自然界中的对称性问题

自然界中的对称性问题
自然界中的对称性问题

自然界中的对称性问题

“对称”一词最早出现在公元前5世纪,是古希腊的雕塑家波利克里托斯在一本讨论雕塑中的理想比例关系的著作中提出的.关于对称的解释,可谓仁者见仁,智者见智.毕达哥拉斯学派认为,平面中的圆形,空间中的球体是最完美的几何图形,因为它们有着全部的旋转对称性.弗赖指出:对称意味着静止和约束,不对称意味着运动和松弛;前者有秩序和规律,后者却任意和偶然;前者拘于形式上的刻板和约束,而后者有生气、有变化、有自由.美国教育家波利亚说:一个整体具有几个可以互换的部分,就可以称之为对称的.赫尔蔓·外尔认为:对称性一词在日常生活中有两种含义.一种含义是对称的即意味着是非常匀称和协调的,另一种含义是对称性则表示结合成整体的好几部分之间所具有的那种和谐性.优美是和对称性紧密相关的.徐一鸿认为:如果对一个几何图形进行某种操作,而图形保持不变,那么图形对这种操作是对称的.对称(Symmetry)韦氏大字典中的诠释是:“比例均衡、匀称…”,其涵义和艺术的审美观相联,大自然在最基础的根基上是按美来设计的.在千变万化、缤纷多姿的表象中潜藏着内在深邃的美——简捷、对称、和谐塑造了世界.

在艺术里由向对称与和谐的古典美挑战的印象派开始的新潮流.在音乐领域中,印象派音乐的遭遇比较起来就要好得多,虽然在结构和主题发展的原则上偏离了传统,但是它的始创者德彪西的和声与旋律的巨大天才很快就征服了传统的听众,使他们领略到这个流派带来的前所未曾感受过的美.往后在斯特拉文斯基作曲的芭蕾舞剧《春之祭》的首演上,怪异的旋律、不协的和声以及耳朵不习惯的配器,引来喝倒采的喊叫声和口哨声响成一片,赞成的和反对的观众当场殴打起来,台上的舞蹈演员根本听不到乐队在奏什么.然而现在回过头看,莫奈、雷诺阿、德加、德彪西、斯特拉文斯基的作品都已经成为新的"古典",如果就从一个新的角度描写了本来在自然就存在的现实来说,和谐与不和谐、对称与不对称,本来都是客观存在的,何况最初时的不对称与不和谐是作为小量引入对称与和谐之中的,当年引起的骚乱和大惊小怪倒是有点难以理解的了.

1953年,两位年轻的科学家克里克和沃森发现了生命是共轭的,而且是双共轭,并且是双共轭编码:DNA的基本结构是由两条核苷酸链组成的双螺旋结构,即由于构成DNA分子的四种核苷酸之间有严格的两两配对关系,根据双股螺旋DNA分子的一个单股为模板合成另一个单股必然形成另一个和原来的DNA分子完全相同的双股DNA分子.双螺旋结构理论解开了缠绕在遗传学上的诸多死结,成为20世纪生命科学最重要的转折点,克里克和沃森于1962年获得了诺贝尔奖.

Gross说过:“自然界的秘密在于对称性.”科学家从晶体开始研究对称性,发现了一

些重要的性质:在二维平面上,平移不变的单元一共只有17种;在三维空间中,平移不变的单元一共只有230种;晶体结构相同而化学成分不同的晶体,有许多性质是相似的;反之,化学成分相同而晶体结构不同的物质,可以具有非常不同的性质.晶体结构的对称性对物理性质有重要作用.研究对称性的数学工具是群论,它不仅对晶体学起了巨大的推动作用,而且成为研究分子、原子、核子以及基本粒子对称性极为重要的工具.在自然界中对称性的例子很多,例如:1,虽然没有两片雪花是相同的,但均为六重旋转对称,即绕中心旋转600图形不变;2,五瓣的梅花是五重旋转对称,十字花科的四瓣花朵均为四重旋转对称,如此等等.事物的变化归根到底是事物空间位置的变化和在此基础上的衍生变化而事物的空间位置可复原的,如:3,核子的空间位置是变化的且变化是可逆的,核子之间可以聚变还可以裂变,电子的空间位置是变化的且变化是可逆的,化学反应中氧化还原化应.4,原子的空间位置是变化的且变化是可逆的,离子的空间位置是变化的且变化是可逆的,如化合分解反应;5,分子的空间位置是变化的且变化是可逆的,如氧和红细胞给合又可以和它分开;6,细胞的空间位置的改变是可逆的,如血液循环;7,多细胞个体的空间位置的改变是可逆的,如人上下班;8,生物群体的空间位置是变化的且变化是可逆的,如物种的迁移.9,生态系统,生物圈的空间位置是变化的且变化是可逆的,如大陆漂移;10,地球的空间位置是变化的且变化是可逆的,昼夜循环,四季更替;11,地月系,太阳系,银河系,总星系的空间位置是变化的且变化是可逆的.

物理中的小孔成像、平面镜成像、光的反射、简谐振动等都体现着丰富的对称思想.化学中的苯环就是典型的轴对称图形,也是中心对称图形.生物学作为宇宙万物的缩影,更体现着宇宙中固有的形形色色的对称:大部分植物的叶子要么成轴对称图形,要么按照黄金分割比长出,动物中类似蜈蚣中间部分的平移对称性,鹦鹉螺的壳所体现的不连续群的对称性,圆盘水母的中心对称性等都包含着深刻的对称思想.杨振宁:“对称,非常重要,非常基本,哲学家、科学家很自然会广泛应用.”李政道:“艺术与科学,都是对称与不对称的巧妙组合.”“对称的世界是美妙的,而世界的丰富多彩又常在于它不那么对称.”

北京--正弦函数图象的对称性(檀晋轩)CASIO

课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性 教材:人教版全日制普通高级中学数学教科书(必修)第一册(下) 【教学目标】 1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式 x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正 弦函数的对称性. 2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力. 3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识. 【教学重点】 正弦函数图象的对称性及其代数表示形式. 【教学难点】 用等式表示正弦函数图象关于直线2 π =x 对称和关于点)0,(π对称. 【教学方法】 教师启发引导与学生自主探究相结合. 【教学手段】 计算机、图形计算器(学生人手一台). 【教学过程】 一、复习引入 1.展示生活实例 对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图). 2.复习对称概念

初中我们已经学习过轴对称图形和中心对称图形的有关概念: 轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合. 3.作图观察 请同学们用图形计算器画出正弦函数的图象(见右图),仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形? 4.猜想图形性质 经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书) 如何检验猜想是否正确? 我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明. 今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题) 二、探究新知 分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质. (一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线2 π =x 对称的研究. 1.直观探索——利用图形计算器的绘图功能进行探索 请同学们在同一坐标系中画出正弦曲线和直线 2 π = x 的图象,选择恰当窗口并充分利用画图功能对问 题进行探索研究(见右图),在直线2 π =x 两侧正弦函 数值有什么变化规律? 给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在2 π =x 左右对称取值时,正 弦函数值相等.

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

高中数学中对称性问题

标准文档 实用文案对称性与周期性 函数对称性、周期性的判断 1.函数()yfx?有()()faxfbx???(若等式两端的两自变量相加为常数,如 ()()axbxab?????),则()fx的图像关于2abx??轴对称;当ab?时,若()() (()(2))faxfaxfxfax?????或,则()fx关于xa?轴对称; 2.函数()yfx?有()()fxafxb???(若等式两端的两自变量相减为常数,如 ()()xaxbab?????),则()fx是周期函数,其周期Tab??;当ab?时,若 ()()fxafxa???,则()fx是周期函数,其周期2Ta?; 3.函数()yfx?的图像关于点(,)Pab对称?()(2)2 (()=2(2))fxfaxbfxbfax?????或;函数()yfx?的图像关于点(,0)Pa对称? ()=(2) fxfax??( ()=())faxfax???或; 4.奇函数()yfx?的图像关于点(,0)Pa对称?()yfx?是周期函数,且2Ta?是函数的一个周期;偶函数()yfx?的图像关于点(,0)Pa对称?()yfx?是周期函数,且 4Ta?是函数的一个周期; 5.奇函数()yfx?的图像关于直线xa?对称?()yfx?是周期函数,且4Ta?是函数的一个周期;偶函数()yfx?的图像关于直线xa?对称?()yfx?是周期函数,且2Ta?是函数的一个周期; 6.函数()yfx?的图像关于点(,0)Ma和点(,0)Nb对称?函数()yfx?是周期函数,且2()Tab??是函数的一个周期; 7.函数()yfx?的图像关于直线xa?和直线xb?对称?函数()yfx?是周期函数,且 2()Tab??是函数的一个周期。 标准文档

简谐运动的对称性

简谐运动的对称性 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等).理解好对称性这一点对解决有关问题很有帮助。 下面我们分别从五个方面说明对称性在简谐运动中的应用: 一、运动时间的对称性 例1.如下图所示,一个质点在平衡位置O点附近做简谐运动,若从O开始计时,经过3s质点第一次过M点;再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点所需要的时间是() A. 8s B. 4s C. 14s D. s 3 10 【解析】设图中a、b两点为质点运动过程中的最大位移处,若开始计时时刻质点从O点向右运动, O→M运动过程历时3s,M→b→M过程历时2s,由运动时间的对称性知: s 16 T,s4 4 T = = 质点第三次经 过M点所需时间:△s 14 s2 s 16 s2 T t= - = - =,故C正确;若开始计时时刻质点从O点向左运动,O →a→O→M,运动过程历时3s,M→b→M过程历时2s,有: s 3 16 T,s4 4 T 2 T = = + ,质点第三次经过M 点所需时间: △ s 3 10 s2 s 3 16 s2 T t= - = - = ,故D正确,应选CD。 二、速度的对称性 例2.做简谐运动的弹簧振子,其质量为m,运动过程中的最大速率为v,从某一时刻算起,在半个周 期内() A. 弹力做的功一定为零 B. 弹力做的功可能是0到 2 mv 2 1 之间的某一值 C. 弹力的冲量一定为零 D. 弹力的冲量可能是0到2mv之间的某一值 【解析】由速度的对称性知,无论从什么时刻开始计时,振子半个周期后的速度与原来的速度大小 相等,方向相反。由动能定理知,半个周期内弹力做的功为零,A正确;半个周期内振子速度变化量的 最大值为2mv。由动量定理知,弹力的冲量为0到2mv之间的某一值,故D正确,应选AD。 三、位移的对称性 例3.一弹簧振子做简谐动动,周期为T,则下列说法中正确的是()

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴与对称中心 Revised on November 25, 2020

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

高中数学中对称性问题总结.doc

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

简谐运动典型例题

一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在内的振动图象,下列正确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6 )cm 则该振子振动的振幅和周期为 ( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 1 2 3 4 5 x/cm t/s 1 2 4 -2

6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) A .mg +k A B .mg -Ka C .kA D .kA -mg 4.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以某时刻作为计时起点,即t =0,其振动图象如图所示,则( ) A .t =14T 时,货物对车厢底板的压力最大 B .t =1 2T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =3 4T 时,货物对车厢底板的压力最小 5.弹簧振子的质量为,弹簧劲度系数为,在振子上放一质量为m 的木块,使两者一起振动,如图。木块的回复力是振子对木块的摩擦力,也满足,是弹簧的伸长(或压缩)量,那么为( ) A . B . C . D . 6、一个弹簧振子,第一次被压缩x 后释放做自由振动,周期为T 1,第二次被压缩2x 后释放做自由振动,周期为T 2,则两次振动周期之比T 1∶T 2为 ( ) A .1∶1 B .1∶2 C .2∶1 D .1∶4

正弦函数图象的对称轴与对称中心

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 函数)sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为 2 π π+ =k y ,对称中心点为(0,πk ),其中 Z k ∈。 正弦型函数)sin(?ω+=x A y 是由正弦函数 x y sin =演变而成。 一般只要知道正弦函数x y sin =图象的对称轴与对称中心就可以快速准确的求出正弦型函数

高中数学中的对称性问题

高中数学中的对称性与周期性 一、函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 7函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。 二、关于点对称 (1) 点关于点的对称点问题 若点A 11(,)x y , B 22(,)x y , 则线段AB 中点M 的坐标是( 1212 ,22 x x y y ++);据此可以解求点与点的中心对称,即求点M 00(,)x y 关于点P (,)a b 的对称点' M 的坐标(,)x y ,利用中点坐标公式可得 00, 22 x x y y a b ++= =,解算的' M 的坐标为00(2, 2)a x b y --。

高中物理中的对称性模型

对称性模型 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中,应用这种对称性它不仅能帮助我们认识和探索物质世界的某些规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中为对称法,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快捷简便地解决问题。 对称法作为一种具体的解题方法,虽然高考命题没有单独正面考查,但是在每年的高考命题中都有所渗透和体现。从侧面体现考生的直观思维能力和客观的猜想推理能力。所以作为一种重要的物理思想和方法,相信在今后的高考命题中必将有所体现。 在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等). 现将对称模型分为空间对称模型和时间对称模型 1、空间对称模型 例1:如图1所示:在离地高度是h,离竖直光滑的墙是 s处,有一个弹性小 1 球以初速度 v正对着墙水平抛出,与墙发生弹性碰撞后落到地面上,求小球落地 点与墙的距离。 【解析】:小球与墙的碰撞是弹性碰撞,碰撞前后 的动量对于墙面的的法线是对称的。如墙的另一面同一高 度有一个弹性小球以相同的速度与墙碰撞,由于对称性, 它的轨迹与小球的实际轨迹是对称的。因此碰前的轨迹与碰

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴 与对称中心 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

高中数学点线对称问题

对称问题专题 【知识要点】 1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下: 设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有 x x y y -'-'·k =-1, 2 y y +'=k ·20x x +'+b , 特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0). 3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0. (2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(x ,y ),则由(2)知,P 与P ′的坐标满足 x x y y --·k =-1, 2 0y y +=k ·20x x ++b , 代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0.利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程. 4.两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x ). 【典型例题】 【例1】 求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程. 剖析:由平面几何知识可知若直线a 、b 关于直线l 对称,它们具有下列几何性质:(1)若a 、b 相交,则l 是a 、b 交角的平分线;(2)若点A 在直线a 上,那么A 关于直线l 的对称点B 一定在直线b 上,这时AB ⊥l ,并且AB 的中点D 在l 上;(3)a 以l 为轴旋转180°,一定与b 重合.使用这些性质,可以找出直线b 的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程. 2x +y -4=0, 3x +4y -1=0, 可求出x ′、y ′. 从中解出x 0、y 0, 解:由 解得a 与l 的交点E (3,-2),E 点也在b 上

简谐运动的对称性

简谐运动的对称性 It was last revised on January 2, 2021

简谐运动的对称性在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性. 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。(从某点到达最大位置和从最大位置再回到这一点所需要的时间相等、从某点向平衡位置运动的时间和它从平衡位置运动到这一点的对称点所用的时间相等).理解好对称性这一点对解决有关问题很有帮助。 下面我们分别从五个方面说明对称性在简谐运动中的应用: 一、运动时间的对称性 例1.如下图所示,一个质点在平衡位置O 点附近做简谐运动,若从O开始计时,经过3s 质点第一次过M点;再继续运动,又经过2s 它第二次经过M点;则该质点第三次经过M点所需要的时间是() A. 8s B. 4s C. 14s D. s 3 10 【解析】设图中a、b两点为质点运动过程中的最大位移处,若开始计时时刻质点从O点向右运动,O→M运动过程历时3s,M→b→M过程历时2s,由运动时间的对称性知: s 16 T,s4 4 T = = 质点第三次经过M点所需时间:△s 14 s2 s 16 s2 T t= - = - =,故C正确;若开始计时时刻质点从O点向左运动,O →a→O→M,运动过程历时3s,M→b→M过程历时2s,有: s 3 16 T,s4 4 T 2 T = = + ,质点第三次经过M点所需时间: △ s 3 10 s2 s 3 16 s2 T t= - = - = ,故D正确,应选CD。 二、速度的对称性 例2.做简谐运动的弹簧振子,其质量为m,运动过程中的最大速率为v,从某一时刻算起,在半个周期内() A. 弹力做的功一定为零

有关弹簧问题中应用简谐运动特征的解题技巧

有关弹簧问题中应用简谐运动特征的解题技巧 黄 菊 娣 (浙江省上虞市上虞中学 312300) 弹簧振子的运动具有周期性和对称性,因而很容易想到在振动过程中一些物理量的大小相等,方向相同,是周期性出现的;而经过半个周期后一些物理量则是大小相等,方向相反.但是上面想法的逆命题是否成立的条件是:①此弹簧振子的回复力和位移符合kx F -=(x 指离开平衡位置的位移) ;②选择开始计时的位置是振子的平衡位置或左、右最大位移处,若开始计时不是选择在这些位置,则结果就显而易见是不成立的. 在这里就水平弹簧振子和竖直弹簧在作简谐运动过程中应用其特征谈一谈解题技巧,把复杂的问题变简单化,从而消除学生的一种碰到弹簧问题就无从入手的一种恐惧心理. 一、弹簧振子及解题方法 在判断弹簧振子的运动时间,运动速度及加速度等一些物理量时所取的起始位置很重要,在解题方法上除了应用其规律和周期性外,运用图象法解,会使问题更简单化. 例1 一弹簧振子做简谐运动,周期为T ,则正确的说法是………………………………………( ) A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相同,则Δt 一定等于T 的整数倍 B .若t 时刻和(t +Δt )时刻振子运动速度大小相等,方向相反,则Δt 一定等于 2 T 的整数倍 C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一度相等 D .若Δt =2T ,则在t 时刻和(t +Δt )时刻弹 簧的长度一定相等 解法一:如图1为一个弹簧振子的示意图,O 为平衡位置,B 、C 为两侧最大位移处,D 是C 、O 间任意位置. 对于A 选项,当振子由D 运动到B 再回到D ,振子两次在D 处位移大小、方向都相 同,所经历的时间显然不为T ,A 选项错. 对于B 选项,当振子由D 运动到B 再回到D ,振子两次在D 处运动速度大小相等,方向相反,但经过的时间不是 2 T ,可见选项B 错. 由于振子的运动具有周期性,显然加速度也是如此,选项C 正确. 对于选项D ,振子由B 经过O 运动到C 时,经过的时间为 2 T ,但在B 、C 两处弹簧长度不等,选项D 错.正确答案选C . 解法二:本题也可利用弹簧振子做简谐运动的图象来解.如图2所示,图中A 点与B 、E 、F 、I 等点的振动位移大小相等,方向相同.由图可见,A 点与E 、I 等点对应的时刻差为T 或T 的整数倍;A 点与B 、F 等点对应的时刻差不为T 或T 的整数倍,因此选项A 不正确.用同样的方法很容易判断出选项B 、D 也不正确.故只有选项C 正确. 图1

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

2量子力学与热力学中的随机性

2、量子力学与热力学中的随机性 戴维斯指出,在宇宙学情况下,初始奇点的随机性(即“分子混沌”)导致宇宙的时间不可逆性,混沌粒子运动是大爆炸过程中光滑宇宙流体的一个特点。如果宇宙重新收缩,终极奇点态是混沌的或随机的而不是高度有序的(块状的),这与安置在一个假想的霍金盒子中的黑洞的情形相反,在那里奇点的随机形成和随即消失带来的是时间的对称性,这种黑洞奇点的随机性是内在随机的。在宇宙学的情况下,终极奇点被赋予由宇宙动力学支配的奇点,所以塌缩到视界内的宇宙不是黑洞。但是,宇宙终极奇点如何不同于黑洞奇点,以及宇宙是否真的象戴维斯所期望的那样振荡不息,这是一个没有澄清的问题。我们认为,只有搞清各种势在决定量子波函数演化过程中如何影响从过去向未来演化的提供波ψ(t)和从未来像过去倒转演化的确认波ψ*(-t)的几率幅;特别是在各种奇点附近,由魏尔曲率决定的引力势如何影响量子波在时间两个方向上的演化几率,才能解决宇宙演化的最后结局。 引力论与量子论相统一的理论还遥遥无期,宇宙论和量子论的时间之矢已然浮现,但远未被澄清。但是,对热力学第二定律的理解却在进一步深化,这特别归功于以普里高津为首的布鲁塞尔学派的工作。普里高津提出的耗散结构论对热力学第二定律提出了新的理解:(1)热力学第二定律并不是在经典动力学基础之上的宏观近似,而是动力学的基本原理,可以从它开始建立动力学的更一般的形式体系;(2)热力学第二定律并不意味着热力学系统的单向退化,它也是进化的原动力,熵最大状态只是演化的终态,而在演化过程中,不可逆性导致自组织的出现。在远离平衡态的非线性体系中,通过耗散机制可以导致类似生命现象的复杂结构出现。走向复杂化的进化过程在一定范围内与热力学不可逆过程一致。 普里高津指出,不可逆理论的构建方式有:(1)存在着不可逆理论,它们出于描述观察到的宏观不可逆性的明显目的而被构建出来,如热力学,扩散理论等等。(2)通过引入隐含不可逆性的几率假定,从可逆的动力学方程中推导出不可逆性的理论。例如,在处理具有大数目的系统时,人们抛弃了动力学观点,而把碰撞事件或一系统状态的改变看作是马尔代夫类型的随机过程,即在某种瞬间发生的事件只依赖于那个瞬间的状态而根本不依赖于过去的历史。于是,粒子碰撞造成的不稳定性动力学关联在微观状态被打破,抹去了粒子过去运动的信息。分子运动论和统计力学就是这样构建出来的。(3)还有一些理论,它们基于时间反演不变的理论,但通过引入初始条件或通过t的拉普拉斯变换,从而成为不可逆理论,宇宙学的时间箭头就是这样引入的。 普里高津认为,几率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。因为对于具有对初始条件敏感性的不稳定系统,个体轨道变得不可计算,只能给出多种运动形式的几率分布。于是,在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系统的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性被打存了。而对于稳定体系,“个体”层次(对应于单个轨道)和“统计”层次(对应于系统)是等价的。在不可积动力学体系中,个体的某一轨道可以对应于不同的系统分布ρ,而同一系统分布ρ可以对应不同的个体轨道,过去和未来的不对称性在系统层面上涌现出来,它意味着时间反演的初始系统分布是低几率的。普里高津认为宏观的时间方向是一种突现现象,同时又主张寻求微观不可逆过程的理论描述。 概率随机性被引入物理学,第一次是热力学,第二次是量子力学。然而,这两次引入却被认为具有非常不同的含义。在热力学中,随机性被认为是主观引入的,而在量子力学中,随机性被认为是客观的,具有不可还原的终极意义。将热力学第二定律作为一个基本的事实,意味着微观层次的随机性也应该是客观而非主观的,终极的非表面的。普里高津坚决反对熵和

专题13【补充】巧用简谐运动中的对称性问题

简谐运动与弹簧问题 你需要知道并且熟记在心的几个点: 时间的对称性 加速度的对称性 合外力的对称性 速度对称性 能量对称性 1. 巧用时间的对称性 例1. 如图1所示,一质点在平衡位置O点两侧做简谐运动,在它从平衡位置O出发向最大位移A处运动过程中经0.15s第一次通过M点,再经0.1s第2次通过M点。则此后还要经多长时间第3次通过M点,该质点振动的频率为多大? 图1 解析:由于质点从M→A和从A→M的时间是对称的,结合题设条件可知M→A所需时间为0.05s,所以质点从平衡位置O→A的时间为 ,又因为,所以质点的振动周期为T= 0.8s,频率。 根据时间的对称性可知M→O与O→M所需时间相等为0.15s,所以质点第3次通过M点所需时间为 2. 巧用加速度的对称性 例2. 如图2所示,小球从竖直立在地面上的轻弹簧的正上方某处自由下落,接触弹簧后将弹簧压缩,全过程中弹簧为弹性形变。试比较弹簧压缩到最大时的加速度a和重力加速度g 的大小。

图2 解析:小球和弹簧接触后做简谐运动,如图2所示,点B为弹簧为原长时端点的位置。小球的重力与弹簧的弹力的大小相等的位置O为平衡位置。点A为弹簧被压缩至最低点的位置(也就是小球做简谐振动的最大位移处),点A”为与A对称的位移(也是最大位移处)。由对称性可知,小球在点A和点A”的加速度的大小相等,设为a,小球在点B的加速度为g,由图点B在点A”和点O之间,所以。 例3. 如图3所示,质量为m的物体放在质量为M的平台上,随平台在竖直方向上做简谐运动,振幅为A,运动到最高点时,物体m对平台的压力恰好为零,当m运动到最低点时,求m的加速度。 图3 解析:我们容易证明,物体m在竖直平面内做简谐运动,由小球运动到最高点时对M的压力为零,即知道物体m在运动到最高点时的加速度为g,由简谐运动的对称性知道,物体m运动到最低点时的加速度和最高点的加速度大小相等,方向相反,故小球运动到最低点时的加速度大小为g,方向竖直向上。 例4. 如图4所示,轻弹簧(劲度系数为k)的下端固定在地面上,其上端和一质量为M的木板B相连接,在木板B上又放有一个质量为m的物块P。当系统上下振动时,欲使P、B 始终不分离,则轻弹簧的最大压缩量为多大? 图4 解析:从简谐运动的角度看,木板B和物块P的总重力与弹簧弹力的合力充当回复力,即 ;从简单连接体的角度看,系统受到的合外力产生了系统的加速度a,即 ,由以上两式可解为。当P和B在平衡位置下方时,系统处于超重状态,P不可能和B分离,因此P和B分离的位置一定在上方最大位移处,且P和 B一起运动的最大加速度。由加速度的对称性可知弹簧压缩时最大加速度也为

对称性原理在物理学中的表现形式

对称性原理在物理学中的表现形式 在近代科学的开端,哥白尼对日心说的数学结构做了美学说明和论证,他从中看到令人惊异的“对称性”与“和谐联系”——这可以说是科学美学的宣言书.开普勒醉心于宇宙的和谐,他在第谷的庞杂数据中清理出具有美感的行星运动三定律,并由衷地感到难以置信的狂喜和美的愉悦.伽利略对落体定律的揭示,在纷繁的事实多样性中求得统一的定律.牛顿的严整而简单的力学体系把天地间的万物运动统摄在一起,他推崇和倡导节约原理,并认为上帝最感兴趣的事情是欣赏宇宙的美与和谐.这一切,谱写了近代科学的美的协奏曲.以相对论和量子力学为代表的现代科学,更是把科学审美发挥到了极致.撇开这些理论的抽象的理性美和雅致的结构美不谈,令人叫绝的是,数学实在和物理实在之间的(神秘的)一致是由群的关系保证的,科学理论中审美要素的存在是由群的真正本性决定的——对称性或不变性(协变性,invariance)之美跃然纸上! (1)经典物理学中的对称性原理 在原始的意义上,对称是指组成某一事物或对象的两个部分的对等性.物理是研究客观世界的最基本规律的一美科学,而它们在很多方面存在着对等性,例如:正电荷和负电荷、电荷的负极与正极、光速的可逆性、空间与时间、正功与负功、质子与中子、电子与正电子等均具有对称性.万有引力公式F=GMm/r2与静电力公式F=KQ1Q2/r2,弹性势能公式E=0.5kx2与动能公式E=0.5mv2,凸透镜成象公式1/u+1/v=1/f与并联电阻公式1/R1+1/R2=1/R、弹簧串联公式1/k1+1/k2=1/k,欧姆定律公式I=U/R与压强公式P=F/S、密度公式ρ=m/V 、电场强度E=F/Q、电压U=W/Q与电容C=Q/U,安培力F=BIL与电功W=Uit,重量G=ρgV与热量Q=cm Δt等均具有相似性根据这些相似性.开普勒用行星轨道的椭圆对称性代替了古希腊人所坚持的圆形对称性, 开普勒第一定律:每个行星都沿椭圆轨道运行,太阳就在这些椭圆的一个焦点上. 物理学中有一些规律属于基本定律,它们具有支配全局的性质,掌握它们显然是极端重要的.例如力学中的牛顿定律是质点、质点组机械运动(非相对论)的基本定律,电磁学的麦克斯韦方程组是电磁场分布、变化的基本定律,物理学中还有另外一种基本定律的表述形式,这就是最小作用原理(变分原理),它可表述为系统的各种相邻的经历中,真实经历使作用量取极值.可以看出最小作用原理的表述形式与牛顿定律、麦克斯韦方程组的表述形式极不相同.牛顿定律告诉我们,质点此时此刻的加速度由它此时此刻所受的力和它的质量的比值决定;麦克斯韦方程组告诉我们,此时此刻的电场分布由此时此刻的电荷分布以及此时此刻的磁场的变化决定,此时此刻的磁场分布由此时此刻的电流分布以及此时此刻的电场

相关文档
最新文档