Lab-2:设Vlan(111,222,333,444)

Lab-2:设Vlan(111,222,333,444)

Lab-2:設VLAN(111.,222,333,444),及4條線連上Router的4個fa

1

(完整版)子网划分与VLAN技术详解

子网划分与VLAN技术详解 子网划分 子网划分定义:Internet组织机构定义了五种IP地址,有A、B、C三类地址。A类网络有126个,每个A类网络可能有16777214台主机,它们处于同一广播域。而在同一广播域中有这么多结点是不可能的,网络会因为广播通信而饱和,结果造成16777214个地址大部分没有分配出去。可以把基于类的IP网络进一步分成更小的网络,每个子网由路由器界定并分配一个新的子网网络地址,子网地址是借用基于类的网络地址的主机部分创建的。划分子网后,通过使用掩码,把子网隐藏起来,使得从外部看网络没有变化,这就是子网掩码。 子网掩码 RFC 950定义了子网掩码的使用,子网掩码是一个32位的2进制数,其对应网络地址的所有位置都为1,对应于主机地址的所有位都置为0。由此可知,A类网络的默认子网掩码是255.0.0.0,B类网络的默认子网掩码是255.255.0.0,C类网络的默认子网掩码是255.255.255.0。将子网掩码和IP地址按位进行逻辑“与”运算,得到IP地址的网络地址,剩下的部分就是主机地址,从而区分出任意IP地址中的网络地址和主机地址。子网掩码常用点分十进制表示,我们还可以用网络前缀法表示子网掩码,即“/<网络地址位数>”。如138.96.0.0/16表示B类网络138.96.0.0的子网掩码为255.255.0.0。 路由器判断IP 子网掩码告知路由器,地址的哪一部分是网络地址,哪一部分是主机地址,使路由器正确判断任意IP地址是否是本网段的,从而正确地进行路由。例如,有两台主机,主机一的IP 地址为222.21.160.6,子网掩码为255.255.255.192,主机二的IP地址为222.21.160.73,子网掩码为255.255.255.192。现在主机一要给主机二发送数据,先要判断两个主机是否在同一网段。 主机一 222.21.160.6即:11011110.00010101.10100000.00000110 255.255.255.192即:11111111.11111111.11111111.11000000 按位逻辑与运算结果为:11011110.00010101.10100000.00000000 主机二 222.21.160.73 即:11011110.00010101.10100000.01001001 255.255.255.192即:11111111.11111111.11111111.11000000 按位逻辑与运算结果为:11011110.00010101.10100000.01000000 两个结果不同,也就是说,两台主机不在同一网络,数据需先发送给默认网关,然后再发送给主机二所在网络。那么,假如主机二的子网掩码误设为255.255.255.128,会发生什么情况呢? 让我们将主机二的IP地址与错误的子网掩码相“与”: 222.21.160.73 即:11011110.00010101.10100000.01001001 255.255.255.128即:11111111.11111111.11111111.10000000 结果为11011110.00010101.10100000.00000000 这个结果与主机一的网络地址相同,主机一与主机二将被认为处于同一网络中,数据不

如何从一个mac地址区分出是单播,组播还是广播地址 不同vlan间如何通信

1、如何从一个mac地址区分出是单播,组播还是广播地址? 答:三者是通信的三种方式. 单播是点对点的通信, 两个人之间打电话就是单播,通信主机之间“一对一”的通讯模式,网络中的交换机和路由器对数据只进行转发不进行复制。 单播的优点: 1. 服务器及时响应客户机的请求 2. 服务器针对每个客户不同请求发送不同数据,容易实现个性化服务。 单播的缺点: 1. 在客户数量大、每个客户机流量大的流媒体应用中服务器不堪重负。 2. 现有的网络带宽是金字塔结构,如果全部使用单播协议,将造成网络主干不堪重负。广播是和所有人的通信, 比如你想和一个叫XXX的人说话,但不知道他是谁,也不知道他在哪,就用广播给所有人说:我要和XXX说话,请XXX回答。主机之间“一对所有”的通讯模式,网络对其中每一台主机发出的信号都进行无条件复制并转发,所有主机都可以接收到所有信息(不管你是否需要),由于其不用路径选择,所以其网络成本可以很低廉。 广播的优点: 1. 网络设备简单,维护简单,布网成本低廉 2. 服务器不用向每个客户机单独发送数据,所以服务器流量负载极低。 广播的缺点: 1.无法针对每个客户的要求和时间及时提供个性化服务。 2. 网络允许服务器提供数据的带宽有限,客户端的最大带宽=服务总带宽。也就是说无法向众多客户提供更多样化、更加个性化的服务。 3. 广播禁止在Internet宽带网上传输。 组播给多个人通信但不是所有的人, 比如老师给学生上课. 主机之间“一对一组”的通讯模式,也就是加入了同一个组的主机可以接受到此组内的所有数据,网络中的交换机和路由器只向有需求者复制并转发其所需数据。 组播的优点: 1. 需要相同数据流的客户端加入相同的组共享一条数据流,节省了服务器的负载。具备广播所具备的优点。 2. 由于组播协议是根据接受者的需要对数据流进行复制转发,所以服务端的服务总带宽不受客户接入端带宽的限制。所以其提供的服务可以非常丰富。 3. 此协议和单播协议一样允许在Internet宽带网上传输。 组播的缺点: 1.与单播协议相比没有纠错机制,发生丢包错包后难以弥补,但可以通过一定的容错机制和QOS加以弥补。 2.现行网络虽然都支持组播的传输,但在客户认证、QOS等方面还需要完善,这些缺点在理论上都有成熟的解决方案,只是需要逐步推广应用到现存网络当中。 至于区别, 从MAC地址上来分, MAC地址是6个字节的, 如果全是1就是广播,如果第一个字节是01就是组播啦, 其它的就是单播 2、不同vlan间如何通信? 利用三层交换机实现不同vlan间通信 使在同一VLAN里的计算机系统能跨交换机进行通信,而在不同VLAN里的计算机系统也能进行相互通信。

浅谈VLAN技术(一)

浅谈VLAN技术(一) 摘要:随着网络的不断扩展,接入设备逐渐增多,迫切需要一种技术解决在局域网内部出现的访问冲突与广播风暴一类的问题,VLAN的产生就解决这个问题。本文介绍了VLAN技术的概念、优点,详细描述了VLAN的划分方法,给出了一个简单的公司内部进行VLAN的划分实例。 关键词:VLAN;网络管理 一、VLAN技术概述 VLAN(VirtualLocalAreaNetwork)也就是虚拟局域网,是一种建立在交换技术基础之上的,通过将局域网内的机器设备逻辑地而不是物理地划分成一个个不同的网段,以软件方式实现逻辑工作组的划分与管理的技术。VLAN的作用是使得同一VLAN中的成员间能够互相通信,而不同VLAN之间则是相互隔离的,不同的VLAN间的如果要通信就要通过必要的路由设备。 二、VLAN的优点 (一)可以控制网络广播 在没有应用VLAN技术的局域网内的整个网络都是广播域,这样就使得网内的一台设备发出网络广播时,在局域网内的任何一台设备的接口都能接收到广播,因此当网络内的设备越来越多时,网络上的广播也就越来越多,占用的时间和资源也就越来越多,当广播多到一定的数量时,就会影响到正常的信息的传送。这样就能导致信息延迟,严重的可以造成网络的瘫痪、堵塞,严重的影响了正常的网络应用,这就是所谓的网络风暴。 在应用了VLAN技术的局域网中,缩小了广播的广播域,在一个VLAN中的广播风暴也不会影响到其他的VLAN,从而有效地减少了广播风暴对局域网网络的影响。 (二)增强了网络的安全性 在局域网中应用VLAN技术可以把互相通信比较频繁的用户划分到同一个VLAN中,这样在同一个工作组中的信息传输只在同一个组内广播,从而也减轻了因广播包被截获而引起的信息泄露,增强了网络的安全性。 (三)简化网络管理员的管理工作 在应用VLAN技术后网络管理员就可以轻松的管理网络,灵活构建虚拟工作组。用VLAN可以划分不同的用户到不同的工作组,同一工作组的用户也不必局限于某一固定的物理范围,网络构建和维护更方便灵活。 三、VLAN的划分方法 (一)根据端口来划分VLAN 许多VLAN厂商都利用交换机的端口来划分VLAN成员。被设定的端口都在同一个广播域中。例如,一个交换机的1,2,3,4,5端口被定义为虚拟网AAA,同一交换机的6,7,8端口组成虚拟网BBB。这样做允许各端口之间的通讯,并允许共享型网络的升级。但是,这种划分模式将虚拟网限制在了一台交换机上。 第二代端口VLAN技术允许跨越多个交换机的多个不同端口划分VLAN,不同交换机上的若干个端口可以组成同一个虚拟网。 以交换机端口来划分网络成员,其配置过程简单明了。因此,从目前来看,这种根据端口来划分VLAN的方式仍然是最常用的一种方式。不足之处是不够灵活,当一台机器设备需要从一个端口移动到另一个新的端口,但是新端口与旧端口不在同一个VLAN之中时,要修改端口的VLAN设置,或在用户计算机上重新配置网络地址,这样才能使这台设备加入到新的VLAN。 (二)根据MAC地址划分VLAN 这种划分VLAN方法的最大优点就是当用户物理位置移动时,即从一个交换机换到其他的交换机时,就无需对它进行重新配置,自动把它添加到相应的VLAN中。所以,可以认为这种

VLAN技术原理及方案解析

Vlan技术原理 在数据通信和宽带接入设备里,只要涉及到二层技术的,就会遇到VLAN。而且,通常情况下,VLAN在这些设备中是基本功能。所以不管是刚迈进这个行业的新生,还是已经在这个行业打拼了很多年的前辈,都要熟悉这个技术。在论坛上经常看到讨论各种各样的关于VLAN的问题,在工作中也经常被问起关于VLAN的这样或那样的问题,所以,有了想写一点东西的冲动。 大部分童鞋接触交换这门技术都是从思科技术开始的,讨论的时候也脱离不了思科的影子。值得说明的是,VLAN是一种标准技术,思科在实现VLAN的时候加入了自己的专有名词,这些名词可能不是通用的,尽管它们已经深深印在各位童鞋们的脑海里。本文的描述是从基本原理开始的,有些说法会和思科技术有些出入,当然,也会讲到思科交换中的VLAN。 1. 以太网交换原理 VLAN的概念是基于以太网交换的,所以,为了保持连贯性,还是先从交换原理讲起。不过,这里没有长篇累牍的举例和配置,都是一些最基本的原理。 本节所说的以太网交换原理,是针对‘传统’的以太网交换机来说的。所谓‘传统’,是指不支持VLAN。 简单的讲,以太网交换原理可以概括为‘源地址学习,目的地址转发’。考虑到IP层也涉及到地址问题,为了避免混淆,可以修改为‘源MAC学习,目的MAC转发’。从语文的语法角度来讲,可能还有些问题,就再修改一下‘根据源MAC进行学习,根据目的MAC进行转发’。总之,根据个人习惯了。本人比较喜欢‘源MAC学习,目的MAC转发’的口诀。 稍微解释一下。 所谓的‘源MAC学习’,是指交换机根据收到的以太网帧的帧头中的源MAC地址

来建立自己的MAC地址表,‘学习’是业内的习惯说法,就如同在淘宝上买东西都叫‘宝贝’一样。 所谓的‘目的MAC转发’,是指交换机根据收到的以太网帧的帧头中的目的MAC 地址和本地的MAC地址表来决定如何转发,确定的说,是如何交换。 这个过程大家应该是耳熟能详了。但为了与后面的VLAN描述对比方便,这里还是简单的举个例子。 Figure 1-1: |-------------------------------| | SW1 (Ethernet Switch) | |-------------------------------| | | |port1 |port 2 | | |-------| |-------| | PC1| | PC2| |-------| |-------| 简单描述一下PC1 ping PC2的过程:(这里假设,PC1和PC2位于同一个IP网段,IP地址分别为IP_PC1和IP_PC2,MAC地址分别为MAC_PC1和MAC_PC2) 1). PC1首先发送ARP请求,请求PC2的MAC。目的MAC=FF:FF:FF:FF:FF:FF(广播);源MAC=MAC_PC1。 SW1收到该广播数据帧后,根据帧头中的源MAC地址,首先学习到了PC1的MAC,建立MAC地址表如下: MAC地址端口 MAC_PC1 PORT 1 2). 由于ARP请求为广播帧,所以,SW1向除了PORT1之外的所有UP的端

vlan技能技术总结(知识点)

精心整理 第二周:局域网及vlan技术 一、组建局域网的条件 1.从硬件的角度来说,需要“直连线”网线把本身独立的个人电脑,连接到“交换机”上。 三、端口安全 练习3:为交换机SW2的端口f0/5,设置端口安全,绑定PC5,的mac地址,安全模式设置为“shutdown” SW2(config)#intf0/5//进入到端口F0/5 SW2(config-if)#switchportmodeaccess

//设置端口为数据接入模式 SW2(config-if)#switchportport-security //启动端口安全 SW2(config-if)#switchportport-securitymac-address //为本端口绑定MAC地址 练习5:为交换机SW1连接交换机SW2的端口F0/10设置端口安全,允许最大连接数为“3”,安全模式设置为“protect” SW1(config)#intf0/10 SW1(config-if)#switchportmodetrunk SW1(config-if)#switchportport-security

SW1(config-if)#switchportport-securitymaximum3 //允许端口F0/10最多对应3个MAC地址 SW1(config-if)#switchportport-securityviolationprotect 四、组建虚拟局域网 1.首先,这些处于局域网中的个人电脑能够通信。 2. 3. 4. 5. 6. 7.和f0/2收 8.如何让交换机为端口进行分组: 练习6:把交换机SW1端口f0/1和f0/2分到编号是“10”的虚拟局域网,f0/3和f0/4分到编号是“20”的虚拟局域网。 把交换机“SW2”的f0/5和f0/6分到编号是“20”的虚拟局域网。为交换机相连的端口开启“trunk”

vlan技术(知识点)

第二周:局域网及vlan技术 一、组建局域网的条件 1.从硬件的角度来说,需要“直连线”网线把本身独立的个人电脑,连接到“交换机”上。 2.从软件的角度来说,需要连接到局域网的个人电脑,拥有IP地址。 (1)IP地址的分配,首先要求处于同一个局域网的个人电脑拥有相同的网络位。 (2)其次在拥有相同的网络位的前提先,必须拥有不同的主机位。 (3)处于同一个局域网的电脑拥有相同的“子网掩码”。练习1:组建局域网,局域网中拥有四台电脑,局域网处于192.168.1.0网络中,子网掩码是255.255.255.0 四台电脑的IP地址的主机位分别是“1”、“2”、“3”、“4”。 二、组建多台交换机组成的局域网 1.要求首先每个交换机都能够通过连接,实现自己建立的局域网。 2.交换机之间需要通过“反线”的网线进行连接。 3.多台交换机连接的个人电脑必须处于同一个网段。拥有相同的网络位,不同的主机位,相同的子网掩码。 练习2:组建由两台交换机组成的局域网,网络地址如练习1。

三、端口安全 练习3:为交换机SW2的端口f0/5,设置端口安全,绑定PC5,的mac地址,安全模式设置为“shutdown” SW2(config)#int f0/5 //进入到端口F0/5 SW2(config-if)#switchport mode access //设置端口为数据接入模式 SW2(config-if)#switchport port-security //启动端口安全 SW2(config-if)#switchport port-security mac-address 0010.1158.ECEA //为本端口绑定MAC地址 SW2(config-if)#switchport port-security violation shutdown //设置控制规则为遇到非绑定的MAC地址的数据包的时候,关闭端口。 练习4:为交换机SW2的端口f0/6设置端口安全,绑定PC6的mac地址,安全模式设置为“protect” SW2(config)#int f0/6 //进入端口 SW2(config-if)#switchport mode access //设置端口为数据接入模式 SW2(config-if)#switchport port-security //启动端口安全

交换机组播配置案例

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 交换机组播配置案例 交换机组播配置案例网络拓扑: 主楼实现方式: S6806 与 S2126G 通过 TRUNK 端口直接相连,我们先看一下6 806与S2125G-F5S1的配置(蓝色字部分)。 在以下的配置中会发现,在6806 除了正常启PIM同时还增 加了一条 ip multicast vlan 17 interface Gi3/7 命令用它来指定接口的多播vlan id 号,为什么要指定这个vlan id 号?是因为TRUNK端口在转发数据帧时,它会把tag vlan id 号 标记为端口所属vlan 的id(NATIVE VLAN 除外)。 如下面配置,组播源在vlan100中的,正常TRUNK端口在转发组 播流时,数据帧默认tag vlan id 是100.如果这样的话,当S2126G 收到tag vlan id 100的数据帧,它会检查交换机中是否存在vlan 100 ,如果有向其vlan 转发,如果没有数据帧被丢弃。 所以要把多播vlan id 号指定21交换机存在并且有用户使用的VLAN.这样在S2126G交换机上指定IGMP SNOOPING SVGL VLAN 17, 就可以接收到组播流。 只要保证68指定的接口多播vlan id 与21交换机指定Multicast VLAN相同即可。 教学楼实现方式: S6806 与 S4909 通过 VLAN28 相连,S4909 与 21- s5 通过TRUNK 方式连接。 1/ 16

一文读懂VLAN和VXLAN技术

一文读懂VLAN和VXLAN技术 VLAN(Virtual Local Area Network)的中文名为“虚拟局域网”。VLAN是一种将局域网设备从逻辑上划分成一个个网段,从而实现虚拟工作组的数据交换技术。这一技术主要应用于交换机和路由器中,但主流应用还是在交换机之中。但又不是所有交换机都具有此功能,只有VLAN协议的第二层以上交换机才具有此功能。802.1Q的标准的出现打破了虚拟网依赖于单一厂商的僵局,从一个侧面推动了VLAN的迅速发展。 1、交换机端口工作模式简介 交换机端口有三种工作模式,分别是Access,Hybrid,Trunk。 Access类型的端口只能属于1个VLAN,一般用于连接计算机的端口; Trunk类型的端口可以允许多个VLAN通过,可以接收和发送多个VLAN的报文,一般用于交换机之间连接的端口; Hybrid类型的端口可以允许多个VLAN通过,可以接收和发送多个VLAN的报文,可以用于交换机之间连接,也可以用于连接用户的计算机。 Hybrid端口和Trunk端口在接收数据时,处理方法是一样的,唯一不同之处在于发送数据时:Hybrid端口可以允许多个VLAN的报文发送时不打标签,而Trunk端口只允许缺省VLAN的报文发送时不打标签。 2、基本概念(tag,untag,802.1Q) untag就是普通的ethernet报文,普通PC机的网卡是可以识别这样的报文进行通讯; tag报文结构的变化是在源mac地址和目的mac地址之后,加上了4bytes的vlan信息,也就是vlan tag头;一般来说这样的报文普通PC机的网卡是不能识别的 下图说明了802.1Q封装tag报文帧结构 带802.1Q的帧是在标准以太网帧上插入了4个字节的标识。其中包含: 2个字节的协议标识符(TPID),当前置0x8100的固定值,表明该帧带有802.1Q的标记信息。

VLAN技术详解(免费下载)

VLAN技术详解 1.VLAN的概念 1.1什么是VLAN VLAN(Virtual Local Area Network)又称虚拟局域网,是指在交换局域网的基础上,采用网络管理软件构建的可跨越不同网段、不同网络的端到端的逻辑网络。一个VLAN组成一个逻辑子网,即一个逻辑广播域,它可以覆盖多个网络设备,允许处于不同地理位置的网络用户加入到一个逻辑子网中。VLAN是一种比较新的技术,工作在OSI参考模型的第2层和第3层,VLAN之间的通信是通过第3层的路由器来完成的。 在此让我们先复习一下广播域的概念。广播域,指的是广播帧(目标MAC地址全部为1)所能传递到的范围,亦即能够直接通信的范围。严格地说,并不仅仅是广播帧,多播帧(Multicast Frame)和目标不明的单播帧(Unknown Unicast Frame)也能在同一个广播域中畅行无阻。 本来,二层交换机只能构建单一的广播域,不过使用VLAN功能后,它能够将网络分割成多个广播域。 那么,为什么需要分割广播域呢?那是因为,如果仅有一个广播域,有可能会影响到网络整体的传输性能。具体原因,请参看附图加深理解。 A B 图中,是一个由5台二层交换机(交换机1~5)连接了大量客户机构成的网络。假设这时,计算机A需要与计算机B通信。在基于以太网的通信中,必须在数据帧中指定目标MAC

地址才能正常通信,因此计算机A必须先广播“ARP请求(ARP Request)信息”,来尝试获取计算机B的MAC地址。交换机1收到广播帧(ARP请求)后,会将它转发给除接收端口外的其他所有端口,也就是Flooding了。接着,交换机2收到广播帧后也会Flooding。交换机3、4、5也还会Flooding。最终ARP请求会被转发到同一网络中的所有客户机上。 请大家注意一下,这个ARP请求原本是为了获得计算机B的MAC地址而发出的。也就是说:只要计算机B能收到就万事大吉了。可是事实上,数据帧却传遍整个网络,导致所有的计算机都收到了它。如此一来,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU时间来对它进行处理。造成了网络带宽和CPU运算能力的大量无谓消耗。 广播信息是那么经常发出的吗? 读到这里,您也许会问:广播信息真是那么频繁出现的吗? 答案是:是的!实际上广播帧会非常频繁地出现。利用TCP/IP协议栈通信时,除了前面出现的ARP外,还有可能需要发出DHCP、RIP等很多其他类型的广播信息。 ARP广播,是在需要与其他主机通信时发出的。当客户机请求DHCP服务器分配IP地址时 ,就必须发出DHCP的广播。而使用RIP作为路由协议时,每隔30秒路由器都会对邻近的其他路由器广播一次路由信息。RIP以外的其他路由协议使用多播传输路由信息,这也会被交换机转发(Flooding)。除了TCP/IP以外,NetBEUI、IPX和Apple Talk等协议也经常需要用到广播。例如在Windows下双击打开“网络计算机”时就会发出广播(多播)信息。(Windows XP除外……) 总之,广播就在我们身边。下面是一些常见的广播通信: ● ARP请求:建立IP地址和MAC地址的映射关系。 ● RIP:选路信息协议(Routing Infromation Protocol)。 ● DHCP:用于自动设定IP地址的协议。 ● NetBEUI:Windows下使用的网络协议。 ● IPX:Novell Netware使用的网络协议。 ● Apple Talk:苹果公司的Macintosh计算机使用的网络协议。 1.2 VLAN的实现机制 在理解了“为什么需要VLAN”之后,接下来让我们来了解一下交换机是如何使用VLAN分割广播域的。首先,在一台未设置任何VLAN的二层交换机上,任何广播帧都会被转发给除接收端口外的所有其他端口(Flooding)。例如,计算机A发送广播信息后,会被转发给端口2、3、4。

组播VLAN配置实验

基于子VLAN的组播VLAN配置举例 1. 组网需求 Router A通过端口GigabitEthernet1/0/1 连接组播源(Source),通过端口GigabitEthernet1/0/2 连接Switch A;Router A上运行IGMPv2,Switch A~Switch C上都运行版本2 的IGMP Snooping,并由Router A充当IGMP查询器。组播源向组播组224.1.1.1 发送组播数据,Host A~Host D 都是该组播组的接收者(Receiver),分别属于VLAN 2~VLAN 5。通过在Switch A 上配置基于子VLAN 的组播VLAN,使Router A 通过组播VLAN 向Switch A下分属不同用户VLAN 的主机分发组播数据。 2. 组网图 3. 配置步骤 (1) 配置IP 地址 请按照图配置各接口的IP地址和子网掩码,具体配置过程略。 (2) 配置Router A

# 使能IP 组播路由,在各接口上使能PIM-DM,并在主机侧端口GigabitEthernet1/0/2 上使能IGMP。 system-view [RouterA] multicast routing-enable [RouterA] interface gigabitethernet 1/0/1 [RouterA-GigabitEthernet1/0/1] pim dm 1-7 [RouterA-GigabitEthernet1/0/1] quit [RouterA] interface gigabitethernet 1/0/2 [RouterA-GigabitEthernet1/0/2] pim dm [RouterA-GigabitEthernet1/0/2] igmp enable (3) 配置Switch A # 全局使能IGMP Snooping。 system-view [SwitchA] igmp-snooping [SwitchA-igmp-snooping] quit # 创建VLAN 2~VLAN 5。 [SwitchA] vlan 2 to 5 # 配置端口GigabitEthernet1/0/2 为Trunk 端口,并允许VLAN 2 和VLAN 3 通过。[SwitchA] interface gigabitethernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-type trunk [SwitchA-GigabitEthernet1/0/2] port trunk permit vlan 2 3 [SwitchA-GigabitEthernet1/0/2] quit # 配置端口GigabitEthernet1/0/3 为Trunk 端口,并允许VLAN 4 和VLAN 5 通过。[SwitchA] interface gigabitethernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-type trunk [SwitchA-GigabitEthernet1/0/3] port trunk permit vlan 4 5 [SwitchA-GigabitEthernet1/0/3] quit # 创建VLAN 10,把端口GigabitEthernet1/0/1 添加到该VLAN 中,并在该VLAN 内使能IGMP Snooping。 [SwitchA] vlan 10 [SwitchA-vlan10] port gigabitethernet 1/0/1 [SwitchA-vlan10] igmp-snooping enable [SwitchA-vlan10] quit # 配置VLAN 10 为组播VLAN,并把VLAN 2~VLAN 5 都配置为该组播VLAN 的子VLAN。[SwitchA] multicast-vlan 10 [SwitchA-mvlan-10] subvlan 2 to 5 [SwitchA-mvlan-10] quit

DA000005 VLAN技术原理ISSUE1.0

课程 DA000005 VLAN技术原理 ISSUE 1.0

目录 课程说明 (1) 课程介绍 (1) 课程目标 (1) 第1章虚拟局域网(VLAN)概述 (2) 1.1 VLAN的产生 (2) 1.2 VLAN的类型 (6) 1.2.1 基于端口的VLAN (6) 1.2.2基于MAC地址的VLAN (7) 1.2.3基于协议的VLAN (8) 1.2.4基于子网的VLAN (9) 第2章 IEEE802.1Q协议 (10) 2.1 协议概述 (10) 2.2 VLAN帧格式 (11) 2.3 VLAN链路 (12) 2.3.1 VLAN链路的类型 (12) 2.3.2 VLAN帧在网络中的通信 (14) 2.3.3 Trunk和VLAN (15)

课程说明 课程介绍 本课程介绍虚拟局域网(VLAN)的原理,VLAN 在功能和操作上与传统LAN 基本相同,可以提供一定范围内终端系统的互联。IEEE于1999年颁布了用 以标准化VLAN实现方案的802.1Q协议标准草案。 课程目标 完成本课程的学习后,您应该能够: ●了解VLAN 产生的原因 ●了解划分VLAN的方法 ●掌握VLAN的帧格式 ●掌握以太网帧在通信过程中的变化

第1章虚拟局域网(VLAN)概述 1.1 VLAN的产生 传统的局域网使用的是HUB,HUB只有一根总线,一根总线就是一个冲突域。 所以传统的局域网是一个扁平的网络,一个局域网属于同一个冲突域。任何 一台主机发出的报文都会被同一冲突域中的所有其它机器接收到。后来,组 网时使用网桥(二层交换机)代替集线器(HUB),每个端口可以看成是一 根单独的总线,冲突域缩小到每个端口,使得网络发送单播报文的效率大大 提高,极大地提高了二层网络的性能。但是网络中所有端口仍然处于同一个 广播域,网桥在传递广播报文的时候依然要将广播报文复制多份,发送到网 络的各个角落。随着网络规模的扩大,网络中的广播报文越来越多,广播报 文占用的网络资源越来越多,严重影响网络性能,这就是所谓的广播风暴的 问题。 由于网桥二层网络工作原理的限制,网桥对广播风暴的问题无能为力。为了 提高网络的效率,一般需要将网络进行分段:把一个大的广播域划分成几个 小的广播域。

VLAN技术深度详解

Vlan 技术详解 什么是VLAN ? VLAN (Virtual LAN ),翻译成中文是“虚拟局域网”。LAN 可以是由少数几台家用计算机构成的网络,也可以是数以百计的计算机构成的企业网络。VLAN 所指的LAN 特指使用路由器分割的网络——也就是广播域。 在此让我们先复习一下广播域的概念。广播域,指的是广播帧(目标MAC 地址全部为1)所能传递到的范围,亦即能够直接通信的范围。严格地说,并不仅仅是广播帧,多播帧(Multicast Frame )和目标不明的单播帧(Unknown Unicast Frame )也能在同一个广播域中畅行无阻。 本来,二层交换机只能构建单一的广播域,不过使用VLAN 功能后,它能够将网络分割成多个广播域。 未分割广播域时…… 那么,为什么需要分割广播域呢?那是因为,如果仅有一个广播域,有可能会影响到网络整体的传输性能。具体原因,请参看附图加深理解。 图中,是一个由5台二层交换机(交换机1~5)连接了大量客户机构成的网络。假设这时,计算机A 需要与计算机B 通信。在基于以太网的通信中,必须在数据帧中指定目标MAC 地址才能正常通信,因此计算机A 必须先广播“ARP 请求(ARP Request )信息”,来尝试获取计算机B 的MAC 地址。 交换机1收到广播帧(ARP 请求)后,会将它转发给除接收端口外的其他所有端口,也就 交换机1 交换机2 交换机3 交换机4 交换机5 …… …… …… A B

是Flooding 了。接着,交换机2收到广播帧后也会Flooding 。交换机3、4、5也还会Flooding 。最终ARP 请求会被转发到同一网络中的所有客户机上。 请大家注意一下,这个ARP 请求原本是为了获得计算机B 的MAC 地址而发出的。也就是说:只要计算机B 能收到就万事大吉了。可是事实上,数据帧却传遍整个网络,导致所有的计算机都收到了它。如此一来,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU 时间来对它进行处理。造成了网络带宽和CPU 运算能力的大量无谓消耗。 广播信息是那么经常发出的吗? 读到这里,您也许会问:广播信息真是那么频繁出现的吗? 答案是:是的!实际上广播帧会非常频繁地出现。利用TCP/IP 协议栈通信时,除了前面出现的ARP 外,还有可能需要发出DHCP 、RIP 等很多其他类型的广播信息。 ARP 广播,是在需要与其他主机通信时发出的。当客户机请求DHCP 服务器分配IP 地址时 ,就必须发出DHCP 的广播。而使用RIP 作为路由协议时,每隔30秒路由器都会对邻近的其他路由器广播一次路由信息。RIP 以外的其他路由协议使用多播传输路由信息,这也会被交换机转发(Flooding )。除了TCP/IP 以外,NetBEUI 、IPX 和Apple Talk 等协议也经常需要用到广播。例如在Windows 下双击打开“网络计算机”时就会发出广播(多播)信息。(Windows XP 除外……) 总之,广播就在我们身边。下面是一些常见的广播通信: 交换机1 交换机2 交换机3 交换机4 交换机5 …… …… …… ARP Request Broadcast 广播帧会传播到网络中的每一台主机, 并且对每一台计算机的CPU 造成负担。

VLAN 选择 (VLAN Select) 和组播优 化功能部署指南

VLAN 选择(VLAN Select) 和组播优化功能部署指南 目录 简介 (2) 先决条件 (2) 要求 (2) 平台支持 (2) VLAN选择功能概述 (2) 组播优化 (6) 通过CLI和GUI的配置步骤 (7) 应用接口组到WLAN (9) AP组和AAA覆盖 (10) 映射接口组到外部WLC (10) 在接口组配置三层组播 (12) 在接口组配置二层组播 (13)

简介 本文介绍了VLAN选择(VLAN Select)功能,该功能在无线局域网控制器(WLC)7.0.116.0版本中引入。本文还讨论了如何在思科统一无线解决方案中部署此功能。 先决条件 要求 思科建议您熟悉掌握下面主题的知识: ?思科统一无线网络解决方案(Cisco Unified Wireless Solution) 平台支持 所有具备16MB以上闪存空间的轻量级无线接入点(LAP)均支持此功能。 LAP支持:1120,1230,1130,1140,1240,1250,1260,3500和1522/1524 控制器支持:7500,5508,4402,4404,WiSM,WiSM-2,2500,2106,2112,2125 注:控制器将支持如下的这些接口组/接口数目: WiSM-2, 5508, 7500, 2500 -- 64/64 WiSM, 4400, 4200 –- 32/32 2100 和NM6系列-- 4/4 本文档中的资料是从一个特定实验室环境中的设备上生成的。本文档中使用的所有设备以缺省(默认)配置开始配置。如果您的网络是正在使用的生产系统,请确保您了解所有命令带来的潜在影响。 VLAN选择功能概述

华为交换机QINQ+组播vlan配置

华为交换机QINQ+组播vlan配置 达川广电-冷静 一、 拓扑图 IPTV机顶盒互动点播业务采用IPoE方式获取IP地址,部署有QinQ,内层3900,外层3999;直播业务采用组播方式,组播vlan 号4000。 二、 具体配置 1.S3700: 组播配置: igmp-snooping enable vlan 4000 igmp-snooping enable

multicast-vlan enable multicast-vlan user-vlan 3900 quit vlan 3900 igmp-snooping enable quit 上联口配置: interface GigabitEthernet0/0/1 description S7706 port link-type trunk undo port trunk allow-pass vlan 1 port trunk allow-pass vlan 3999 to 4000 quit 下行口配置: interface Ethernet0/0/24 qinq vlan-translation enable port hybrid tagged vlan 3900 port hybrid untagged vlan 3999 port vlan-stacking vlan 3900 to 3999 stack-vlan 3999 quit 2.S2700: 组播配置:

igmp-snooping enable vlan 3900 igmp-snooping enable quit 上联口配置: interface GigabitEthernet0/0/1 port link-type trunk port trunk allow-pass vlan 777 3900 undo port trunk allow-pass vlan 1 quit 下行口配置: interface Ethernet0/0/2 port hybrid pvid vlan 3900 port hybrid untagged vlan 3900 quit 三、 业务验证 disp igmp-snooping port-info ----------------------------------------------------------------------- (Source, Group) Port Flag Flag: S:Static D:Dynamic M: Ssm-mapping ----------------------------------------------------------------------- VLAN 3900, 1 Entry(s) (*, 239.131.1.14) Eth0/0/2 -D- 1 port(s) ----------------------------------------------------------------------- disp igmp-snooping router-port vlan 3900 Port Name UpTime Expires Flags ---------------------------------------------------------------------

超级vlan技术介绍

Super—vlan技术详解 在传统的VLAN间路由中,我们需要每个VLAN配置一个IP地址,作为此VLAN的网关,以实现三层路由;此方法中,每个VLAN都是一个子网,子网号不能为主机所用,此子网需要分配一个IP地址作为网关,还有一个IP地址作为定向广播地址,如果VLAN中的主机不需要那么多IP地址,那此子网内的剩余IP地址,也不能分配给其它VLAN的主机使用,造成极大的浪费。就算是使用VLSM分配IP地址,每个VLAN也至少浪费三个IP地址,如果有几十或上百个VLAN,那会浪费大量的IP地址。在此这种情况下,为节约IP地址,提出Super VLAN的概念。Super VLAN又称VLAN聚合,其原理是一个Super VLAN包含多个Sub VLAN,每个Sub VLAN是一个广播域,不同Sub VLAN之间二层相互隔离。Super VLAN可以配置三层接口,Sub VLAN不能配置三层接口。当Sub VLAN 内的用户需要进行三层通信时,将使用Super VLAN三层接口的IP地址作为网关地址,通过ARP 代理可以进行ARP 请求和响应报文的转发与处理,从而实现了二层隔离端口间的三层互通。这样多个Sub VLAN共用一个IP网段,从而节省了IP地址资源。 Super VLAN只建立三层接口,不包含物理端口,可以看到成是一个逻辑的三层接口,若干sub-VLAN的集合。sub-VLAN 则只包含物理端口,但不能建立三层VLAN虚接口.它的三层通信依靠super-vlan来实现。 与原来的VLAN间路由不通,原本的三层交换可以根据各自的网关进行,但是现在所有的sub-vlan都属于同一个网段,则就处于不同的sub-vlan通信时,会认在同一个网段,会做二层转发,而不会进行三层转发,但是二层转发是被VLAN隔离了,这就造成sub-vlan间不能通信。解决方法就是代理ARP。 代理ARP的工作原理: 源主机认为目标主机与自己在同一网段,广播发送ARP请求。 与源主机网络相连的网关已经使能ARP PROXY功能,如果存在到达目的主机的正常路由,则代替目的主机REPL Y 自己接口的MAC地址; 源主机向目的主机发送的IP报文都发给了路由器; 路由器对报文做正常的IP路由转发; 发往目的主机的IP报文通过网络,最终到达目的主机。 三层通信原理 PC1:192.168.10.10 MAC=PC1MAC与PC2:192.168.10.20 MAC=PC2MAC的通信过程: 首先PC1与PC2通信,通过对方IP和自己的子网掩码进行与运算,发现在同一个网段,所以广播发送ARP请求(DMC=FFF:FFF:FFF,SMAC=PC1MAC,ARP字段中SMAC=PC1MAC,SIP=192.168.10.10 DMAC=000:000:000 DIP=192.168.10.20),SW2收到后学习SMAC(PC1MAC),同时向VLAN10 里广播,SW3收到后也学习SMAC(PC1MAC),同时向VLAN10里广播,并抄送一份给接口板的ARP模块,经过接口板ARP的分析,发现它来自SubVLAN,就将此ARP请求报文交给主控板ARP模块处理。主控板ARP首先在ARP表中查找ARP请求报文中的目的IP地址,假如找到对应项,看看目的IP地址是不是在SubVLAN10中,是就丢弃该报文,不是就将SuperVLAN5的MAC地址应答给PC1,完成代理工作(DMC=PC1MAC,SMAC=VLAN5MAC,ARP字段SMAC=VLAN5MAC,SIP=192.168.10.10,DMAC=PC1MAC,DIP=192.168.10.20)。假如在ARP表中没有找到对应项,主控板ARP就查VLAN聚合与VLAN的逻辑映射表,知道Sub-VLAN10属于Super-VLAN5,将此报文中的源MAC地址替换成SuperVLAN5的MAC地址,VLAN ID的值由10分别替换成属于SuperVLAN3的其它Sub-VLAN的值,之后逐个向属于此SuperVLAN的其它Sub-VLAN(本例中为Sub-VLAN20)广播,并同时将此请求报文中的信息学习加入动态ARP表中。此后若收到PC2的ARP应答报文(其目的MAC地址为Super-VLAN5的MAC地址),主控板ARP模块发现此ARP应答报文的VLAN ID是Sub-VLAN20,即PC2位于Sub-VLAN20中,主控板CPU根据应答报文中的信息,搜索ARP表中的各项,找到对应项后把SuperVLAN5对应的MAC地址通过ARP应答报文回给PC1(若PC2位于Sub-VLAN10,PC2响应的ARP应答报文直接通过二层转发回给PC1,交换机就不再应答)。同时在接口板上将SubVLAN20中的响应报文信息记录在ARP表及FIB表中,以后再收到来自主机X的报文就可以通过查询FIB表进行三层转发了。二层通信原理 因为super-vlan并不包含物理端口,是一个逻辑的三层接口,所以实际上不会有带有super-vlan的VLAN标记的报文。就算是有super-vlan的VLAN标记的报文过来,但由于trunk上不允许super vlan的VLAN标记的报文通过。所以二层通信与原来的通信是一样的。 与外部PC通信原理 PC1=192.168.1.10/24 MAC=PC1MAC PC3=1.1.1.10/24 MAC=PC3MAC 首先PC1与PC3通信,通过目标IP与PC1的子网掩码进行与运算,发现不在同一个网段,则应该将数据发送给网

相关文档
最新文档