时钟周期机器周期指令周期

时钟周期机器周期指令周期
时钟周期机器周期指令周期

基本知识学习:时钟周期机器周期总线周期指令周期

学习linux才发现要懂得好多细节性的东西,这些东西原来总认为不知道也可以照样工作,呵呵~

总体来说,学习计算机在windows下就是个错误,起码在入门后应该转移到linux/unix下来,尤其是对于计算机专业的人来说!

基本知识,还需要好好补补~朝花夕拾!

From:

https://www.360docs.net/doc/686050293.html,/sodarfish/blog/item/8c6a4503816a28ea09fa93c3.html

=============================================================================== ====

时钟周期

时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。

在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。我们学习的8051单片机的时钟范围是1.2MHz-12MHz。

在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S 表示)。

机器周期

在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6 个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6 个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。

机器周期:通常用内存中读取一个指令字的最短时间来规定CPU周期,(也就是计算机通过内部或外部总线进行一次信息传输从而完成一个或几个微操作所需要的时间

指令周期

指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。

通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。

总线周期

1.微处理器是在时钟信号CLK控制下按节拍工作的。8086/8088系统的时钟频率为4.77MHz,每个时钟周期约为200ns。

2.由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O接口的访问,是通过总线实现的。通常把CPU通过总线对微处理器外部(存贮器或I/O接口)进行一次访问所需时间称为一个总线周期。一个总线周期一般包含4个时钟周期,这4个时钟周期分别称4个状态即T1状态、T2状态、T3状态和T4

状态。

------------------------------------------------------------------------

总结一下,它们之间的关系就是,指令周期由若干个机器周期组成,总线周期一般由4个时钟周期组成。机器周期和总线周期……机器周期指的是完成一个基本操作的时间,这个基本操作有时可能包含总线读写,因而包含总线周期,但是有时可能与总线读写无关,所以,并无明确的相互包含的关系

指令周期:是CPU的关键指标,指取出并执行一条指令的时间。一般以机器周期为单位,分单指令执行周期、双指令执行周期等。现在的处理器的大部分指令(ARM、DSP)均采用单指令执行周期。

机器周期:完成一个基本操作的时间单元,如取指周期、取数周期。

时钟周期:CPU的晶振的工作频率的倒数。(fantaxy:晶振一次需要的时间)

例子:22.1184MHZ的晶振,它的晶振周期、时钟周期和机器周期分别是多少?

以51为例,晶振22.1184M,时钟周期(晶振周期)就是(1/22.1184)μs,一个机器周期包含12个时钟周期,一个机器周期就是0.5425μs。一个机器周期一般是一条指令花费的时间,也有些是2个机器周期的指令,DJNZ,是双周期指令.

fantaxy:

周期:就是时间,完成一次任务的时间

时钟周期:这个名字的英文clock cycle; clock period;时钟是用来计时的,是一个基本单位;在计算机中,cpu的晶振时间就是一个最最基本的单位,因此时钟周期很基本,别的周期都用他来参考!

1、时钟周期=振荡周期,名称不同而已,都是等于单片机晶振频率的倒数,如常见的外接12M晶振,那它的时钟周期=1/12M。

2、机器周期,8051系列单片机的机器周期=12*时钟周期,之所以这样分是因为单个时钟周期根本干不了一件完整的事情(如取指令、写寄存器、读寄存器等),而12个时钟周期就能基本完成一项基本操作了。

3、指令周期。一个机器周期能完成一项基本操作,但一条指令常常是需要多项基本操作结合才能完成,完成一条指令所需的时间就是指令周期,当然不同的指令,其指令周期就不一样的了。

时钟周期.机器周期.指令周期的含义

时钟周期.机器周期.指令周期的含义 时钟周期: 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是 单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最 基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ 的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250ns。由于 时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统 一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速 度就越快。 8051单片机把一个时钟周期定义为一个节 第 1 页 拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期: 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段 完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周 期(状态周期)组成。 8051系列单片机的一个机器周期同6个 S周期(状态周期)组成。前面已说过一个 时钟周期定义为一个节拍(用P表示),二个节拍定义 第 2 页 为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就 是说一个机器周期=6个状态周期=12个时钟周期。 例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒; 指令周期: 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周 期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译 码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则 第 3 页

时钟周期 指令周期 机器周期 状态周期

时钟周期: 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。 8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期: 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。 8051系列单片机的一个机器周期同6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S 表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。 例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒; 指令周期:

执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 总线周期: 由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O接口的访问,是通过总线实现的。通常把CPU通过总线对微处理器外部(存贮器或I/O接口)进行一次访问所需时间称为一个总线周期。 总结一下,时钟周期是最小单位,机器周期需要1个或多个时钟周期,指令周期需要1个或多个机器周期;机器周期指的是完成一个基本操作的时间,这个基本操作有时可能包含总线读写,因而包含总线周期,但是有时可能与总线读写无关,所以,并无明确的相互包含的关系。 指令周期:是CPU的关键指标,指取出并执行一条指令的时间。一般以机器周期为单位,分单指令执行周期、双指令执行周期等。现在的处理器的大部分指令(ARM、DSP)均采用单指令执行周期。 机器周期:完成一个基本操作的时间单元,如取指周期、取数周期。 时钟周期:CPU的晶振的工作频率的倒数。

51单片机指令周期,机器周期,时钟周期详解

51单片机指令周期,机器周期,时钟周期详解 51单片机有指令周期,机器周期,时钟周期的说法,看似相近,但是 又都不太一样,很容易混淆。还是详细分析一下。 时钟周期:单片机外接的晶振的振荡周期就是时钟周期,时钟周期=振 荡周期。比方说,80C51单片机外接了一个11.0592M的晶体振荡器,那我们 就说这个单片机系统的时钟周期是1/11.0592M,这里要注意11.0592M是频率,周期是频率的倒数。 机器周期:单片机执行指令所消耗的最小时间单位。我们都知道51单 片机采用的CISC(复杂指令指令集),所以有很多条指令,并且各条指令执行的 时间也可能不一样(有一样的哦),但是它们执行的时间必须是机器周期的整数倍,这就是机器周期的意义所在。8051系列单片机又在这个基础上进行细分,将一个机器周期划分为6个状态周期,也就是S1-S6,每个状态周期又由两个 节拍组成,P1和P2,而P1=P2=时钟周期。这也就是经常说的8051系列单片机的的时钟频率是晶振频率的12分频,或者是1/12,就是这个意思。现在(截 至2012)新的单片机已经能做到不分频了,就是机器周期=时钟周期。 指令周期:指令周期执行某一条指令所消耗的时间,它等于机器周期的 整数倍。传统的80C51单片机的指令周期大多数是单周期指令,也就是指令周期=机器周期,少部分是双周期指令。现在(截至2012)新的单片机已经能做到 不分频了,并且尽量单指令周期,就是指令周期=机器周期=时钟周期。 来看这张8051单片机外部数据,这里ALE和$PSEN$的变化频率已经小于一个机器周期,如果使用C语言模拟这个信号是没有办法做到的一一对应的,所以只能尽量和上面的时序相同,周期延长。

单片机时钟周期、机器周期、指令周期与总线周期

单片机时钟周期、机器周期、指令周期与总线周期 时钟周期: 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。具体计算就是1/fosc。也就是说如果晶振为1MHz,那么时钟周期就为1us;6MHz的话,就是1/6us。 8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期: 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状

态周期)组成。 8051系列单片机的一个机器周期同6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。具体计算为:时钟周期Xcycles。如果单片机是12周期的话,那么机器周期就是T×12。假设晶振频率为12M,单片机为12周期的话,那么机器周期就是1us。 例如外接24M晶振的单片机,他的一个机器周期=12/24M秒;52系列单片机一个机器周期等于12个时钟周期。设晶振频率为12MHz时,52单片机是12T的单片机,即频率要12分频。12M经过分频变为1M,由T=1/f,即一个机器周期变为1us 指令周期: 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。通常,包含一个机器周期的指令成为单周期指令,比如CLR,MOV等等。包含两个机器周期的指令称为双周期指令。另外还有4周期指令,比如乘法和除法指令。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 总线周期: 由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O接

8051 时钟周期,机器周期,指令周期

时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ 的时钟频率,则时钟周期为250us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。我们学习的8051单片机的时钟范围是1.2MHz-12MHz。 在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储

器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。 指令周期 指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 以51为例,晶振22.1184M,时钟周期(晶振周期)就是(1/22.1184)μs,一个机器周期包含12个时钟周期,一个机器周期就是0.5425μs。一个机器周期一般是一条指令花费的时间,也有些是2个机器周期的指令,DJNZ,就是双周期指令,所以指令周期为0.5425μs 但不是所有机器周期都等于12个时钟周期的。

弱智的PIC教程之11 机器周期,指令周期

【弱智的PIC教程之11】 机器周期、指令周期 【问题引入】 上一讲中,我们单步执行时,可以看到LED一个一个被点亮。但如果连续运行,会发现LED乱闪烁 。为什么呢,我们来仔细研究一下。 下面这两张图,是RB0和RB1相继被点亮的截图。 可以看出,从RB0端口LED亮→灭→RB1亮,总共才花费2us的时间。如果将程序烧录到单片机硬件,用实际的电路进行运行,由于视觉暂留的原因,我们能看到的是8个LED全部亮,而不是一个一个依次点亮(用Protues仿真的效果与实际有差异)。 为此我们需要在每个LED点亮后,进行一段延时,让其保持一定的时间,再熄灭,点亮下一个LED。 是的,我们需要延时,增加一个延时子程序。这就是本讲要解决的问题。 【机器频率、机器周期】 每个单片机运行时,读需要一个元器件,就是晶振。如果你手头上有实物之类的电路板,可以找到上面的晶振,如下图的模样: 晶振和单片机内部的相关电路,构成一个振荡器,产生固定的振荡频率,单片机的运行全部依靠这种振荡,实现统一步

伐。可以把这种振荡比喻成为单片机的心脏。如果它出现故障停止运行了,单片机也就停止运行了。 有的电路板上找不到晶振,是因为已经固化的单片机内部了,或者使用的是陶振、阻容振荡。但这不影响我们分析。 仔细看晶振上的数值,比如我手头上的一个晶振,上面是“4MHz”,这就是单片机的心跳速度,我们叫做“机器频率”,其倒数就是“机器周期” 关于机器周期、指令周期我们在第14讲还会有进一步阐述。 回到前面这个例子来,我们是用Proteus仿真,在MPLAB IDE中,单击下面这个图标,打开PROTEUS程序: 进入到PROTEUS程序中,双击PIC16F628A,出现Edit Component对话框,如下: 这是我们在第3讲中设置的机器频率:4MHz,当然我们也可以设置成其他频率,如8MHz、20MHz等。就好比我们实际使用中,将4MHz的晶振换成8MHZ的一样。 关于晶振的使用条件,请参考该型号单片机的《数据手册》。 【指令周期】 指令周期是:单片机运行一“步”所花费的时间,等于4个机器周期。在上面的例子中,机器频率是4MHz,机器周期是1/4us,即0.25us,指令周期=4*0.25=1us。 在本讲开始的【问题引入】中,在第7us点亮RB0LED,运行两条指令后,点亮RB1LED,两条指令花去2us,所以第二张图上,显示在第7+2=9us时,RB1LED点亮。 PIC16系列的单片机大约有33条指令,绝大部分指令运行时,只需要一个指令周期。少数几条指令运行需要2个指令周期。如:GOTO、CALL等等,后面会有详细的介绍。

时钟周期机器周期指令周期

基本知识学习:时钟周期机器周期总线周期指令周期 学习linux才发现要懂得好多细节性的东西,这些东西原来总认为不知道也可以照样工作,呵呵~ 总体来说,学习计算机在windows下就是个错误,起码在入门后应该转移到linux/unix下来,尤其是对于计算机专业的人来说! 基本知识,还需要好好补补~朝花夕拾! From: https://www.360docs.net/doc/686050293.html,/sodarfish/blog/item/8c6a4503816a28ea09fa93c3.html =============================================================================== ==== 时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。我们学习的8051单片机的时钟范围是1.2MHz-12MHz。 在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S 表示)。 机器周期 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6 个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6 个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。 机器周期:通常用内存中读取一个指令字的最短时间来规定CPU周期,(也就是计算机通过内部或外部总线进行一次信息传输从而完成一个或几个微操作所需要的时间 指令周期 指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。

单片机指令周期怎么计算

单片机指令周期怎么计算 指令周期:指令周期执行某一条指令所消耗的时间,它等于机器周期的整数倍。传统的80C51单片机的指令周期大多数是单周期指令,也就是指令周期=机器周期,少部分是双周期指令。现在(截至2012)新的单片机已经能做到不分频了,并且尽量单指令周期,就是指令周期=机器周期=时钟周期。 来看这张8051单片机外部数据,这里ALE和$PSEN$的变化频率已经小于一个机器周期,如果使用C语言模拟这个信号是没有办法做到的一一对应的,所以只能尽量和上面的时序相同,周期延长。 指令周期是不确定的,因为她和该条指令所包含的机器周期有关。一个指令周期=1个(或2个或3个或4个)机器周期,像乘法或除法就含有4个机器周期,单指令就只含有1个机器周期。 对于大多说的51单片机来说,1个机器周期=12个时钟周期(或振荡周期) 也有部分单片机时钟周期和振荡周期不相等,例如,1个时钟周期=2个振荡周期。 该定义指的是执行一条指令所需要的时间,通常一个指令周期会由若干个机器周期组成。指令不同,所需的机器周期数也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 PIC单片机指令周期计算PIC单片机的每四个时钟周期为一个内部指令周期 例如:8MHz的晶振,则内部指令周期为1/(8/4)= 0.5 uS 实例一:35us,8MHz的晶振,8位定时器,分频比1/2 ,初值E4 实例二:156.25us ,32768Hz的晶振,8位定时器,分频比1/32 ,初值FC 计算方法一:35 = =(256-初值)*分频*4/晶振+ 14/分频=(256-初值)+14/2

时钟周期、机器周期、及指令周期

时钟周期、机器周期、及指令周期 本文介绍什么是时钟周期、机器周期、及指令周期等。 单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。―个机器周期包括12个时钟周期。如果一个单片机选择了12MHZ晶振,它的时钟周期是1/12us,也是一个晶振周期。它的一个机器周期是12×(1/12)us,也就是1us。 机器周期不仅对于指令执行有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。例如一个单片机选择了12MHZ晶振,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。 时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250ns。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。我们学习的8051单片机的时钟范围是1.2MHz-12MHz。 在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。 指令周期 指令周期所需的时间执行指令,通常一个机器周期数组成。指令是不同的机器周期所需的数量也不同。对于一些简单的单字节指令,指令的读取周期,指示出指令寄存器解码后立即执行,不再需要其他机器周期。对于一些如指挥权的更复杂的指令,乘法指令,你需要两个或更多的机器周期。 通常的机器周期的指令称为单周期指令,其中包括两个机器周期的指令称为双周期指令

MSP430的时钟周期(振荡周期)、机器周期、指令周期之间的关系

MSP430的时钟周期(振荡周期)、机器周期、指令周期之间的关系 通用知识 时钟周期也称为振荡周期:定义为时钟脉冲的倒数(时钟周期就是直接供内部CPU使用的晶振的倒数,例如12M的晶振,它的时钟周期就是1/12us),是计算机中的最基本的、最小的时间单位。在一个时钟周期内,CPU仅完成一个最基本的动作。时钟脉冲是计算机的基本工作脉冲,控制着计算机的工作节奏。时钟频率越高,工作速度就越快。 机器周期:在计算机中,常把一条指令的执行过程划分为若干个阶段,每一个阶段完成一项工作。每一项工作称为一个基本操作,完成一个基本操作所需要的时间称为机器周期。8051系列单片机的一个机器周期由6个S周期(状态周期)组成。一个S周期=2个时钟周期,所以8051单片机的一个机器周期=6个状态周期=12个时钟周期。 指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 专用知识: 在430中,一个时钟周期= MCLK晶振的倒数。如果MCLK是8M,则一个时钟周期为1/8us; 一个机器周期=一个时钟周期,即430每个动作都能完成一个基本操作; 一个指令周期= 1~6个机器周期,具体根据具体指令而定。 另:指令长度,只是一个存储单位与时间没有必然关系。

MSP430根据型号的不同最多可以选择使用3个振荡器。我们可以根据需要选择合适的振荡频率,并可以在不需要时随时关闭振荡器,以节省功耗。这3个振荡器分别为: (1)DCO 数控RC振荡器。它在芯片内部,不用时可以关闭。DCO的振荡频率会受周围环境温度和MSP430工作电压的影响,且同一型号的芯片所产生的频率也不相同。但DCO的调节功能可以改善它的性能,他的调节分为以下3步:a:选择BCSCTL1.RSELx确定时钟的标称频率;b:选择DCOCTL.DCOx在标称频率基础上分段粗调;c:选择DCOCTL.MODx的值进行细调。 (2)LFXT1 接低频振荡器。典型为接32768HZ的时钟振荡器,此时振荡器不需要接负载电容。也可以接450KHZ~8MHZ的标准晶体振荡器,此时需要接负载电容。 (3)XT2 接450KHZ~8MHZ的标准晶体振荡器。此时需要接负载电容,不用时可以关闭。 低频振荡器主要用来降低能量消耗,如使用电池供电的系统,高频振荡器用来对事件做出快速反应或者供CPU进行大量运算。当然高端430还有锁频环(FLL)及FLL+等模块,但是初步不用考虑那么多。 MSP430的3种时钟信号:MCLK系统主时钟;SMCLK系统子时钟;ACLK辅助时钟。 (1)MCLK系统主时钟。除了CPU运算使用此时钟以外,外围模块也可以使用。MCLK可以选择任何一个振荡器所产生的时钟信号并进行1、2、4、8分频作为其信号源。 (2)SMCLK系统子时钟。供外围模块使用。并在使用前可以通过各模块的寄存器实现分频。SMCLK可以选择任何一个振荡器所产生的时钟信号并进行1、2、4、8分频作为其信号源。

(2020年7月整理)数据通路及指令周期流程图.doc

数据通路、指令周期流程图 某计算机有如下部件,ALU,移位器,主存M,主存数据寄存器MDR,主存地址寄存器MAR,指令寄存器IR,通用寄存器R0 R3,暂存器C和D。 (1)请将各逻辑部件组成一个数据通路,并标明数据流动方向。 (2)画出“ADD R1,R2”指令的指令周期流程图。 (3)请述说RISC指令系统和CISC指令系统的区别及应用 解: (1) 设该系统为单总线结构,暂存器C和D用于ALU的输入端数据暂存,移位器作为ALU输出端的缓冲器,可对ALU的运算结果进行附加操作,则数据通路可设计如下: (2) 根据上面的数据通路,可画出“ADD R1,R2”的指令周期流程图如下:

ADD R1, R2 (3)请述说RISC指令系统和CISC指令系统的区别及应用 RISC 和CISC 是目前设计制造微处理器的两种典型技术,RISC虽然它们都是试图在体系结构、操作运行、软件硬件、编译时间和运行时间等诸多因素中做出某种平衡,以求达到高效的目的,但采用的方法不同,因此,在很多方面差异很大,它们主要有: (1)指令系统:RISC 设计者把主要精力放在那些经常使用的指令上,尽量使它们具有简单高效的特色。对不常用的功能,常通过组合指令来完成。因此,在RISC 机器上实现特殊功能时,效率可能较低。但可以利用流水技术和超标量技术加以改进和弥补。而CISC 计算机的指令系统比较丰富,有专用指令来完成特定的功能。因此,处理特殊任务效率较高。 (2)存储器操作:RISC 对存储器操作有限制,使控制简单化;而

CISC 机器的存储器操作指令多,操作直接。 (3)程序:RISC 汇编语言程序一般需要较大的内存空间,实现特殊功能时程序复杂,不易设计;而CISC 汇编语言程序编程相对简单,科学计算及复杂操作的程序社设计相对容易,效率较高。 (4)中断:RISC 机器在一条指令执行的适当地方可以响应中断;而CISC 机器是在一条指令执行结束后响应中断。 (5) CPU:RISC CPU 包含有较少的单元电路,因而面积小、功耗低;而CISC CPU 包含有丰富的电路单元,因而功能强、面积大、功耗大。(6)设计周期:RISC 微处理器结构简单,布局紧凑,设计周期短,且易于采用最新技术;CISC 微处理器结构复杂,设计周期长。(7)用户使用:RISC 微处理器结构简单,指令规整,性能容易把握,易学易用;CISC微处理器结构复杂,功能强大,实现特殊功能容易。 (8)应用范围:由于RISC 指令系统的确定与特定的应用领域有关,故RISC 机器更适合于专用机;而CISC 机器则更适合于通用机。

机器周期

机器周期 指令周期(Instruction Cycle):取出并执行一条指令的时间。 总线周期(BUS Cycle):也就是一个访问存储器或I/O端口操作所用的时间。 时钟周期(Clock Cycle):又称节拍周期,是处理操作的最基本单位。(晶振频率的倒数,也称T状态) 指令周期、总线周期和时钟周期之间的关系:一个指令周期由若干个总线周期组成,而一个总线周期时间又包含有若干个时钟周期。 时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250ns。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。我们学习的 8051单片机的时钟范围是1.2MHz-12MHz。 在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6 个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6 个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。 机器周期:通常用内存中读取一个指令字的最短时间来规定CPU周 期,(也就是计算机通过内部或外部总线进行一次信息传输从而完成一个或 几个微操作所需要的时间)),它一般由12个时钟周期组成。而时钟周期=1 秒/晶振频率,因此单片机的机器周期=12秒/晶振频率 . 指令周期 指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。

MSP430单片机的时钟周期和机器周期与指令周期之间的关系解析

MSP430单片机的时钟周期和机器周期与指令周期之间的关系解析时钟简介: 时钟周期也称为振荡周期:定义为时钟脉冲的倒数(时钟周期就是直接供内部CPU使用的晶振的倒数,例如12M的晶振,它的时钟周期就是1/12us),是计算机中的最基本的、最小的时间单位。在一个时钟周期内,CPU仅完成一个最基本的动作。时钟脉冲是计算机的基本工作脉冲,控制着计算机的工作节奏。时钟频率越高,工作速度就越快。机器周期:在计算机中,常把一条指令的执行过程划分为若干个阶段,每一个阶段完成一项工作。每一项工作称为一个基本操作,完成一个基本操作所需要的时间称为机器周期。8051系列单片机的一个机器周期由6个S周期(状态周期)组成。一个S周期=2个时钟周期,所以8051单片机的一个机器周期=6个状态周期=12个时钟周期。指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 MSP430 单片机上电后,如果不对时钟系统进行设置,默认800 kHz的DCOCLK为MCLK和SMCLK 的时钟源,LFXTl接32768 Hz晶体,工作在低频模式(XTS=O)作为ACLK的时钟源。CPU的指令周期由MCLK决定,所以默认的指令周期就是1/800 kHz=“1”.25μs。要得到lμs的指令周期需要调整DCO频率,即MCLK=1 MHz,只需进行如下设置:BCSCTLl=XT20FF+RSEL2;//关闭XT2振荡器,设定DCO频率为1 MHz。 DCOCTL=DCO2//使得单指令周期为lμs MSP430的时钟周期(振荡周期)、机器周期、指令周期之间的关系 在430中,一个时钟周期= MCLK晶振的倒数。如果MCLK是8M,则一个时钟周期为1/8us;一个机器周期= 一个时钟周期,即430每个动作都能完成一个基本操作;一个指令周期= 1~6个机器周期,具体根据具体指令而定。另:指令长度,只是一个存储单位与时间没有必然关系。MSP430根据型号的不同最多可以选择使用3个振荡器。我们可以根据需要选择合适的振荡频率,并可以在不需要时随时关闭振荡器,以节省功耗。这3个振荡器分别为:

指令周期、时钟周期、总线周期概念辨析

指令周期、时钟周期、总线周期概念辨析 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。通常用内存中读取一个指令字的最短时间来规定CPU周期,(也就是计算机通过内部或外部总线进行一次信息传输从而完成一个或几个微操作所需要的时间)),它一般由12个时钟周期组成。而时钟周期=1秒/晶振频率,因此单片机的机器周期=12秒/晶振频率 . 指令周期(Instruction Cycle):取出并执行一条指令的时间。 总线周期(BUS Cycle):也就是一个访存储器或I/O端口操作所用的时间。 时钟周期(Clock Cycle):又称节拍周期,是处理操作的最基本单位。(晶振频率的倒数,也称T状态) 指令周期、总线周期和时钟周期之间的关系:一个指令周期由若干个总线周期组成,而一个总线周期时间又包含有若干个时钟周期。 指令周期 CPU每取出一条指令并执行这条指令,都要完成一系列的操作,这一系列操作所需要的时间通常叫做一个指令周期。换言之指令周期是取出一条指令并执行这条指令的时间。由于各条指令的操作功能不同,因此各种指令的指令周期是不尽相同的。例如一条加法指令的指令周期同一条乘法指令的指令周期是不相同的。指令周期常常用若干个CPU周期数来表示,CPU周期也称机器周期。指令不同,所需的机器周期数也不同。对于一些简单的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 总线周期 1.微处理器是在时钟信号CLK控制下按节拍工作的。8086/8088系统的时钟频率为4.77MHz,每个时钟周期约为200ns。 2.由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O接口的访问,是通过总线实现的。通常把CPU通过总线对微处理器外部(存贮器或I/O接口)进行一次访问所需时间称为一个总线周期。一个总线周期一般包含4个时钟周期,这4个时钟周期分别称4个状态即T1状态、T2状态、T3状态和T4状态。 时钟周期 一个CPU周期时间有包含若干个时钟周期(通常称为节拍脉冲或T周期,他是处理操作的最基本单位)。时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 μs),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ

单片机指令周期_机器周期_状态周期_振荡时钟周期之间的关系

指令周期机器周期状态周期振荡时钟周期(时钟周期) 时钟周期: 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用 4MHZ的时钟频率,则时钟周期为0.25us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。 8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期: 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。

8051系列单片机的一个机器周期由6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期==6个状态周期==12个时钟周期。 例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒; 指令周期: 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 总线周期:

单片机指令周期机器周期状态周期振荡时钟周期之间的关系19页word文档

指令周期机器周期状态周期振荡时钟周期(时钟周期) 时钟周期: 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ 的时钟频率,则时钟周期为0.25us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。 8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期: 在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。

8051系列单片机的一个机器周期由6个 S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期==6个状态周期==12个时钟周期。 例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒; 指令周期: 执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 总线周期: 由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O接口的访问,是通过总线实现的。通常把CPU通过总线对微处理器外部(存贮器或 I/O接口)进行一次访问所需时间称为一个总线周期。

时钟周期、机器周期、指令周期的区别定义

简介 指令周期(Instruction Cycle):取出并执行一条指令的时间。 总线周期(BUS Cycle):也就是一个访存储器或I/O端口操作所用的时间。 时钟周期(Clock Cycle):又称节拍周期,是处理操作的最基本单位。(晶振频率的倒数,也称T状态) 指令周期、总线周期和时钟周期之间的关系:一个指令周期由若干个总线周期组成,而一个总线周期时间又包含有若干个时钟周期。 时钟周期 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250ns。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。我们学习的8051单片机的时钟范围是1.2MHz-12MHz。在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。8051系列单片机的一个机器周期同6 个S 周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6 个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。 指令周期 指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 总线周期 1.微处理器是在时钟信号CLK控制下按节拍工作的。8086/8088系统的时钟频率为4.77MHz,每个时钟周期约为200ns。 2.由于存贮器和I/O端口是挂接在总线上的,CPU 对存贮器和I/O接口的访问,是通过总线实现的。通常把CPU通过总线对微处理器外部(存贮器或I/O接口)进行一次访问所需时间称为一个总线周期。一个总线周期一般包含4个时钟周期,这4个时钟周期分别称4个状态即T1状态、T2状态、T3状态和T4状态。 编辑本段概念辨析 总结一下,它们之间的关系就是,指令周期由若干个机器周期组成,总线周期一般由4个时钟周期组成。机器周期和总线周期……机器周期指的是完成一个基本操作的时间,这个基本操作有时可能包含总线读写,因而包含总线周期,但是有时可能与总线读写无关,所以,并无明确的相互包含的关系 指令周期:是CPU的关键指标,指取出并执行一条指令的时间。一般以机器周期为单位,分单指令执行周期、双指令执行周期等。现在的处理器的大部分指令(ARM、DSP)均采

单片机时钟周期的计算

单片机的定时器的周期怎么算?就是比如定时器TF0置1的时间,我的晶振是11。0592MHz的怎么算还有就是时钟周期,状态周期,机器周期的概念和联系及换算? 你的不明白其实就是对于定时器的初值问题,11.0592是始终的晶振,时钟周期就是1/11.0592M 而定时器的周期就是12/11.0592 因为51单片机是12分频的 。 还有很多...... 如果你写的是C的话建议这样写 TMOD=0X01// 定时器0方式1 TH0=(65535-50000)/256;//因为是16位计数假设晶振为12MHZ 11.0592的是4600多吧,自己算算... TL=(65536-50000)%256; EA=1; ET0=1; TR0=1; 主要的计算就是其中的50000 中断一次所需要的时间就是50000乘以刚才所算的定时器的周期(这个是50MS) 也就是你说的:就是比如定时器TF0置1的时间中断的时候TF0 要求CPU 中断而引起中断 好了 12倍的时间周期就是机械周期,(刚才说过是12分频的) 时钟周期: 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。 在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。 8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。 机器周期:

相关文档
最新文档