装载机轮边减速器行星轮架有限元分析及结构优化

装载机轮边减速器行星轮架有限元分析及结构优化
装载机轮边减速器行星轮架有限元分析及结构优化

行星齿轮减速器设计DOC

1 引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1] 。 2 设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为 1 740KW p =,输入转速11000rpm n = ,传动比为35.5p i =,允许传动 比偏差0.1P i ?=,每天要求工作16小时,要求寿命为2年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3 设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为17.1p i =,25p i =进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据2X-A 型行星齿轮传动比 p i 的值和按其配齿计算公式,可得第一级传动的内 齿轮1b ,行星齿轮1c 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮1a 数为17和行星齿轮数为3p n =。根据内齿轮()11 1 1 b a p i z z =- ()17.1117103.7103b z =-=≈ 对内齿轮齿数进行圆整后,此时实际的P 值与给定的P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+=7.0588 其传动比误差i ?= ip i ip -= 7.17.0588 7.1 -=5℅ 根据同心条件可求得行星齿轮c1的齿数为 ()1 11243c b a z z z =-= 所求得的1ZC 适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 11 2 za zb += C =40 ()整数

行星齿轮减速器设计【开题报告】

开题报告 机械设计制造及其自动化 行星齿轮减速器设计 一、综述本课题国内外研究动态,说明选题的依据和意义 [国内外研究动态] 1.国内行星齿轮传动技术的发展概况: 对行星齿轮传动技术的开发及运用在我国自上世纪五十年代就开始了,但直到改革开放前的相当长的一段时间里,由于受设计理念与水平、加工手段与材料及热处理质量等方面的限制,我国各类行星齿轮减速箱的承载能力及可靠性都还处于一个比较低的水平,以至于我国许多行业配套的高性能行星齿轮箱,如磨机齿轮箱等都采用进口产品。改革开放以来,随着国内多家单位相继引进了国外先进的行星传动生产和设计技术并在此基础上进行了消化吸收和创新开发,使得国内的行星传动技术有了长足的进步。在基础研究方面,通过国内相关高校、研究院所及企业的合作,在行星传动的均载技术、优化设计技术、结构强度分析、系统运动学与动力学分析及制造装配技术等方面都取得了一系列的突破,使得我国已全面掌握了行星传动的设计、制造技术并形成了一批具有较强实力的研发制造机构。继西安重型机械研究所联合多家单位推出国内第一代通用行星齿轮减速器产品系列并完成其标准化工作后,目前正在推出性能更为先进、结构更为合理的新一代行星齿轮减速器产品。与此同时,国内其他单位也开发出了一系列专用行星齿轮产品。在制造手段方面,近二十年来通过引进及自主开发的磨齿机、插齿机、加工中心及热处理装置的广泛运用,大大提升了制造水平,在硬件上也切实保证了产品的加工质量。 目前,国内开发的重载行星传动装置已成功运用于许多多年来一直采用国外产品的领域。如西重所开发的运用于铝铸压机的行星齿轮箱最大输出力矩已达到 600KN·m,运用于水泥滚压机的大型行星齿轮箱的输出力矩已达到400KN·m,均成功替代了进口产品。国内生产的运用于磨机的行星齿轮箱的最大功率已达到3600KW,运用于中小功率的行星齿轮箱更是数不胜数。二十余年的实践与运用证明目前我国的行星传动齿轮箱的设计制造已达到与先进工业国家相当的水品,完全可满足为国内格行业传动配套的的需求。

行星齿轮减速器的优化设计

减速器是机械行业中十分重要的传动装置,传统的减速器设计通常3 )限制模数最小值,得: 需要有经验的人员选取适当的参数,进行反复的试凑、校核确定设计方4)限制齿宽系数b/m 的范围: ,得:案,但也不一定是最佳设计方案,而优化设计的方法则通过设计变量的选取、目标函数和约束条件的确定,建立数学模型,通过求解得到满足5)满足接触强度要求,得: 条件的最佳解,同时缩短设计周期。为了合理分配行星轮系的总传动比,并使系统体积小、质量轻,建立了具有3个设计变量、1个目标函数 和几个约束方程的优化设计数学模型,并用MATLAB 优化工具箱进行求6)满足弯曲强度要求,得:解。 2K-H (NGW )型行星齿轮减速器的优化设计: 式中: 、 -齿轮的齿形系数和应力校正系数; -许用弯曲应力。 3 所选优化方法的介绍 惩罚函数法:根据惩罚函数项的不同构成形式,惩罚函数法又可分为外点惩罚函数法、内点惩罚函数法和混合惩罚函数法三种,分别简称为外点法、内点法和混合法。 3.1 外点法:外点法的计算步骤 1)给定初始点 、收敛精度ε、初始罚因子 和惩罚因子递增系数c ,置k=0; 1-中心轮 2-行星轮 3-壳体 图1 NGW 型行星轮系机构简图 图1为NGW 型行星轮系机构简图。已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45-55HRC ,行星轮个数c=2,要求以重量最轻为目标,对其进行优化设计。 1 目标函数和设计变量的确定 行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替, 3.2 内点法:内点法是另一种惩罚函数法 因此目标函数可简化为: 其构成形式与上式相同,但要求迭代过程始终限制在可行域内进 行。 式中:z 1-中心轮1的齿数;m-模数,单位为(mm ); b-齿宽,单位对于不等式约束 ,满足上述要求的复合函数有以下两种为(mm );c-行星轮的个数;u-轮系的传动比4.64。 影响目标函数的独立参数应列为设计变量,即 在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为: 其中,惩罚因子 是一递减的正数序列,即 2 约束条件的建立 由式(2)和式(3 )可知,对于给定的某一惩罚因子 ,当点在可1)小齿轮z 1不根切,得: 行域内时,两种惩罚项的值均大于零,而且当点向约束边界靠近时,两 2)限制齿宽最小值,得: 行星齿轮减速器的优化设计 赵明侠 (宝鸡职业技术学院 机械工程系 陕西 宝鸡 721013) 摘 要: 根据可靠性设计理论和机械优化设计技术,以NGW 型行星齿轮减速器为例,初步探讨优化设计的原理和方法。关键词: 行星齿轮减速器;优化设计;优化设计方法 中图分类号:TH132 文献标识码:A 文章编号:1671-7597(2011)1010074-02 2)构造惩罚函数

机械毕业设计英文外文翻译64超高速行星齿轮组合中内部齿轮的有限元分析

翻译部分 英文原文 Finite Element Analysis of internal Gear in High-Speed Planetary Gear Units Abstrac t: The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis(FEA),the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions. Keywords: planetary gear transmissions; internal ring gear; finite element method High-speed planetary gear transmissions are widely used in aerospace and automotive engineering due to the advantages of large reduction ratio, high load capacity, compactness and stability. Great attention has been paid to the dynamic prediction of gear units for the purpose of vibration reduction and noise control in the past decades(1-8).as one of the key parts, internal gear must be designed carefully since its flexibility has a strong influence on the gear train’s performance. studies have shown that the flexibility of internal gear significantly affects the dynamic behaviors of planetary gear trains(9).in order to get stresses and deflections of ring gear, several finite element analysis models were proposed(10-14).however, most of the models dealt with only a segment of the internal ring gear with a thin rim. the gear segment was constrained with corresponding boundary conditions and appoint load was exerted on a single tooth along the line of action without considering the changeover between the single and double contact zone in a complete mesh cycle of a given tooth. A finite element/semi-analytical nonlinear contract model was presented to investigate the effect of internal gear flexibility on the quasi-static behavior of a planetary gear set(15). By considering the deflections of all gears and support conditions of splines, the stresses and deflections were quantified as a function of rim thickness. Compared with the previous work, this model considered the whole transmission system. However, the method described in Ref. (15) requires a high level of expertise before it can even be successful. The purpose of this paper is to investigate the effects of rim thickness and support conditions on the stress and the deflection of internal gear in a high-speed spur planetary gear transmission. Firstly, a finite element model for a complete internal gear fixed to gearcase with straight splines is created by means of Pro/E and ANSYS. Then, proper boundary conditions are applied to simulating the actual support conditions. Meanwhile the contact ratio and load sharing are considered to apply suitable loads on meshing teeth. Finally, with the commercial finite element code of APDL in ANSYS, the influences of rim thickness and support condition on

3Z型行星齿轮减速器设计

1.绪论 1.1课题研究的背景和意义 “十一五”期间我国将按照国家储备与企业储备相结合,以国家储备为主的方针,统一规划,分批建设国家战略石油储备基地。为了快速建立起我国独立的石油储备基地,根据我国国情石油储备形式以大型工业油罐为主。 在使用大型油罐进行原油储备的过程中,遇到最关键的问题就是油泥的问题,储运重未经提炼制的原油重平均约含2.2%的油泥,即对一个10万立方的储罐来说,灌满原油后其中约有2200立方的油泥成点在油罐底部。如不及时清除,再次加入原油是油泥将继续累积在一起,形成硬块,为油罐的检查及清洗增加困难。而且数量如此巨大的油泥存在于油罐底部,不经减小油罐的有效储存空间,降低储存周期寿命,造成进出阀的阻塞,而且较厚的油泥层使浮顶灌的浮顶不能不下降到底而引起浮顶倾斜,对储油安全造成威胁。因此大型原油储罐在建立时就必须增设油泥防止和消除系统,以增加油罐的储油效率,提高储油安全性,减小清灌难度。 大型原油储罐灌底油泥的防止和消除方法主要是在灌内增加油泥的混合搅拌系统,使油泥破碎细化,便于通过管线输出,我们选用了旋转喷射搅拌器。但是,其喷嘴口径相对于大型储罐的直径而言是很小的,喷嘴固定是射流束的搅拌范围是有限的,于是,在旋转喷射器入口处设置轴流涡轮,考循环油泵加压后的原油流动带动轴流涡轮高速旋转,旋转的涡轮通过主轴带动结构上完全隔绝的传动箱内一系列的减速传动使喷嘴缓慢旋转,而且通过传动箱内有关参数的选择来调节喷嘴旋转的速度,是从喷嘴喷出的射流也随之缓慢旋转,射流可打击到油罐底周向任一位置的油泥,实现彻底清除油泥,不留死角的功能。 可见,旋转喷射器中减速箱是工业油罐底油泥旋转喷射混合系统中重要的一部分。高速旋转的涡轮带动喷水嘴低速的转动,中间需要一个传动比很大的减速器连接。 1.2行星齿轮减速器研究现状及发展动态 行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:

行星减速器设计

目录 第一章概述 (1) 第二章要求分析 (2) (一)原始数据 (2) (二)系统组成框图 (2) 第三章方案拟定 (4) 第四章传动系统的方案设计 (5) 传动方案的分析与拟定 (5) 1.对传动方案的要求 (5) 2.拟定传动方案 (5) 第五章行星齿轮传动设计 (6) (一)行星齿轮传动比和效率计算 (6) (二)行星齿轮传动的配齿计算 (6) 1.传动比条件 (6) 2.同轴条件 (6) 3.装配条件 (7) 4.邻接条件 (7) (三)行星齿轮传动的几何尺寸和啮合参数计算 (8) (四)行星齿轮传动强度计算及校核 (10) 1、行星齿轮弯曲强度计算及校核 (10) 2、齿轮齿面强度的计算及校核 (11) 3、有关系数和接触疲劳极限 (11) (五)行星齿轮传动的受力分析 (13) (六)行星齿轮传动的均载机构及浮动量 (15) (七)轮间载荷分布均匀的措施 (15) 第六章行星轮架与输出轴间齿轮传动的设计 (17) (一)选择齿轮材料及精度等级 (17) (二)按齿面接触疲劳强度设 (17) (三)按齿根弯曲疲劳强度计算 (18) (四)主要尺寸计算 (18)

(五)验算齿轮的圆周速度v (18) 第七章行星轮系减速器齿轮输入输出轴的设计 (19) (一)减速器输入轴的设计 (19) 1、选择轴的材料,确定许用应力 (19) 2、按扭转强度估算轴径 (19) 3、确定各轴段的直径 (19) 4、确定各轴段的长度 (19) 5、校核轴 (19) (二)行星轮系减速器齿轮输出轴的设计 (21) 1、选择轴的材料,确定许用应力 (21) 2、按扭转强度估算轴径 (21) 3、确定各轴段的直径 (21) 4、确定各轴段的长度 (21) 5、校核轴 (22)

NGW型行星齿轮减速器——行星轮的设计 (1).

目录 一.绪论 (3) 1.引言 (3) 2.本文的主要内容 (3) 二.拟定传动方案及相关参数 (4) 1.机构简图的确定 (4) 2.齿形与精度 (4) 3.齿轮材料及其性能 (5) 三.设计计算 (5) 1.配齿数 (5) 2.初步计算齿轮主要参数 (6) (1)按齿面接触强度计算太阳轮分度圆直径 (6) (2)按弯曲强度初算模数 (7) 3.几何尺寸计算 (8) 4.重合度计算 (9) 5.啮合效率计算 (10) 四.行星轮的的强度计算及强度校核 (11) 1.强度计算 (11) 2.疲劳强度校核 (15) 1.外啮合 (15) 2.内啮合 (19) 3.安全系数校核 (20)

五.零件图及装配图 (24) 六.参考文献 (25)

一.绪论 1.引言 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 传动效率高; 传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 装配型式多样,适用性广,运转平稳,噪音小; 外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。 因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 2.本文的主要内容 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,

行星减速器齿轮轴有限元的分析与优化

行星齿轮减速器齿轮轴的有限元分析和优化 镇江技师学院 蔡紫清 1. 齿轮轴几何参数的初选 通过常规设计方法设计计算出齿轮轴的几何参数,齿轮轴的齿形为渐开线直齿。分配减速器传动比,计算齿轮模数,并根据传动比条件、同心条件、装配条件和邻接条件确定齿轮的齿数。齿轮轴的齿轮基本参数如表1所示。 2. 齿轮轴的三维建模 利用ANSYS模块建立齿轮轴模型,如图1所示(去掉网格后的实体模型)。 2.1 网格划分 网格划分越密集,计算结果越精确,但是这会使计算时间加长。单元网格的划分采用ANSYS自带的3D四面体自动网格划分,单元尺寸为3mm。网格划分情况如图1所示。 图1:齿轮轴的网络划分 2.2 定义材料特性 齿轮轴材料选择20Cr,其材料属性如下:质量密度 7.850e3kg/m^3,杨氏模量205000N/mm^2(MPa),泊松比0.29,屈服强度等于540N/mm^2(MPa)。 2.3 施加约束和载荷

齿轮轴两端由两个滚子轴承支撑,限制了空间5个自由度,只允许转动。本论文只考虑齿轮轴齿轮处的应力进而对其进行优化,所以为齿轮轴加载荷及约束,安装轴承处加圆柱形约束,在轴端即与联轴器相连处施加大小为175.083N·m的扭矩。约束和载荷施加情况如图2所示。 图2 齿轮轴的载荷施加 2.4 求解和结果查看 ANSYS软件的结构分析模块提供了强大的后处理功能,可以自动生成计算分析报告。齿轮轴的Von Mises应力图如图3所示。单元节点最大应力为325.8MPa,基本接近材料屈服强度的60%。总体来说,输出轴在强度方面不仅满足了设计要求,而且还有很大的裕量,材料的承载能力并没有得到充分的利用,这为齿轮轴的优化提供了很大的空间。 图3 Von Mises应力图

NGW行星齿轮减速器轴的设计

目录 第一章绪论 (2) 1.1 行星齿轮传动的特点 (2) 1.2 本文的主要内容 (3) 第二章NGW行星齿轮减速器结构设计 (3) 2.1 设计技术参数 (3) 2.2 机构简图确定 (3) 2.3 齿形与精度 (4) 2.4 齿轮材料及其性能 (4) 第三章齿轮的优化设计 (4) 3.1 齿轮的设计 (4) 3.11配齿数 (4) 3.12初步计算齿轮主要参数 (5) 3.13几何尺寸计算 (6) 3.2 重合度计算 (7) 3.2 齿轮啮合效率计算 (7) 3.4 疲劳强度校核 (8) 3.41外啮合 (8) 3.42内啮合 (13) 第四章其他零件的设计 (14) 4.1 轴承的设计 (14) 4.2 行星架的设计 (15) 第五章输入轴的优化设计 (15) 5.1 装配方案的选择 (15) 5.2 尺寸设计 (16) 5.21初步确定轴的最小直径 (16) 5.22根据轴向定位要求确定轴的各段直径和长度 (17) 5.23轴上零件轴向定位 (17) 5.24确定轴上圆角和倒角尺寸 (18) 5.3 输入轴的受力分析 (18) 5.31求输入轴上的功率P、转速n和转矩T (18) 5.32求作用在太阳轮上的力 (18) 5.33求轴上的载荷 (19) 5.4按弯扭合成应力校核轴的强度 (21) 5.5精确校核轴的疲劳强度 (22) 5.6 按静强度条件进行校核 (28) 第六章Solidworks出图 (30) 参考文献 (34)

第一章绪论 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 1.1 行星齿轮传动的特点 行星齿轮传动与其他形式的齿轮传动相比有如下几个特点: (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高,这个特点是由行星齿轮传动的结构等内在因素决定的。 (2)传动比大只要适当的选择行星传动的类型及配齿方案,就可以利用很少的几个齿轮而得到很大的传动比。在不作为动力传动而主要用以传递运动的行星机构中,其传动比可达到几千。此外,行星齿轮传动由于它的三个基本构件都可以传动,故可以实现运动的合成与分解,以及有级和无级变速传动等复杂的运动。 (3)传动效率高由于行星齿轮传动采用了对称的分流传动结构,即它具有数个均匀分布的行星齿轮,使作用于中心轮和转臂轴承中的反作用力相互平衡,有利于提高传动效率。在传动类型选择恰当、结构布置合理的情况下,其效率可达0.97~0.99。 (4)运动平稳、抗冲击和振动的能力较强 由于采用数个相同的行星轮,均匀分布于中心轮周围,从而可使行星轮与转臂的惯性力相互平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抗冲击和振动的能力较强,工作较可靠。 在具有上述特点和优越性的同时,行星齿轮传动也存在一些缺点,如结构形

精密行星减速器设计

引言 本课题研究的是一种精密行星齿轮减速器,通过对精密行星齿轮减速器的结构设计,初步计算出各齿轮的设计尺寸和装配尺寸,并对涉及结果进行参数分析,为精密行星齿轮减速器产品的开发和性能评价实现行星齿轮减速器规模化生产提供了参考和理论依据。通过本设计,要能弄懂该行星减速器的传动原理,达到对所学知识的复习与巩固,从而在以后的工作中能解决类似的问题。 1 减速器国内外现状、水平和发展趋势: 国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。20世纪70-80年代,世界上减速器技术有了很大的发展,且与新技术革命的发展紧密结合。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新。减速器与电动机的一体结构也是大力发展的方向,并已成功生产多种结构和多种功率型号的产品。 国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率和重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国内使用的大型减速器多从国外进口,花去不少的外汇。60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大,体积小、机械效率高等优点,但受其传动的理论的限制,不能传递过大的功率。由于在传动的理论上、工艺水平和材料品质没有突破,因此,没能从根本上解决传动功率大、传动比大、体积小、重量轻、机械效率高等基本要求。90年代初期,国内出现的三环(齿轮)减速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。它的体积和重量都比定轴齿轮减速器轻,结果简单,效率也高。由于该减速器的三轴平行结果,故使功率/体积(或重量)比值仍小。且其输入轴与输出轴不在同一轴线上,这在使用上有许多不便。 减速器技术已经接受了时间的考验,成为当今世界成熟技术之一。其设计与制造技术的发展在一定程度上标志着一个国家的工业技术水平。因此,开拓和发展减速器和齿轮技术在我国有广阔的前景。随着我国改革开放的不断进行,世界级的跨国大公司已开始大举进军中国市场,在我国生产汽车、工程机械、大型成套设备的齿轮及齿轮装置,齿轮产品在我国将会有大量国际品牌加入,这必将促使我国零部件结构的大调整,齿轮生产的专业化集中度也将继续提升。总之,不单单是我国,当今国际上各国减速器及齿轮技术发展的总趋势都在向着六高、二低、二化等方面发展:六高即高承载能力、高齿面硬度、高精度、高速度、高可靠性和高传动效率;二低即低噪声、低成本;二化即标准化、多样化。 齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。在常用的齿轮传动中,普通的圆柱齿轮传动一级传动比小,体积大,结构笨重,普通的涡轮蜗杆传

(完整word版)行星齿轮减速器设计.docx

1引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自 20 世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。 无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就 , 并获得 了许多的研究成果。近 20 多年来,尤其是我国改革开放以来,随着我国科学技术水 平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和 技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力 奋进,使我国的行星传动技术有了迅速的发展[1]。 2设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为p1740KW,输入转速n11000rpm ,传动比为i p35.5, 允许传动比偏差i P0.1,每天要求工作16 小时,要求寿命为 2 年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3设计计算 3.1 选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境 恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为i p17.1, i p 2 5 进行传动。传动简图如图 1 所示:

图1 3.2配齿计算 根据 2X-A 型行星齿轮传动比i p的值和按其配齿计算公式,可得第一级传动的内齿轮b1 , 行星齿轮c1的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮a1数为 17 和行星齿轮数为n p 3 。根据内齿轮z b1i p11z a1 z b17.1 1 17103.7103 对内齿轮齿数进行圆整后,此时实际的P 值与给定的 P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+za 1 =7.0588 zb 1 其传动比误差 ip i 7.17.0588 =5℅ i == ip7.1 根据同心条件可求得行星齿轮c1 的齿数为 z c1z b1z a1 2 43 所求得的 ZC1适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: za1zb1 2= C =40整数 第二级传动比i p2为 5,选择中心齿轮数为23 和行星齿轮数目为3,根据内齿轮zb1

基于UG的行星齿轮减速器齿轮轴的有限元分析和优化

基于UG的行星齿轮减速器齿轮轴的有限元分析和优化 通过常规设计方法设计计算出齿轮轴的结构尺寸,以UG为工具对减速器齿轮轴进行三维实体建模,并运用有限元分析及优化模块进行有限元分析,得到齿轮轴的网格划分图、应力云图。根据有限元分析的结果,结合齿轮轴可靠性优化方法,以重量最小为目标,对齿轮轴的结构尺寸齿宽进行优化。 标签:齿轮轴UG 有限元分析优化 0 引言 行星齿轮减速器因具有体积小、重量轻、承载能力高、结构紧凑、传动效率高等优点而广泛应用于冶金机械、工程机械、轻工机械、起重运输机械、石油化工机械等各个方面。UG软件是集CAD/CAE/CAM为一体的三维化的软件,它是当今最先进的计算机辅助设计、分析、制造软件,广泛应用于航空、航天、汽车、造船、通用机械和电子等工业领域。UG的CAD/CAE/CAM功能模块有复杂的特征建模、装配、运动仿真和有限元分析等功能。实现UG有限元分析功能,必须要遵从UG有限元分析的一般过程,构建有限元模型,其中包括自动网格划分、添加约束与载荷,利用图形的方式得到模型应力、应变的分布情况。机械优化设计,就是在给定的载荷和约束条件下,选择设计变量,建立目标函数并使其获得最优值的一种新的设计方法。 1 齿轮轴几何参数的初选 通过常规设计方法设计计算出齿轮轴的几何参数,齿轮轴的齿形为渐开线直齿。分配减速器传动比,计算齿轮模数,并根据传动比条件、同心条件、装配条件和邻接条件确定齿轮的齿数。齿轮轴的齿轮基本参数如表1所示。 2 齿轮轴的三维建模 利用UG/Modeling模块建立齿轮轴模型,如图1所示(去掉网格后的实体模型)。 2.1 网格划分 网格划分越密集,计算结果越精确,但是这会使计算时间加长。单元网格的划分采用UG自带的3D四面体自动网格划分,单元尺寸为3mm。网格划分情况如图1所示。 图1 齿轮轴的网格划分 2.2 定义材料特性

基于ProE的行星齿轮减速器设计

基于Pro/E的行星齿轮减速器设计 摘要 目前,减速器作为机械传动装置应用日益广泛,但其复杂的结构给设计工作带来了重复性和繁琐性。正基于此,本论文开发了基于Pro/E的渐开线行星齿轮减速器三维参数化CAD系统,通过该系统,用户可以在可视化平台上实现交互式设计,大大提高其设计效率和设计质量,缩短产品的开发周期,也方便了产品后续的运动仿真和有限元分析等,符合现代设计思想的发展要求。 Pro/E系统是3D CAD/CAM实体设计系统,Pro/E最显著的优点是造型功能强,目前在工业设计中已经获得广泛的应用,越来越多的设计人员用Pro/E进行三维设计。 本文主要基于Pro/E设计行星减速器,行星减速器的设计过程主要包括行星传动设计,均载机构的设计计算、轴和轴承的选择计算与校核,Pro/E建模等过程。在本次行星减速器的设计中,由于减速器齿轮传动中的两个内齿轮齿数不相同,而公共行星轮要同时与两个内齿轮相啮合,故行星减速器必须要采用角度变位。在实际中,由于行星减速器由于不可避免的制造和安装误差,以及构件的变形等因素的影响,致使行星轮间的载荷分布是不均匀的,本次设计是基于Pro/E的实体设计,这样就更加直观的发现设计中所存在的问题,并加以优化。关键字:齿轮减速器;行星传动;均载机构;Pro/E

Abstract At present, gear reducer is a mechanical driving device which is extensively applied in mechanism. But designing reducer is a perplexing and iterative process because of its complicated structure. The paper expounds the techniques of building a 3D parametric CAD system of involute planetary reducer based on Pro/E. Through this system, users can interactively design all parts of the reducer on the visual circumstance. This system not only improves designing quality and efficiency, but also be of value to movement simulation and finite element analysis. So it satisfies the development of modern designing. Pro/E is an entity designing system of 3D CAM/CAD. The most notable merit of Pro/E is the powerful function in modeling. And now, it is applied widely in industry design, and used by more and more designers in 3D design. In this paper, the planetary decelerator is design based on the Pro/E. Our works mainly include the design of planetary transmission, calculation of the load balancing mechanism, design of organization calculate, the choice of axle and axletree according to our calculation data, and modeling the whole process using Pro/E. Because of the different numbers of teeth of the two inner gear wheels in the decelerator, and the public planetary gear should mesh with the two inner gear wheel at the same time, so the planetary decelerator must adopt the angle correcting. In reality, because of unavoidable errors in manufacture and installation of the planetary decelerator, and the influence by the factors such as the deformation of component, etc., the non-uniform of the load of the planetary wheels distribution is caused. Based on the entity designing system Pro/E, our design can discover the problems more intuitively and can optimize the design. Key words: Gear decelerator, Planetary transmission, Load balancing mechanism, Pro/E

ANSYS行星齿轮受力分析

基于ANSYS 的行星齿轮传动受力分析 樱木花道1,流川枫 (西南交大峨眉校区机械系,中国峨眉) 摘要 应用有限元理论静态分析,对行星齿轮传动进行结构静力学研究,将solid works 建立的行星齿轮传动的行星架组件的三维实体模型导入ANSYS 中,生成行星架组件的有限元模型,在不影响实际传动力学分析情况下,简化齿轮模型并定义齿轮厚度,在主动齿轮模型上添加移动自由度,进行结构静力学分析,得到行星架组件的应力分布图形,验证行星结构组件结构设计的合理性和正确性。 关键词:行星齿轮传动系统,有限元,ANSYS ,结构静力学分析 Abstract The structure static on planetary gear transmission system is studied by using the Finite Element Analysis , the planetary gear transmission system is built with solid works modeling software, after importing the planet carrier of the planetary gear transmission system into ANSYS, the finite element analyzing is established .Under the circumstance of there is no effect to the actual analysis of the momentum, in short of the gear model, and definite the ply of it, then add the moving degree of freedom to the driving gear model, and analysis the structure statics. And the planet carrier of the stress distribution and displacement distribution are acquired. The structural design is shown to be rational and accurate. Key Word the planetary gear transmission system, the Finite Element, ANSYS, the structure static analysis. 1. 引言 齿轮传动是机械传动中最重要的传动部件,被广 泛的与运用到各个生产领域中,经常用在重要的场合: 传动齿轮在工作过程中受到周期性载荷力的作用,有 可能在标定转速内发生强烈的共振作用,动应力急剧 增加,致使齿轮过早出现扭转疲劳和弯曲疲劳。有必 要对行星齿轮传动啮合齿轮经行静态受力分析,分析 受力集中的部位,便于分析得出齿轮易坏部分相应的 做出相应处理。行星齿轮传动系统集合结构紧凑、传 动比范围大、传动效率高等优点,在各种机器和机械 设备中备受广泛使用。本论文采用有限元ANSYS 对 行星齿轮经行进行静态受力分析,为齿轮的动态设计 等提供有效的方法。 2. 2.1 行星齿轮模型的建立 在有限元分析时应在保证模型准确性前提下尽 量简化模型,必要的力学承载特征应着重分析考 虑,可以只考虑两个齿轮的相互啮合处发生的变形情况,考虑到ANSYS 建模不是很简便,可以在 solid works 下面建立齿轮的模型然后导入到 ANSYS 下面进行结构的静力学分析。装配后导入 到ANSYS 的模型如下图所示。 图一 导入模型 2.2行星齿轮结构有限元确定 齿轮用45号钢制成,本次分析通过SOLIDWORKS 软件建立三维模型并导入ANSYS 分析,选择实体单元中的Solid 4node182才能满足分析要求,并定义正确的实体厚度。 齿轮的齿是主要承受着最大挤压力,因此在两个齿轮的接触部分应该网格细化,齿轮的轴承孔是

相关文档
最新文档