VPP.

VPP.
VPP.

原形过去式过去分词原形过去式过去分词be lead

beat learn

become leave

begin lend

blow let

break lie

bring light

build lose

burn make

buy mean

catch meet

choose mistake

come pay

cost put

cut read

dig ride

do ring

draw rise

dream run

drink say

drive see

eat sell

fall send

feed set

feel shake

fight shine

find show

fly shut

forget sing

get sit

give sleep

go smell

grow speak

hang speak

have spell

hear spend

hide spread

hit stand

hold steal

hurt stick

keep swim

know take

lay teach

tell

think throw understand wake wear

win

write

解读自恢复过欠电压保护器的秘密

解读自复式过欠电压保护器的秘密 1.过欠压保护器的作用 当供电线路出现过电压、欠电压时,保护器能迅速、安全地切断电路,避免异常电压到达家用电器而造成损害。对于自恢复式,当电压恢复正常时,保护器将在规定延时时间内自动接通电路,确保终端电器在无人值守情况下正常运行。 2.自复式的作用 电源发生过欠压时,能自动切断电源,保护家用电器;当电压恢复正常后,经过延时后自动将电源接通,无需人工干预。 3.质量好坏的鉴定方法 1、看保护器的电流和继电器的电流等 级: 必须同一个电流等级进行比较价 格。内部使用的继电器也必须是同一等 级的,有些厂家的继电器上没有任何标 志,往往用小电流的冒充大大电流的。 2、看是否选用磁保持继电器: 磁保持继电器比普通继电器的价格 高很多。磁保持继电器由于只在动作瞬 间通电,所以线圈平时无功耗,不发热, 可靠性很高,通过的电流也大。而普通 继电器则需要一直通电才能保持吸合状 态,所以在封闭空间内,发热严重,寿 命短,故障率高,通过的电流也相对较 小。(图片来自于网络)目前市场上低于25元的一般都是采用普通T90的继电器,最大电流在40A左右,需要一直通电才能保持吸合状态,因而电路发热比较严重,造成寿命较短。 3、看壳体材料: 壳体是否采用高阻燃且绝缘性能好的材料。许多低价保护器的壳体采用一般塑料件,存在很大的安全隐患。品牌厂家的产品低端的采用ABS阻燃壳体,高端产品毒采用尼龙阻燃壳体。 4、看电路板的质量: 电路板是整个控制部分的心脏,可以看电解电容的选择是否耐高温、长寿命。集成电路是国产还是进口的,是否采用精密电阻等等。品牌厂家关键部分采用钽电容,保证的产品的长寿命和高稳定。 介绍了这么多相信大家都对过欠压保护器有所了解了,也能辨别出质量的好坏。 目前大型项目上都要求采用磁保持式的节能型过欠压保护器。目前这类产品国内产销量较大的厂家有:扬州思美克电力、温州秦佳、德力西等等。用户可以根据自身的情况进行选择。最好上阿里巴巴寻寻价,了解各家的具体情况。

变频器驱动电路详解

变频器驱动电路详解 测量驱动电路输出的六路驱动脉冲的电压幅度都符合要求,如用交流档测量正向激励脉冲电压的幅度约14V左右,负向截止电压的幅度约7.5V左右(不同的机型有所差异),对驱动电路经过以上检查,一般检修人员就认为可以装机了,此中忽略了一个极其重要的检查环节——对驱动电路电流(功率)输出能力的检查!很多我们认为已经正常修复的变频器,在运行中还会暴露出更隐蔽的故障现象,并由此导致了一定的返修率。 变频器空载或轻载运行正常,但带上一定负载后,出现电机振动、输出电压偏相、频跳OC故障等。 故障原因:A、驱动电路的供电电源电流(功率)输出能力不足;B、驱动IC或驱动IC后置放大器低效,输出内阻变大,使驱动脉冲的电压幅度或电流幅度不足;C、IGBT低效,导通内阻变大,导通管压降增大。 C原因所导致的故障比例并不高,而且限于维修修部的条件所限,如无法为变频器提供额定负载试机。但A、B原因所带来的隐蔽性故障,我们可以采用为驱动增加负载的方法,使其暴露出来,并进而修复之,从面能使返修率降到最低。IGBT的正常开通既需要幅值足够的激励电路,如+12V以上,更需要足够的驱动电流,保障其可靠开通,或者说保障其导通在一定的低导通内阻下。上述A、B 故障原因的实质,即由于驱动电路的功率输出能力不足,导致了IGBT虽能开通但不能处于良好的低导能内阻的开通状态下,从而表现出输出偏相、电机振动剧烈和频跳OC故障等。 让我们从IGBT的控制特性上来做一下较为深入的分析,找出故障的根源所在。 一、IGBT的控制特性: 通常的观念,认为IGBT器件是电压型控制器件——为栅偏压控制,只需提供一定电平幅度的激励电压,而不需吸取激励电流。在小功率电路中,仅由数字门电路,就可以驱动MOS型绝缘栅场效应管。做为IGBT,输入电路恰好具有MOS型绝缘栅场效应管的特性,因而也可视为电压控制器件。这种观念其实有失偏颇。因结构和工艺的原因,IGBT管子的栅-射结间形成了一个名为Cge的结电容,对IGBT管子开通和截止的控制,其实就是Cge进行的充、放电控制。+15V的激励脉冲电压,提供了Cge的一个充电电流通路,IGBT因之而开通;-7。5V的负向脉冲电压,将Cge上的“已充电荷强行拉出来”,起到对充电电荷的快速中和作用,IGBT因之而截止。 假定IGBT管子只对一个工作频率为零的直流电路进行通断控制,对Cge一次性充满电后,几乎不再需要进行充、放电的控制,那么将此电路中的IGBT管子说成是电压控制器件,是成立的。而问题是:变频器输出电路中的IGBT管子工作于数kHz的频率之下,其栅偏压也为数kHz频率的脉冲电压!一方面,对于这种较高频率的信号,Cge的呈现出的容抗是较小的,故形成了较大的充、放电电流。另一方面,要使IGBT可靠和快速的开通(力争使管子有较小的导通内阻),在IGBT的允许工作区内,就要提供尽可能大的驱动电流(充电电流)。对于截止的控制也是一样,须提供一个低内阻(欧姆级)的外部泄放电路,将栅-射结电容上的电荷极快地泄放掉!

相变储能技术介绍及其展望

相变储能技术介绍及 其展望 能动学院 能动A02 王来升 2010201104

相变储能技术介绍及其展望 摘要:相变储能材料作为一种提高能源利用稳定性以及效率的技术越来越受 到人们重视,如何有效的对相变储能技术进行研究越来越受到人们的重视。 关键词:相变材料;应用;展望 0引言: 能源是人类赖以生存的基础。随着人类生活以及生产活动的高速发展,我们对能源的需求量越来越大,而化石能源的日益枯竭、能源利用带来的污染问题却越来越严重。如何提高能源的利用效率、最大限度的利用低品位能源、开发可利用的新能源成为当今社会的研究热点。 自20世纪七十年代石油危机后,热能存储技术在工业节能和新能源利用领域日益受到重视,在我国2000年前后,全面实行分时计度电价政策后,相变储能技术便成为工业和民用的热点,尤其是随着太阳能、风能和海洋能等间歇性绿色能源的发展,相变储能技术越来越受到人们的重视。 1.相变储能技术的发展概况 1。1国外相变储能技术的发展概况 20世纪六十年代,美国国家航空航天局就非常重视相变技术在航天领域的应用用。1980年美国 Birchenall等提出采用合金作为相变材料[1],提出了三种典型状态平衡图和二元合金的熔化熵和熔化潜热的计算方法。1991年德国Gluck 和Hahne等利用/制成高温蓄热砖,并建立太阳能中央收集塔的蓄能 装置[2]。2001年Faird等以-6O作为相变材料采用微胶囊技术封装制备 了相变储能地板[3]。2006年Hammou等设计了一个含有相变材料的混合热储能存储系统[4]。 1。2国内相变储能技术的发展概况 在我国,二十世纪七十年代末、八十年代初,中国科技大学、华中师范大学、中国科学院广州能源研究所等单位就开始了对无机盐、无机水合盐、金属等相变材料的理论和应用作了详细的研究工作.西藏太阳能研究示范中心和华中师范大学共同利用西藏盐湖盛产的芒硝和硼砂等无机水合盐类矿产加入独特的悬浮剂等成功研制出太阳能高密度储热材料[5]。林怡辉,张正国等人采用溶胶—凝胶法[6],采用二氧化硅作母材,有机酸作相变材料,合成复合相变材料。二浙江大学王永川等人对相变储能材料及其实际应用作了大量相关概述。 2.相变储能技术概念及特点

动态电压恢复器综述

动态电压恢复器综述 由于动态电压恢复器是一种比较理想的用户端电压电能质量的保护装置,所以其研究成为了国内外的一个热点。尤其是在理论研究方面。目前动态电压恢复器的理论研究主要集中在主电路拓扑结构、检测算法、控制方法、补偿策略等方面。在主电路拓扑结构方面,主要研究不同的三相系统逆变器结构对故障电压补偿效果的区别,高压大功率逆变器在DVR中的应用等;在检测算法方面,主要研究如何快速准确的检测出电网电压的幅值,相位以及频率的变化并生成负载电压的参考指令;在控制方法的研究方面,主要的热点是如何快速准确的捕捉畸变电压,并对其进行很好的补偿,保证系统具有良好的动态性能;在补偿策略方面,主要研究如何在储存能量一定的情况下尽量的延长补偿电压凹陷的时间。 动态电压恢复器不仅在理论研究方面取得了很多的成果,而且有不少产品已经投入使用,并取得了良好的效果。第一台工业应用的DVR由西屋公司于1996年研制成功,安装在美国北卡罗里纳州Duke电力公司靠近一个自动化纺织厂的12.47KV系统上,以便对全厂提供电压凹陷保护。另外在Orian Rugs(USA),Bonlac Foods(Australia),Caledonian Paper(UK)等公司的网络中均串入了DVR。如澳大利亚的Bonlac食品公司在对DVR试运行后进行的数据统计表明,该公司每年减少了2,453,400澳元的损失;据美国输配电杂志报道,由ABB公司制造的两台容量各为22.5MVA的DVR于2000年在以色列一家著名的微处理器制造厂投入运行,用以防止因电压凹陷引起全厂跳闸而可能造成以百万元计的产品成为废品,它可以弥补500ms的三相电压凹陷的35%和单相电压凹陷的50%。可见,DVR 的应用可以大大提高用户的电压质量和经济效益。由此可见,动态电压恢复器是一种非常有应用前景的电能质量补偿装置,各国的专家学者们已经达成了这样的共识:动态电压恢复器是改善电压型电能质量问题的最经济,最有效的手段。 世界上第一台DVR由Westinghouse公司于1996年研制成功,并安装在Duke 电力公司的12.47kV系统上,该装置的容量为2MVA,主要用于抑制纺织厂供应电压的凹陷。 随后ABB公司研制的22kV/4MVA的DVR也成功地应用于半导体生产厂的故障电压恢复,它可在系统电压发生凹陷时迅速地(几毫秒内)提供补偿电压以维持负荷电压恒定。此外ABB公司还推出了基于IGCT的DVR,由于IGCT结合了GTO和

电力电子器件驱动电路

驱动电路的比较 电力电子器件的驱动电路是电力电子主电路与控制电路之间的接口,是电力电子装置的重要环节,对整个装置的性能有很大的影响。电力电子器件对驱动电路的一般性要求 ①驱动电路应保证器件的充分导通和可靠关断以减低器件的导通和开关损耗。 ②实现与主电路的电隔离。 ③具有较强的抗干扰能力,目的是防止器件在各种外扰下的误开关。 ④具有可靠的保护能力当主电路或驱动电路自身出现故障时(如过电流和驱动电路欠电压等),驱动电路应迅速封锁输出正向驱动信号并正确关断器件以保障器件的安全。 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质,可以将电力电子器件分为电流驱动型和电压驱动型两类。晶闸管是半控型器件,一般其驱动电路成为触发电路,下面分别分析晶闸管的触发电路,GTO、GTR、电力MOSFET和IGBT的驱动电路。 1晶闸管的触发电路 晶闸管的触发电路的工作原理如下: 1 由V1、V2构成的脉冲放大环节和脉冲变压器TM和附属电路构成的脉冲输出环节两部分组成。 2 当V1、V2导通时,通过脉冲变压器向晶闸管的门极和阴极之间输出触发脉冲。 3 VD1和R3是为了V1、V2由导通变为截止时脉冲变压器TM释放其储存的能量而设的。

4 为了获得触发脉冲波形中的强脉冲部分,还需适当附加其它电路环节。 晶闸管的触发电路特点:触发脉冲宽度要保证晶闸管可靠导通,有足够的幅值也不能超过晶闸管门级的电压、电流和功率定额等参数。 2 GTO驱动电路 GTO的开通控制与普通晶闸管相似,下图为典型的直接耦合式GTO驱动电路,其工作原理可分析如下: 1 电路的电源由高频电源经二极管整流后提供,VD1和C1提供+5V电压,VD2、VD3、C2、C3构成倍压整流电路提供+15V电压,VD4和C4提供-15V电压。 2 V1开通时,输出正强脉冲;V2开通时,输出正脉冲平顶部分; 3 V2关断而V3开通时输出负脉冲;V3关断后R3和R4提供门极负偏压。GTO驱动电路的特点:触发脉冲前沿的幅值和陡度要足够,在整个导通期间都施加正门极电流。避免电路内部的相互干扰和寄生振荡,可得到较陡的脉冲前沿;缺点是功耗大,效率较低。 3GTR的驱动电路 下图为GTR的一种驱动电路,其包括电气隔离和晶体管放大电路两大部分,本电路的特点是:当负载较轻时,如果V5的发射极电流全部注入V,会使V过饱和,关断时退饱和时间延长。但是VD2和VD3构成贝克钳位电路可避免上述情况的发生。 V

全球储能技术发展现状与应用情况

全球储能技术发展现状与应用情况 一、储能技术分类、技术原理、主要特征 针对电储能的储能技术主要分为三类:电化学储能(如钠硫电池、液流电池、铅酸电池、锂离子电池、镍镉电池、超级电容器等) 、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)。 也可以分为功率型和能量型,功率型的特点是功率密度大、充放电次数多、响应速度快、能量密度小的特点,例如飞轮、超级电容、超导;能量型的特点是能量密度大、响应时间长、充放电次数少、功率密度低等特点。例如蓄电池。 从目前的情况来看,两种储能设备混用会产生更大的效果,混用比单一使用更有利于降低成本。(最近的一篇论文介绍的模型计算结果是在微网中使用超级电容和蓄电池两种混合储能成本是单一储能成本的33.8%。) (一)电化学储能技术 1、钠硫电池 钠硫电池的正极活性物质是液态的硫(S);负极活性物质是液态金属钠(Na),中间是多孔性瓷隔板。它利用熔融状态的金属钠和硫磺在300℃以上高温条件下,进行氧化-还原反应,完成充放电过程。 钠硫电池的主要特点是能量密度大(是铅蓄电池的3倍)、充电效率高(可达到80%)、可大电流、高功率放电、循环寿命比铅蓄电

池长。然而钠硫电池在工作过程中需要保持高温,有一定安全隐患。由于钠硫电池中所用的储能介质金属钠和硫磺均为易燃、易爆物质,对电池材料要求十分苛刻,目前只有日本(NGK)公司实现产品的产业化生产。 图1 钠硫电池储能系统原理 (来源:美国储能协会) 2、液流电池 液流氧化还原电池(Redox flow cell energy storage systems),简称液流蓄电站或液流电池,与通常蓄电池活性物质包含在阳极和阴极不同,液流电池作为氧化-还原电对的活性物质分别溶解于装在两个大储液罐中的溶液里,各用一个泵使溶液流经液流电池堆中高选择性离子交换膜的两侧,在其多孔炭毡电极上发生还原和氧化反应。电池堆通过双极板串联,结构类似于燃料电池。目前还发展有在一个或两个电极上发生金属离子(及非金属离子)溶解/沉积反应的液流电池。 由于液流电池的储能容量由储存槽中的电解液容积决定,而输出功率取决于电池的反应面积,通过调整电池堆中单电池的串连数量和电极面积,能够满足额定放电功率要求。两者可以独立设计,因此系

动态电压恢复器(DVR)的研究与设计

毕业设计(论文) 题目名称:动态电压恢复器(DVR)的研究与设计学院名称: 班级: 学号: 学生姓名: 指导教师:

2011年04月

目录 1课题任务 (1) 2课题总体方案论述 (2) 3阶段性成果 (4) 3.1MATLAB/SIMULINK仿真 (4) 3.2控制电路设计 (4) 3.2.1检测电路 (4) 3.2.2调理电路 (6) 3.2.3正负15伏直流电压源的产生电路 (7) 3.2.4正1.5伏电压源电路 (8) 3.2.5过零点检测电路 (9) 3.3硬件电路Proteus仿真 (9) 3.3.1Proteus软件简介 (9) 3.3.2调理电路Proteus仿真 (10) 3.3.3直流电压源电路的Proteus仿真 (11) 3.3.4过零点检测电路的Proteus仿真 (11) 3.4主电路的设计 (12) 3.4.1主电路工作模式设计 (12) 3.4.2主电路开关器件设计 (13) 3.4.3串联变压器的选取 (17) 3.4.4输出滤波器的设计 (18) 3.4.5直流储能单元的选取 (18) 3.4.6主电路参数的设定 (19) 4课题设计后期计划 (20) 附件一:DVR的Matlab/Simulink仿真模型 (21) 附件二:Matlab仿真结果 (22) 参考文献 (23)

1课题任务 毕业设计要求:对动态电压恢复器(DVR)的理论进行分析与研究。设计一台样机,参数为:容量500V A,电压补偿范围为0-66V,补偿后电压的失真度小于8%。具体要求为:研究动态电压恢复器(DVR)的理论,并进行仿真;对动态电压恢复器(DVR)的主电路、控制电路和检测电路进行计算与设计,选型与调试;掌握动态电压恢复器(DVR)软件编程及调试。 毕业设计任务分工:本课题由两位同学来完成,分别负责硬件电路设计和软件编程。其中本人主要负责硬件电路设计,具体任务包括: 1.第三周至第四周:查阅文献,结合资料加深对课题各块原理的理解。然后使用MATLAB仿真软件模拟DVR及输电系统的其他部分,对本次毕业设计进行原理仿真,并对一些电路(比如滤波电路等)的元器件参数进行选择,从而达到最佳效果。 2.第五周至第六周:结合老师的指导和自己的学习,设计出各块硬件电路图,运用Protel软件绘制原理图,包括控制电路、驱动电路等。 3.第八周:上网查阅一些原件,如霍尔电压传感器CHV-25P、光电隔离器TLP521等,并结合Proteus软件仿真、调试,确定各电路的元件型号及参数,使各块电路满足要求,保证能为软件部分提供一个稳定的硬件条件。 4.第九周至第十周:领取元器件及万能板,焊接电路板,并调试。 5.第十一周以后:结合软件调试,直至满足要求,为终期答辩准备。 任务完成情况:首先硬件部分的“任务书”中要求的时间安排如下: 本学期1-2周,毕业设计开题、毕业实习; 本学期3--7周,硬件设计,MATLAB及Proteus仿真,Protel画图,确定元件参数; 本学期8周,中期答辩; 本学期9-11周,焊接硬件电路; 本学期12—13周,结合程序进行实际调试直至达到预期效果; 本学期14-15周,完善毕业设计论文参加终期答辩; 本人已经完成的部分包括参阅文献、MATLAB软件仿真、硬件设计、Protel画图、Proteus仿真、修改并确定元件参数、焊接部分电路等。这些阶段性成果会在后面具体说明。

储能技术分类概述

储能技术分类概述 (一)储能的定义及分类 1.储能的定义 储能是通过特定的装臵或物理介质将不同形式的能量通过不同方式储存起来,以便以后在需要时利用的技术。储能主要是指电能的储存。储能又是石油油藏中的一个名词,代表储层储存油气的能力。储能本身不是新兴的技术,但从产业角度来说却是刚刚出现,正处在起步阶段。 广义的电力储能技术是指为实现电力与热能、化学能、机械能等能量之间的单向或双向存储设备,所有能量的存储都可以称为储能。传统意义的电力储能可定义为实现电力存储和双向转换的技术,包括抽水蓄能、压缩空气储能、飞轮储能、超导磁储能、电池储能等,利用这些储能技术,电能以机械能、电磁场、化学能等形式存储下来,并适时反馈回电力网络。能源互联网中的电力储能不仅包含实现电能双向转换的设备,还应包含电能与其他能量形式的单向存储与转换设备。在能源互联网背景下,广义的电力储能技术可定义为实现电力与热能、化学能、机械能等能量之间的单向或双向存储设备。如图1所示,电化学储能、储热、氢储能、电动汽车等储能技术围绕电力供应,实现了电网、交通网、天然气管网、供热供冷网的“互联”。其中,电化学储能和电动汽车实现了电力双向转换,用双框线标出,其余用单框线标出,图中箭头的方向表示能量流动的方向,FCEV表示燃料电池电动汽车,BEV表示电化学电池电动汽车。

图 1:能源互联网中的电力储能技术 除储能设备外,还包含了热电联供机组、燃料电池、热泵、制氢等能源转换设备。储能和能源转换设备共同建立了多能源网络的耦合关系。在实际应用中,二者常进行一体化设计,难以区分,因此本文将具有储能能力的电力转换设备也纳入广义电力储能的范畴。图中,通过新能源发电实现风、光、潮汐、地热等主要一次能源向电能的转换。在电网传输和消纳能力的限制下,部分新能源发电将通过制氢、制热等方式进行转换,部分新能源发电以电化学储能等双向电力储能设备存储并适时返回电网。在各电力储能技术的支撑下,新能源发电与热电联供机组、燃料电池、热泵等转换设备协调运行,实现了新能源高效利用目标下,以电能为核心的多能源生产和消费的匹配。 2.储能按技术原理分类 按照技术原理划分,储能技术主要分为物理储能(如抽水储能、

节点电压法

§ 3-3 节点电压法 一 节点电压 任意选择电路中某一节点作为参考节点,其余节点与此参考节点间的电压分别称为对应的节点电压,节点电压的参考极性均以所对应节点为正极性端,以参考节点为负极性端。如图3-7所示的电路,选节点4为参考节点,则其余三个节点电压分别为U n1、U n2、U n3。节点电压有两个特点: 独立性:节点电压自动满足KVL ,而且相互独立。 完备性:电路中所有支路电压都可以用节点电压表示。 二 节点电压法 以独立节点的节点电压作为独立变量,根据KCL 列出关于节点电压的电路方程,进行求解的过程。 建立方程的过程(如图3-7) 图3-7 第一步,适当选取参考点。 第二步,根据KCL 列出关于节点电压的电路方程。 节点1:0)()(315211=--+-s n n n n I U U G U U G 节点2:0)()(32322211=-++--n n n n n U U G U G U U G 节点3:0)()(31534323=--+--n n n n n U U G U G U U G ?? ?? ??????=????????????????????++---++---+003215433 5 3 3 2115 1 51s n n n I U U U G G G G G G G G G G G G G G 第三步,具有三个独立节点的电路的节点电压方程的一般形式

???? ? ?????=????????????????????332211321333231232221131211s s s n n n I I I U U U G G G G G G G G G 式中,)(j i G ij =称为自由导,为连接到第i 个节点各支路电导之和,值恒正。 )(j i G ij ≠称为互电导,为连接于节点i 与j 之间支路上的电导之和,值恒为负。 sii I 流入第i 个节点的各支路电流源电流值代数和,流入取正,流出取负。 三 仅含电流源时的节点法 第一步,适当选取参考点; 第二步,利用直接观察法形成方程; 第三步,求解。 四 含电压源的节点法 第一类情况:含实际电压源:作一次等效变换。 第二类情况:含理想电压源。 ① 仅含一条理想电压源支路,如图3-8。 图3-8 a.取电压源负极性端为参考点:则s n U U =1 b.对不含有电压源支路的节点利用直接观察法列方程: )(0)(3543231533232111=+++--=-+++-n n n n n n U G G G U G U G U G U G G G U G c.求解 ② 含多条不具有公共端点的理想电压源支路,如图3-9。 U

驱动电路

1.6 电力电子器件器件的驱动 1.6.1 电力电子器件驱动电路概述 驱动电路——主电路与控制电路之间的接口 ??使电力电子器件工作在较理想的开关状态,缩 短开关时间,减小开关损耗,对装置的运行效率、 可靠性和安全性都有重要的意义 ??对器件或整个装置的一些保护措施也往往设 在驱动电路中,或通过驱动电路实现 驱动电路的基本任务:将信息电子电路传来的信号按控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号 ??对半控型器件只需提供开通控制信号 ??对全控型器件则既要提供开通控制信号,又要 提供关断控制信号 驱动电路还要提供控制电路与主电路之间的电气隔离环节,一般采用光隔离或磁隔离 ??光隔离一般采用光耦合器 ??磁隔离的元件通常是脉冲变压器

E E R R a ) b ) c ) R 1 图1-25 光耦合器的类型及接法 a) 普通型 b) 高速型 c) 高传输比型 电流驱动型和电压驱动型 具体形式可为分立元件的,但目前的趋势是采用 专用集成驱动电路 ? ? 双列直插式集成电路及将光耦隔离电路也集 成在内的混合集成电路 ? ? 为达到参数最佳配合,首选所用器件生产厂家 专门开发的集成驱动电路 1.6.2 晶闸管的触发电路 作用:产生符合要求的门极触发脉冲,保证晶闸 管在需要的时刻由阻断转为导通 广义上讲,还包括对其触发时刻进行控制的相位 控制电路 晶闸管触发电路应满足下列要求: ? ? 触发脉冲的宽度应保证晶闸管可靠导通(结合

擎住电流的概念) ??触发脉冲应有足够的幅度 ??不超过门极电压、电流和功率定额,且在可靠 触发区域之内 ??应有良好的抗干扰性能、温度稳定性及与主电 路的电气隔离 13 度I M ?强脉冲幅值 (3I G T ~5I G T) t1~t4?脉冲宽度I?脉 G T ~2I G T) TM R 2 2 V D3 VD 2 R 4 图1-27 常见的晶闸管触 发电路 V 1、V 2 构成脉冲放大环节 脉冲变压器TM和附属电路构成脉冲输出环节 V 1、V 2 导通时,通过脉冲变压器向晶闸管的门极 和阴极之间输出触发脉冲 VD 1和R 3 是为了V 1 、V 2 由导通变为截止时脉冲

节点电压分析法

3.2.2 节点电压法 这种方法是在具有N 个节点的电路中,选取一个节点为参考点,其余各节点到参考点的电压(电位)称为该节点的节点电压,以节点电压为未知量列写除参考点外的N -1个节点的KCL 方程,连立求解该方程组求出节点电压,进而求出各支路电流。 1.节点电压法 现通过图3-22 所示电路求解各支路电流来阐述节点电压法。 在图3-22所示电路中,选0节点为参考点,1、2节点的节点电压分别为Un 1、Un 2,则各条支路的电流分别用节点电压表示为 11111n n U G R U I == 22222n n U G R U I == )(2133 213n n n n U U G R U U I -=-= )(2144214n n n n U U G R U U I -=-= )(2155215n S n S U U G R U U I -=-= 根据KCL 列1、2节点的电流方程: 节点1: 03211=---I I I I S 5S1图3-22 节点电压法

节点2: 022543=--++S I I I I I (3-24) 将支路电流用对应的节点电压代入上面的两节点1、2的电流方程式式(3-24),整理得: 11 2254321431 2431431)()()()(R U I U G G G G U G G I U G G U G G G S S n n S n n +-=+++++-=+-++ (3-25) 解式(3-25)方程组,求出节点电压21,n n U U ,便求出各支路电流。 观察与分析上题有如下特点: 1)式(3-25)中节点1的电流方程中,1n U 前面的系数是431G G G ++是连到节点1的所有电导之和,称为节点1的自电导,用11G 表示,即。43111G G G G ++=;同理在节点2的方程中2n U 前面的系数是5432G G G G +++,是连到节点2所有电导之和,称为节点的自电导,可用22G 表示,即543222G G G G G +++=,自电导总取正值。 2)在式(3-25)中,节点1的电流方程中2n U 前面的系数是)(31G G +-;在节点2的方程中,1n U 前面的系数 也是)(31G G +-,它们是节点1和节点2之间相连接的各支路的所有电导之和,称为互电导,互电导总取负值。 3)式(3-25)等式右边分别为流入节点1和节点2的电流源电流的代数和(流入为正,流出为负);若是电压源与电阻相串联的支路,则相当于变换成电流源与电导相并联的支路,分别用21,Sn Sn I I 表示,则 11S Sn I I =,1122R U I I S S Sn + -= 这样,式(3-25)可写成: ∑∑=+-=-22221121 212111Sn n n Sn n n I U G U G I U G U G (3-26) 这就是具有两个独立节点电路的节点电压方程得一般形式。 将式(3-26 )推广,对具有n -1个独立节点的电路,若将第n 个节点指定

常用电机驱动电路及原理

由于本人主要是搞软件的,所以硬件方面不是很了解,但是为了更好地相互学习,仅此整理出一份总结出来,有什么错误的地方还请大家积极的指出!供大家一起参考研究! 我们做的智能小车,要想出色的完成一场比赛,需要出色的控制策略!就整个智能车这个系统而言,我们的被控对象无外乎舵机和电机两个!通过对舵机的控制能够让我们的小车实时的纠正小车在赛道上的位置,完成转向!当然那些和我一样做平衡组的同学不必考虑舵机的问题!而电机是小车完成比赛的动力保障,同时平衡组的同学也需要通过对两路电机的差速控制,来控制小车的方向!所以选一个好的电机驱动电路非常必要! 常用的电机驱动有两种方式:一、采用集成电机驱动芯片;二、采用MOSFET和专用栅极驱动芯片自己搭。集成主要是飞思卡尔自己生产的33886芯片,还有就是L298芯片,其中298是个很好的芯片,其内部可以看成两个H桥,可以同时驱动两路电机,而且它也是我们驱动步进电机的一个良选!由于他们的驱动电流较小(33886最大5A持续工作,298最大2A持续工作),对于我们智能车来说不足以满足,但是电子设计大赛的时候可能会用到!所以想要详细了解他们的同学可以去查找他们的数据手册!在此只是提供他们的电路图,不作详细介绍! 33886运用电路图

下面着重介绍我们智能车可能使用的驱动电路。普遍使用的是英飞凌公司的半桥驱动芯片BTS7960搭成全桥驱动。其驱动电流约43A,而其升级产品BTS7970驱动电流能够达到70几安培!而且也有其可替代产品BTN79 70,它的驱动电流最大也能达七十几安!其内部结构基本相同如下: 每片芯片的内部有两个MOS管,当IN输入高电平时上边的MOS管导通,常称为高边MOS管,当IN输入低电平时,下边的MOS管导通,常称为低边MOS 管;当INH为高电平时使能整个芯片,芯片工作;当INH为低电平时,芯片不工作。其典型运用电路图如下图所示: EN1和EN2一般使用时我们直接接高电平,使整个电路始终处于工作状态!

储能技术种类和特点

储能技术种类和特点 储能技术是通过装置或物理介质将能量储存起来以便以后需要时利用的技术。储能技术按照储存介质进行分类,可以分为机械类储能、电气类储能、电化学类储能、热储能和化学类储能。 一机械类储能 机械类储能的应用形式只要有抽水蓄能、压缩空气储能和飞轮储能。 1.1 抽水蓄能 (1)基本原理 电网低谷时利用过剩电力将作为液态能量媒体的水从低标高的水库抽到高标高的水库,电网峰荷时高标高水库中的水回流到下水库推动水轮机发电机发电。

(2)特点 ?属于大规模、集中式能量储存,技术相当成熟,可用于电网的能量管理和调峰; ?效率一般约为 65%~75% ,最高可达80%~85%; ?负荷响应速度快(10%负荷变化需10秒钟),从全停到满载发电约5分钟,从全停到满载抽水约1分钟; ?具有日调节能力,适合于配合核电站、大规模风力发电、超大规模太阳能光伏发电。 (3)缺点 ?需要上池和下池; ?厂址的选择依赖地理条件,有一定的难度和局限性; ?与负荷中心有一定距离,需长距离输电。 (4)应用 目前,抽水蓄能机组在一个国家总装机容量中所占比重的世界平均水平为3%左右。截至2012年底,全世界储能装置总容量为128GW,其中抽水蓄能为127GW,占99%。截至2012年年底,我国共有抽水蓄能电站34座,其中,投运26座,投运容量2064.5万千瓦约占全国总装机容量11.4亿千瓦的1.8% 。(另在建8座,在建容量894万千瓦)

1.2 飞轮储能 (1)基本原理 在一个飞轮储能系统中,电能用于将一个放在真空外壳内的转子即一个大质量的由固体材料制成的圆柱体加速(达几万转/分钟),从而将电能以动能形式储存起来(利用大转轮所储存的惯性能量)。

节点电压法

节点电压法 百科名片 节点电压为求解对象的电路计算方法。节点电压是在为电路任选一个节点作为参考点(此点通常编号为“0”),并令其电位为零后,其余节点对该参考点的电位。 目录 编辑本段基本定义 节点电压法 以电路中节点电压为未知量,根据KCL写出独立的节点电流方程 节点电压法 ,然后联立求解出节点电压的方法. 对多支路两节点电路的计算尤为简便. 节点电压是指电路中任一点到参考点之间的电压. 参考点人为选择.常以接地点为参考点。 编辑本段求解方法 第一步:把电压源与阻抗的串联形式化为电流源与阻抗的并联形式

节点电压法 第二步:标出节点,并把其中一个节点选为参考节点(一般为0电位点) 第三步:列出节点电压方程。 列方程方法:自导纳乘以该节点电压+∑与该节点相邻的互导纳乘以相邻节点的电压=流入该节点的电流源的电流-流出该节点电流源的电流第四步:联立求解出上面所有的节点电压方程。 电路计算 编辑本段介绍 以节点电压为求解对象的电路计算方法。节点电压是在为 电路计算方法 电路任选一个节点作为参考点(此点通常编号为“0”),并令其电位为零 电路计算方法 后,其余节点对该参考点的电位。一个支路数为b、节点数为n的电路,其节点电压数为n-1,所以用节点电压法计算时需要列出 (n-1)个以节点电压为未知量的独立方程。节点电压法 编辑本段电路的节点方程

图1中已标明节点和支路的编号、各有关支路电压和电流的参考方向以及节点电压的参考方 节点电压法 向。参照各支路电流的方向 电路计算方法 ,对节点“1”和“2”写出KCL方程;参照各支路电压和节点电压的方向,使用KVL写出支路电压通过节点电压表达的方程(又称KVL方程);参照支路电压、电流、电源的方向以及支路的连接方式,使用KVL(或KCL)写出支路方程。这样写出的3组方程见表。节点电压法 将KVL方程代入支路方程,消去支路电压,再将所得新的支路方程,即支路电流与节点电压的关系式代入KCL方程,消去支路电流后可得方程组 方程组 此方程组的2个方程就是用节点电压法计算图1所示电路时需要列出的方程。这种方程通常称为电路的节点方程。显然,由节点方程可得出电路的2个节点电压。将节点电压代入KVL方程可求出电路的6个支路电压,再将支路电压代入支路方程(将节点电压代入新的支路方程亦可),又能求出电路的6个支路电流。

储能技术种类和特点

储能技术种类和特点 This model paper was revised by the Standardization Office on December 10, 2020

储能技术种类和特点 储能技术是通过装置或物理介质将能量储存起来以便以后需要时利用的技术。储能技术按照储存介质进行分类,可以分为机械类储能、电气类储能、电化学类储能、热储能和化学类储能。 一机械类储能 机械类储能的应用形式只要有抽水蓄能、压缩空气储能和飞轮储能。 1.1 抽水蓄能 (1)基本原理 电网低谷时利用过剩电力将作为液态能量媒体的水从低标高的水库抽到高标高的水库,电网峰荷时高标高水库中的水回流到下水库推动水轮机发电机发电。 (2)特点 属于大规模、集中式能量储存,技术相当成熟,可用于电网的能量管理和调峰; 效率一般约为 65%~75% ,最高可达80%~85%; 负荷响应速度快(10%负荷变化需10秒钟),从全停到满载发电约5分钟,从全停到满载抽水约1分钟; 具有日调节能力,适合于配合核电站、大规模风力发电、超大规模太阳能光伏发 电。 (3)缺点 需要上池和下池;

厂址的选择依赖地理条件,有一定的难度和局限性; 与负荷中心有一定距离,需长距离输电。 (4)应用 目前,抽水蓄能机组在一个国家总装机容量中所占比重的世界平均水平为3%左右。截至2012年底,全世界储能装置总容量为128GW,其中抽水蓄能为127GW,占99%。截至2012年年底,我国共有抽水蓄能电站34座,其中,投运26座,投运容量2064.5万千瓦约占全国总装机容量11.4亿千瓦的1.8% 。(另在建8座,在建容量894万千瓦) 1.2 飞轮储能 (1)基本原理 在一个飞轮储能系统中,电能用于将一个放在真空外壳内的转子即一个大质量的由固体材料制成的圆柱体加速(达几万转/分钟),从而将电能以动能形式储存起来(利用大转轮所储存的惯性能量)。 (2)优点 寿命长(15~30年); 效率高(90%); 少维护、稳定性好; 较高的功率密度; 响应速度快(毫秒级)。 (3)缺点 能量密度低,只可持续几秒至几分钟;

电化学储能技术分类和抽蓄性能对比

电化学储能技术分类和抽蓄性能对比电化学储能技术主要包括铅酸电池、锂离子电池、液流电池、钠系高温电池和金属-空气电池等体系。电池的工作原理大致相同:从能量转化角度看,电池是将化学能转化为电能的装置;从化学反应角度看,电池是氧化还原反应中的还原剂失去的电子经外接导线传递给氧化剂,使氧化还原反应分别在两个电极上进行。 一、技术分类 电化学储能技术主要包括种类繁多的二次电池,这里主要介绍应用较多的铅酸电池、锂离子电池、液流电池、钠硫电池等。这些电池多数技术上比较成熟,近年来成为电力系统应用关注的重点并有较多的实际应用。 1、铅酸电池 (1)工作原理 铅酸电池主要由正极板、负极板、电解液、隔板、槽和盖等组成,其基本结构如图1-1所示。正极活性物质是二氧化铅PbO2,负极活性物质是海绵状金属铅Pb,电解液是硫酸,开路电压为2V。

图1-1铅酸电池的基本结构 铅酸电池的正、负两极活性物质在电池放电后都转化为硫酸铅(PbSO4),铅酸电池单体的额定电压为2V。实际上,铅酸电池的开路电压与硫酸浓度存在着密切关系,而与铅、二氧化铅以及硫酸铅的量无关。铅酸电池在充电终止后,端电压很快下降至2.3V左右,放电终止电压为1.7-1.8V,若在继续放电,将影响电池寿命。铅酸电池的充电温度范围为-20℃~40℃,放电温度范围-20℃~40℃,能量转换效率为70-85%。 铅酸电池的优点:1)投资成本低;2)开路电压与放电深度基本呈线性关系,易于充放电控制;3)单体容量从几十~几千Ah,串并联后用于MW级储能电站时安全可靠;4)回收技术成熟,利用率高。 铅酸电池的缺点:1)比能量低,一般为30~50Wh/kg;2)循环寿命短,一般为500-2000次;充电速度慢,一般>4小时;3)生产过程中会产生含铅的重金属废水,且成酸性,易产生污染。 (2)技术分类

电流驱动与电压驱动

比较专业的解释: 电压驱动的如:场效应管,因为它的内阻很大,加电压控制时电流很小,近似为零,所以可以理解成:电压驱动; 电流驱动的如:普通的NPN、PNP型三极管,因为它的内阻较小,加电压控制时电流相对较大(一般小功率的都有100uA以上,大功率的可达20mA以上),所以可以理解成:电流驱动; 从控制原理来说:电压驱动的如:场效应管,它是通过加到G、S端的电压(微观的就是电场)来控制D、S内部通道的宽窄(即通道可变)来控制D、S两端电流; 电流驱动的如:普通的NPN、PNP型三极管,是通过加到B、E端的电流(微观的就是电子的流动)来控制C、E内部的电流流动(即通道不变)。 简单地说电流驱动是根据驱动电流的大小而输出不同的功率,常见的是普通三极管功率放大电路,电压驱动是根据驱动电压的高低而输出不同的功率,常见的场效应三极管功率放大电路中使用。 下面是几个问题: Q:什么是电流控制器件? A:如果这个器件的输出参数大小和输入的电流参数大小有关,就叫该器件是“电流控制器件”,简称“流控器件”。“电流控制器件”输入的是电流信号,是低阻抗输入,需要较大的驱动功率。例如:双极型晶体管(BJT)是电流控制器件、TTL电路是电流控制器件。 Q:什么是电压控制器件? A:如果这个器件的输出参数大小和输入的电压参数大小有关,就叫该器件是“电压控制器件”,简称“压控器件”。“电压控制器件”输入的是电压信号,是高阻抗输入,只需要较小的驱动功率;例如:场效应晶体管(FET)是电压控制器件、MOS电路是电压控制器件。 Q:为什么BJT是电流控制器件而FET和MOS是电压控制器件? A:BJT是通过基极电流来控制集电极电流而达到放大作用的;而FET&MOS是靠控制栅极电压来改变源漏电流,所以说BJT是电流控制器件,而FET和MOS是电压控制器件。 Q:什么是驱动电路? 主电路和控制电路之间,用来对控制电路的信号进行放大的中间电路,称为驱动电路。功率驱动电路: 一般情况下,无论是数字电路还是模拟电路,为了减小功耗,那么在内部信号处理和计算的时候,电压、电流比较小,那么这些信号对外部的驱动能力也就很小。但是比如电机啊啥的一些外部的设备,他们的功率比较高,如果直接用这些内部计算得到的信号去驱动他们显然是不行的。那么就需要有功率驱动电路了。有这些控制信号来控制功率驱动电路,由功率驱动电路产生大功率信号,来驱动外部设备(如:电机)。这就是它的作用了。

节点电压法

09379090 葛佳音 一、节点电压: 指独立节点对非独立节点的电压。 二、基本指导思想 用未知的节点电压代替未知的支路电压来建立电路方程,以减少联立方程的元数。 三、步骤 应用基尔霍夫电流定律建立节点电流方程,然后用节点电压去表示支路电流,最后求解节点电压。 具体如下: 1、选择参考节点,设独立节点电位选定参考节点和各 支路电流的参考方向,并对独立节点分别应用基尔霍夫电流定律列出电流方程 2、根据基尔霍夫电压定律和欧姆定律,建立用节点电位和已知的支路电阻表示支路电流的支路方程 3、将支路方程和节点方程相结合,消去节点方程中的支路电流变量,代之以节点电位变量,经移项整理后,获得以两节点电位为变量的节点方程

4、解方程得节点电位 5、由节点电位求支路电压,进而求支路电流 四、P74 例3.1 应注意的细节: 1、假设参考节点的原因: 电压是指电路中两点A、B之间的电位差。所以,由选取节点的电位可以表示支路电压。 2、不用考虑V1、V2谁大谁小。 可任意设一个电流方向。但为减少出错,R2上的电流若写成(V1-V2)/R2,则默认R2上的电流朝向节点2。 3、不用考虑串并联。这也是节点电压法的一大优势。

4、电路图中是电流源(不是电流表)。 ***电流源(符号如下图):R→∞ 电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。 ***电压源(如下图):R→0 稳博电压源 电压源就是给定的电压,随着你的负载增大,电流增大,理想状态下电压不变,实际会在传送路径上消耗,你的负载增大,消耗增多。

电力储能技术

电力储能技术 摘要:一方面,随着我国经济的高速发展,用电量的需求逐年增长;另一方面,环境和资源的压力使得新能源的大量并网已成大势所趋,由此带来的电网安全稳定性问题和电能质量问题也越来越受到重视。电力储能技术为解决这些问题提供了一条解决之道,围绕电力储能技术的相关研究和应用不断涌现,目前已经出现了一系列比较成熟可实际应用的或者尚在研究阶段的储能方法。本文介绍了一些常见的电力储能方法。关键词:电力储能,特性,现状,应用; 0 引言 近年来,随着国民经济的迅猛发展,我国的电力需求也迅速增加,带动了电力行业的急剧扩张,电网装机容量实现了飞跃式增长。与此同时,一系列的问题也不断出现。 受自然环境和人类生产生活习惯的影响,我国的电力负荷需求存在着巨大的峰谷差。往往在一年中的某几个月或者一天中的某几个小时,电力负荷需求急剧增大,给电网和发电厂带来巨大的运行压力。而在其他时间,用电量较少,机组运行在低负荷状态,不能发挥出高效的性能,使电力设备利用率和运行经济性受到较大影响。如何进行大规模的电能削峰填谷,实现负荷平稳运行,成为我国电力行业需要面对的挑战之一。 目前全世界都面临环境问题和资源压力,我国也不例外。一方面严重的环境污染和巨大的碳排放量已经对社会发展造成了巨大的困扰,另一方面煤炭石油等能源缺口也限制了我国经济的发展。有鉴于此,开发清洁可再生能源迫在眉睫,表现在电力行业,就是风能、光伏发电在近年来得到了蓬勃发展。然而这些能源随自然条件的变化而变化,呈现间歇的特性,不能提供稳定的电力供应。因此存在大量的“弃风”、“弃光”现象,造成了资源的浪费。 电动汽车是新型负荷,也是新型家电,具有较好的调控性,可以纳入需求侧管理、电网调度,并与新能源发电配合,而且在保护环境和节约资源等方面具有传统汽车难以企及的优势。然而如何快速有效充电、如何保证电池的续航能力成为限制电动汽车发展的重要因素。 以上种种都表明电力行业目前存在巨大的机遇和挑战。而电力储能技术是解决上述问题的关键技术之一。目前电力储能技术的研究和发展越来越受到各国能源、交通、国防等部门的重视,电力储能的大规模应用将对现代化的电能生产、输送、分配和利用产生深刻的影响和重要的作用,已成为电力生产利用中的关键环节。 经过长时间的研究和探索,目前已经有一些储能方法投入了实际运行,例如抽水蓄能和压缩空气储能,还有一些储能方法具有较好的应用前景,但距离大规模实际应用尚有一段距离,例如飞轮储能、超导储能等。 1 储能技术分类 按照不同的分类方法,储能技术可以分为以下几类: 1)按照储能原理分类可以分为三类:物理储能,如抽水蓄能、压缩空气储能、飞轮储能等;化学储能,主要是电池储能,如铅蓄电池、钒流体电池、钠硫电池和锂电池等;电磁储能,如超级电容储能和超导储能等。 2)按照储能时间划分可以分为三类:短时储能,通常放电时间为秒级到分钟级;中期储能,通常放电时间为数分钟到数小时;长期储能,通常放电时间为数小时至数天。 3)按照功能划分,可以分为可分为能量型储能(Energy-usage energy storage,EES)和功率型储能(Power-usage energy storage,PES)两种。能量型储能特点是比能量高,主要用

相关文档
最新文档