求。 (5)提供基准压力或控制其它调节器。利用减压器出口压力稳定的特点,

单容水箱液位控制报告

湖南工程学院 系统综合训练报告 目录 概述 二硬件介绍说明 (4)

2.1电动调节阀 (4) 2.2扩散硅压力液位变送器 (5) 2.2扩散硅压力液位变送器 (5) 2.4远程数据采集模块ICP-7017、ICP-7024面板 (5) 三.软件介绍说明 (7) 3.1工艺流程 (7) 3.2制作总体回路 (8) 3.2制作总体回路 (9) 四.调试结果与调试说明 (11) 4.1调试说明: (11) 4.2调试结果 (12) 五.实训心得12

第1 章系统总体方案 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。单容水箱是个比较简单的控制系统,因为在该设计中,只要控制一个液位的高度,初步设计采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。本设计选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。 1.1被控参数的选择 根据设计要求可知,水箱的液位要求保持在一恒定值。所以,可以直接选取水箱的液位作为被控参数。 1.2控制参数的选择 影响水箱液位有两个量,一是流入水箱的流量。二是流出水箱的流量。调节这两个流量的大小都可以改变液位高低,这样构成液位控制系统就有两种控制方案。 对两种控制方案进行比较,假如系统在停电或者失去控制作用时,第一种通过控制水箱的流入量的方案将出现的情况是:水箱的水将流干;第二种通过控制水箱的流出量的方案则会形成水长流或者水溢出的情况,因此,选择流入量作为控制参数更加合理。 1.3调节阀的选择 在工程中,当系统的控制作用消失时,如果调节阀没有关闭则会造成水的浪费甚至出现事故,因此,需要关闭调节阀。故选择电动气开式调节阀。

最新第一组:一阶单容上水箱对象特性测试实验

实验一、一阶单容上水箱对象特性测试实验 一.实验目的 (1)建立单容水箱阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用作图的方法分别确定它们的参数(时间常数T 、放大系数K )。 二.实验设备 CS2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: 丹麦泵 电动调节阀 V1 DCS控制系统手动输出 h V2 Q1 Q2 图1-1、 单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过DCS 控制系统监控画面——调整画面,(调节器或其他操作器),手动改变(调节阀的开度)对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 五.实验内容步骤 1)对象的连接和检查:

(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。 (2)打开以水泵、电动调节阀、孔板流量计组成的动力支路(1#)至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。 (3)打开上水箱的出水阀至适当开度。 2)实验步骤 (1)打开控制柜中水泵、电动调节阀、24V电源的电源开关。 (2)打开DCS控制柜的电源,打开电脑,启动DCS上位机监控软件,进入主画面,然后进入实验一画面“实验一、一阶单容上水箱对象特性测试实验”。 注满水箱打开出水阀打开阀门,连通电动调节阀 关闭支路阀打开上水箱打开上水箱打开电源 进水阀出水阀 打开泵的开关打开调节阀开关打开24V电源打开DCS控制柜电源

实验报告:单容液位定值控制系统实验报告Word版

过程控制综合实验报告实验名称:单容液位定值控制系统 专业:电气工程 班级: 姓名: 学号:

实验方案 一、实验名称:单容液位定值控制系统 二、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 三、实验原理 本实验系统结构图和方框图如图1所示。被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制(本次实验我组采用的是PI控制)。

图1 中水箱单容液位定值控制系统 (a)结构图 (b)方框图

一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验控制水箱; 2.实验对象及控制屏、计算机一台、SA-44挂件一个、PC/PPI通讯电缆一根; 3.三相电源输出(~380V/10A)、单相电源输出(~220V/5A)中单相I、单相II端口、三相磁力泵(~380V)、压力变送器LT2、电动调节阀中控制信号(4~20mA 输入,~220V输入)、S7-200PLC 中AO端口、AI2端口。 三、实验原理 本实验系统结构图和方框图如图1所示。被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。

热工学实验

实验十 渐缩(缩放)喷管内压力分布和流量测定 一、实验目的 1.验证并加深对喷管中的气流基本规律的理解,树立临界压力,临界流速,最大流量等喷管临界参数的概念,把理性认识和感性认识结合起来。 2.对喷管中气流的实际复杂过程有概略的了解。 3.通过渐缩喷管气流特性的观测,要明确:在渐缩喷管中压力不可能低于临界压力,流速不可能高于音速,流量仍不能大于最大流量。 4.根据实验条件,计算喷管(最大)流量的理论值,并与实侧值进行对比。 二、实验设备 本设备由2x 型真空泵,PG -Ⅲ型喷管(见图10-1)和计算机(控制与显示设备)构成。由于真空泵的抽吸,空气自吸气口2进入进气管1,流过孔板流量计3,流量的大小可以从U 型管压差计4读出。喷管5用有机玻璃制成,有渐缩、缩放两种型式(见图10-2、10-3),可根据实验要求,松开夹持法兰上的螺丝,向右推开进气管的三轮支架6,更换所需的喷管。喷管各截面上的压力是由插在其中,外径0.2mm 的测压探针连至可移动真空表8测得,探针的顶封死,中段开有测压小孔,摇动手轮——螺杆机构9,即可移动探针,从而改变测压小孔在喷管中的位置,实现对喷管不同截面的压力测量。在喷管的排气管上装有背压真空表10,排气管的下方为真空罐12,起稳定背压的作用,背压的高低用调节阀11调节。罐前的调节阀用作急速调节,罐后的调节阀作缓慢调节,为减少震动,真空罐与真空泵之间用软管13连接。 在实验中必须观测四个变量:(1)测压孔所在截面至喷管进口的距离x ;(2)气流在该截面上压力P ;(3)背压P b ;(4)流量m 。这些变量除可分别用位移指针的位置、移动真空表,背压真空表及 U 形管压差计的读数来显示读出外,还可分别用位移电位器、负压传感器、压差传感器把它们转换为电信号,由计算机显示并绘出实验曲线。位移电位器将在螺杆之旁,它实际上是一只滑杆变阻器。负压传感器和压差传感器分别装在真空表和U 形管压差计附近,其内部结构为一直流电桥,压力和压差改变时将改变电桥中两臂的电阻,从而获得电桥的不平衡电压输出。为了使这些传感器可靠而稳定地工作,都由直流稳压电源供电。 三、实验原理 1.喷管中气流的基本规律 气流在喷管中稳定流动后,喷管任何截面上的质量流量m 均相等,有连续性方程: M= 2 2 21 1 1C A C A AC υυυ = = =定值,[kg/s] (10-1) 式中:A —— 截面积[m 2] C —— 气体流速[m/ s] υ —— 气体比容[m 3/kg] 下标1—— 喷管进口 下标2——喷管出口 气体在喷管中作绝热膨胀,C 1<C 2,工质为理想流体时,喷管的理论流量可按下式计算: ])()[(121 1 22 12112 2 2 2k k k p p p p p k k A C A m +-?-== υυ (10-2) 式中: k —— 绝热指数,对于空气k=1.4 P 1 —— 喷管进口压力(初压) [N/ m 2] P 2 —— 喷管出口压力 [N/ m 2] 喷管中气体状态参数P 、υ和流动参数C 的变化规律和流通截面积A 的变化以及喷管

第一节 单容自衡水箱液位特性测试实验

第一节 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI 通讯电缆一根。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图 。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2 Q ??h (2-3)

双容水箱特性的测试

第二节双容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1.THJ-2型高级过程控制系统实验装置 2.计算机、MCGS工控组态软件、RS232/485转换器1只、串口线1根 3.万用表1只 三、实验原理 图2-1 双容水箱对象特性结构图 由图2-1所示,被控对象由两个水箱相串联连接,由于有两个贮水的容积,故称其为双容对象。被控制量是下水箱的液位,当输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-62所示。由图2-2

可见,上水箱液位的响应曲线为一单调的指数函数(图2-2(a)),而下水箱液位的响应曲线则呈S形状(2-2(b))。显然,多了一个水箱,液位响应就更加滞后。 由S形曲线的拐点P处作一切线,它与时间轴的交点为A,OA则表示了对象响应的滞后时间。至于双容对象两个惯性环节的时间常数可按下述方法来确定。 图2-2 双容液位阶跃响应曲线图2-3 双容液位阶跃响应曲线在图2-3所示的阶跃响应曲线上求取: (1)h2(t)|t=t1=0.4h2(∞)时曲线上的点B和对应的时间t1; (2)h2(t)|t=t1=0.8h2(∞)时曲线上的点C和对应的时间t2;然后,利用下面的近似公式计算式 由上述两式中解出T1和T2,于是求得双容(二阶)对象的传递函数为

四、实验内容与步骤 1.接通总电源和相关仪表的电源。 2.接好实验线路,打开手动阀,并使它们的开度满足下列关系: V1的开度>V2的开度>V3的开度 3.把调节器设置于手动位置,按调节器的增/减,改变其手动输出值(一般为最大值的40~70%,不宜过大,以免水箱中水溢出),使下水箱的液位处于某一平衡位置(一般为水箱的中间位置)。 4.按调节器的增/减按钮,突增/减调节器的手动输出量,使下水箱的液位由原平衡状态开始变化,经过一定的调节时间后,液位h2进入另一个平衡状态。 5.点击实验界面下边的按钮,可切换到实时曲线、历史曲线和数据报表 6.根据实验所得的曲线报表和记录的数据,按上述公式计算K值,再根据图中的实验曲线求得T1、T2值。 60%上升峰值

喷管特性实验

喷管特性实验 一、实验目的 1.验证喷管中气流的基本规律,加深对临界压力、临界流速和最大流量等喷管临界参数的理解。 2.比较熟练地掌握压力、压差及流量的测量方法。 3.重要概念1的理解:应明确在渐缩喷管中,其出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量。 4.重要概念2的理解:应明确在缩放喷管中,其出口处的压力可以低于临界压力,流速可高于音速,而流量不可能大于最大流量。 二、实验装置 整个实验装置包括实验台、真空泵(规格为1401型,排气量3200L/min)。实验台由进气管、孔板流量计、喷管、测压探针、真空表及其移动机构、调节阀、真空罐等几部分组成,如图6-4所示。 图6-4 喷管实验台 1-进气管;2-空气吸气口;3-孔板流量计;4-U形管压差计;5-喷管; 6-三轮支架; 7- 测压探针; 8-可移动真空表; 9-位移螺杆机构及位移传感器; 10-背压真空表; 11-背压用调节阀;12-真空罐;13-软管接头;14-仪表箱;15-差压传感器;16-被压传感器;17-移动压力传感器 进气管为φ57×3.5无缝钢管,内径φ50。空气从吸气口入进气管,流过孔板流量计。孔板孔径φ7,采用角接环室取压。流量的大小可从U形管压差计或微

压传感器读出。喷管用有机玻璃制成,配有渐缩喷管和缩放喷管各一只。根据实验的要求,可松开夹持法兰上的固紧螺丝,向左推开进气管的三轮支架,更换所需的喷管。喷管各截面上的压力是由插入喷管内的测压探针(外径φ1.2)连至“可移动真空表”测得,由于喷管是透明的,测压探针上的测压孔(φ0.5)在喷管内的位置可从喷管外部看出,它们的移动通过螺杆机构移动,标尺或位移传感器实现测量读数。喷管的排气管上还装有“背压真空表”,其压力大小用背压调节阀进行调节。真空罐直径φ400,起稳定压力的作用。罐的底部有排污口,供必要时排除积水和污物之用。为减小震动,真空罐与真空泵之间用软管连接。 在实验中必须测量四个变量,即测压孔在喷管内的不同截面位置X 、气流在该截面上的压力P 、背压P b 、流量m ,这些量可分别用位移指针的位置、可移动真 空表、背压真空表以及U 形管压差计的读数来显示。 实验装置特点: 1.可方便地装上渐缩喷管或缩放喷管,观察气流沿喷管各截面的压力变化。 2.可在各种不同工况下(初压不变,改变背压),观察压力曲线的变化和流量的变化,从中着重观察临界压力和最大流量现象。 3.除供定性观察外,还可作初步的定量实验。压力测量采用精密真空表,精度0.4级。流量测量采用低雷诺数锥形孔板流量计,适用的流量范围宽,可从流量接近为零到喷管的最大流量,精度优于2级。 4.采用真空泵为动力,大气为气源。具有初压初温稳定,操作安全,功耗和噪声较小,试验气流不受压缩机械的污染等优点。喷管用有机玻璃制作,形象直观。 5.采用一台真空泵,可同时带两台实验台对配给的渐缩、缩放喷管做全工况观测。因装卸喷管方便,本实验台还可用作其他各种流道喷管和扩压管的实验。 三、实验原理 1、喷管中气流的基本规律 (1)由能量方程: 221dc dh dq += 及 dp dh dq ν-= 可得 cdc dp =-ν 可见,当气体流经喷管速度增加时,压力必然下降。 (2)由连续性方程: 有 及过程方程 常数=k p ν 常数=?=??????=?=?νννc A c A c A 222111c dc d A dA -=νν

单容水箱液位定值控制实验

实验上水箱液位定值控制系统 一. 实验目的 1.了解闭环控制系统的结构与组成。 2.了解单闭环液位控制系统调节器参数的整定。 3.观察阶跃扰动对系统动态性能的影响。 二. 实验设备 1. THJ-2型高级过程控制系统装置 2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根 三. 实验原理 单回路控制系统的结构/方框图: 它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。系统的给定量是某一定值,要求系统的被控制量稳定至给定量。由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。 本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。系统的给定信号为一定值,它要求被控制量上水箱液位在稳定时等于给定值。由反馈控制的原理可知,应把上水箱的液位经传感检测作为反馈信号。其实验图如下:

过程:储水箱的水被抽出后经过电动调节阀调节进水量送给上水箱,经过LT1的测量变送使上水箱的液位反馈给LC1,LC1控制电动调节阀的开度进而控制入水流量,达到所需要的液位并保持稳定。 四.实验接线 其接线图为:图中LT2改接为LT1 五.实验内容及步骤 1.按图要求,完成系统的接线。 2.接通总电源和相关仪表的电源。 3.打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。 4.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。 5.启动计算机,运行MCGS组态软件软件,并进行下列实验: 设定其智能调节仪的参考参数为:SV=8cm;P=20;I=40;D=0;CF=0;ADDR=1;Sn=33;diH=50;dil=0;上水箱出水阀开度:45%。运行MCGS组态软件软件,并进行实验当实验数据稳定的同时记录的实验曲线如下图:

实验一 单容自恒水箱液位特性测试实验

实验报告 课程过程控制及仪表实验日期2020 年6月15日专业班级自动化1702班姓名学号1706010403 实验名称实验一单容自恒水箱液位特性测试实验 评分批阅教师签字 1.实验目的 1. 熟悉利用计算法建立系统一阶惯性环节加纯延迟环节的数学模型方法。 2. 学会利用MATLAB/Simulink对系统进行建模的方法。 2.实验内容 某单容水箱为被控对象,水箱液位为被控参数,水箱总量程为100mm, 在阶跃扰动20% ?=时,其阶跃响应的实验数据如表1-1所示。 u 表1-1 阶跃响应实验数据 响应曲线起始速度较慢,其阶跃响应曲线呈S状,可近似认为被控对象是具有纯滞后的一阶惯性环节,利用计算法,确定增益K,时间常数T和纯滞后时间τ。 (1)首先根据输出稳态值和阶跃输入的变化幅值可得增益K=(20/100)/20%=1;(2)根据系统近似为具有纯滞后的一阶惯性环节的计算方法,编写MATLAB程序(gkshiyan1_1)。 (3)建议Simulink系统仿真(gkshiyan1),将阶跃信号的初始作用时间和幅值分别设置为0和20。 (4)将实际系统和近似系统的阶跃响应曲线进行比较,编写MATLAB程序(gkshiyan1_2)。 3.实验方法与步骤 (1)首先根据输出稳态值和阶跃输入的变化幅值可得增益K=(20/100)/20%=1;

(2)根据系统近似为具有纯滞后的一阶惯性环节的计算方法,编写MATLAB程 序(gkshiyan1_1)。 程序如下: % 将系统近似一阶惯性环节加纯延迟的计算程序 tr=10; % 输出响应延迟时间,即输出无变化时间 t=[10 20 40 60 80 100 140 180 250 300 400 500 600 700 800]-tr; h=[0 0.2 0.8 2 3.6 5.4 8.8 11.4 14.4 16.1 18.2 19.2 19.6 19.8 20]; h=h/h(length(h)); %把输出转换成无量纲形式 h1=0.39; h2=0.63; t1=interp1(h,t,h1)+tr; %利用一维线性插值计算当响应曲线在39%时的时间t1 t2=interp1(h,t,h2)+tr; %利用一维线性插值计算当响应曲线在63%时的时间t2 T=2*(t2-t1) %被控对象传递函数的惯性时间常数 tao=2*t1-t2 %被控对象传递函数的延迟时间 运行结果如下: >> gkshiyan1_1 T = 159.5294 tao = 48.4706 >> (3)建议Simulink系统仿真(gkshiyan1),将阶跃信号的初始作用时间和幅值 分别设置为0和20。

工程热力学喷管特性实验

实 验 报 告 评分 实验题目:喷管特性实验 实验目的:验证并进一步加深对喷管中气流基本规律的理解,建立临界压力、临界流速 和最大流量等喷管临界参数的概念;比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法;明确渐缩喷管出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量;明确缩放喷管中的压力可以低于临界压力,流速可高于当地音速,而流量不可能大于最大流量;对喷管中气流的实际复杂过程有所了解,能定性解释激波产生的原因。 实验原理: 1.喷管中气流的基本原理 由连续方程、能量方程和状态方程结合声速公式KPV a =得: c dc M A dA ? ?? ? ?-=12 马赫数M=c/a 显然,要使喷管中气流加速,当M<1时,喷管应为渐缩型(dA<0);当气流M>1时, 喷管应为渐扩型(dA>0)。 2.气体流动的临界概念 喷管中气流的特征是dp<0,dc>0,dv>0,三者之间互相制约。当某一截面的速度达到当地音速时,气流处于从亚音速变为超音速的转折点,通常称为临界状态。 临界压力比112-? ?? ??+=K K K ν ,对于空气,ν=0.528 当渐缩喷管出口处气流速度达到音速或缩放喷管喉部达到音速时,通过喷管的气体流量 便达到了最大值,或成临界流量。可由下式确定: 1112 1212m i n m a x V P K K K K A m ?-??? ??++= 式中: min A —最小截面积(对于渐缩喷管即为出口处的流通截面积;对于缩放喷管即为喉部的面 积。本实验台的两种喷管最小截面积均为11.44)。 3.气体在喷管中的流动 (1)渐缩喷管 渐缩喷管因受几何条件(dA<0)的限制。有式(4)可知:气体流速只能等于或低于音速(a C ≤);出口截面的压力只能高于或等于临界压力(c P P ≥2);通过喷管的流量只能等于或小于最大流量(max m m =)。 (2)缩放喷管

单容水箱实验报告

单容液位定值控制系统 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 THPCAT-2型现场总线过程控制对象系统实验装置、AT-1智能仪表挂件一个、RS485/232转换器一个、RS485通讯线一根、计算机一台、万用表一个、软管若干。 三、实验原理 图3-6 中水箱单容液位定值控制系统 (a)结构图 (b)方框图 本实验系统结构图和方框图如图3-6所示。被控量为上小水箱(也可采用上大水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 四、实验内容与步骤 本实验选择上小水箱作为被测对象(也可选择上大水箱或下水箱)。以上小水箱为例叙述实验步骤如下: 1. 实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。 2. 管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上小水箱

进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。 3. 采用智能仪表控制: 1)将“AT-1智能调节仪控制”挂件挂到网孔板上,并将挂件的通讯线插头通过RS485通讯线与RS485/232转换器连接到计算机串口1。 2)强电连线:单相I电源L、N端对应接到AT-1挂件电源输入L、N端。 3)弱电连线:上小水箱液位LT1的1-5V+、-端对应接到智能调节仪I的1-5V电压输入1、2端;智能调节I输出7、5对应接到电动调节阀控控制输入+ 、-端。 4)管路、阀门、接线检查无误后接通总电源开关,打开24V电源开关、电动调节阀开关、单相I开关。 5)检查智能调节仪基本参数设置:ctrl=1, dip=1,Sn=33, DIL=0,DIH=50,OPL=0,OPH=100,run=0。 6)打开上位机MCGS组态环境,打开“THPCAT-2智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验六、单容水箱液位定值控制实验”,进入“实验六”的监控界面。 7)先将仪表设置为手动状态,将磁力泵开关打到“手动”位置,磁力驱动泵上电打水,适当增加或减小仪表输出值,使水箱液位平衡在设定值。 8)按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。 9)待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰: a.突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面两种仅供参考)。 b.将电动调节阀的旁路F1-5(同电磁阀)开至适当开度,将电磁阀开关打至“手动”位置。 c.适当改变上小水箱出水阀F1-10开度(改变负载)。 以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面两种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-7所示。 图3-7 单容水箱液位的阶跃响应曲线 10)分别适量改变调节仪的P及I参数,重复步骤9,用计算机记录不同参数时系统的阶跃响应曲线。

过程控制实验二 一阶单容上水箱对象特性测试实验

成绩: 实验名称:实验二一阶单容上水箱对象特性测试实验 仿真实验:PID参数整定 实验小组:A大组第二小组 组员姓名:__ _____ ____ 组员学号:_________ 指导老师:_____ ___ __ 实验日期:__ 2015/5/9 _____ ______ _ 信息工程学院自动化系

一实验名称 1、一阶单容上水箱对象特性测试实验 2、仿真实验:PID参数整定 二实验目的 1.认识实验系统,了解本实验系统中的各个对象。 2.测试一个水箱的对象特性。 3.学会PID参数整定的基本原则。 4.使用稳定边界法和衰减曲线法去整定参数。 三实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号)。同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法,不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2 ,水箱的液面高度为h, 出水阀V 2 固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T为水箱的时间常数(注意:阀V 2 的开度大小会影响到水箱的时间常数), T=R 2*C,K=R 2 为过程的放大倍数,R 2 为V 2 阀的液阻,C 为水箱的容量系数。令输 入流量Q 1(S)=R O /S,R O 为常量,则输出液位的高度为: 当t=T时,则有: h(T)=KR 0(1-e-1)=0.632KR =0.632h(∞) 即 h(t)=KR (1-e-t/T) 当t—>∞时,h(∞)=KR ,因而有 K=h(∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2 所示。当由实验求得图1-2所示的

工程热力学喷管特性实验

工程热力学喷管特性实验 实验报告评分 实验题目:喷管特性实验 实验目的:验证并进一步加深对喷管中气流基本规律的理解,建立临界压力、临界流速 和最大流量等喷管临界参数的概念;比较熟练地掌握用热工仪表测量压力 (负压)、压差及流量的方法;明确渐缩喷管出口处的压力不可能低于临界 压力,流速不可能高于音速,流量不可能大于最大流量;明确缩放喷管中的压力可以低于临界压力,流速可高于当地音速,而流量不可能大于最大流量; 对喷管中气流的实际复杂过程有所了解,能定性解释激波产生的原因。实验原理: 1(喷管中气流的基本原理 a,KPV由连续方程、能量方程和状态方程结合声速公式得: dAdc2,,,M,1,,,,Ac 马赫数M=c/a 显然,要使喷管中气流加速,当M<1时,喷管应为渐缩型(dA<0);当气流M>1时,喷管应为渐扩型(dA>0)。 2(气体流动的临界概念 喷管中气流的特征是dp<0,dc>0,dv>0,三者之间互相制约。当某一截面的速度达到当地音速时,气流处于从亚音速变为超音速的转折点,通常称为临界状态。 K 2,,K,1,,,,K,1,, 临界压力比,对于空气,,=0.528 当渐缩喷管出口处气流速度达到音速或缩放喷管喉部达到音速时,通过喷管的气体流量便达到了最大值,或成临界流量。可由下式确定:

2P2K2,,K,11,m,A,,,maxminK,1K,1V,,1 式中: A—最小截面积(对于渐缩喷管即为出口处的流通截面积;对于缩放喷管即为喉部的面min 积。本实验台的两种喷管最小截面积均为11.44)。 3(气体在喷管中的流动 (1)渐缩喷管 渐缩喷管因受几何条件(dA<0)的限制。有式(4)可知:气体流速只能等于或低于音 P,P2cC,a速();出口截面的压力只能高于或等于临界压力();通过喷管的流量只能等 ,,m,mmax于或小于最大流量()。 (2)缩放喷管 缩放喷管的喉部dA=0,因而气流可达到音速(c=a);扩大段dA>0,出口截面处的流速可超音速(c>a),其压力可低于临界压力(P2

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。图1-1为单容水箱液位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。图1-2是单容液位控制系统结构图。 图1-1 单容水箱液位控制系统的方块图系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定

值无偏差存在。图1-2 是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI )调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti 选择合理,也能使系统具有良好的动态性能。 图1-2 单容液位控制系统结构图 比例积分微分(PID )调节器是在PI 调节器的基础上再引入微分D 的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P 、PI 、PID 调节系统的阶跃响应分别如图1-3中的曲线①、②、③所示。 图1-3 P 、PI 和PID 调节的阶跃响应曲线 二、单容水箱液位控制系统建模 .

相关文档
最新文档