温度控制系统

温度控制系统
温度控制系统

目录

第1章绪论 (1)

第2章系统结构及主要元器件 (3)

2.1电烤箱温度控制系统结构 (3)

2.2制作电烤箱主要的元器件 (3)

2.3部分元器件的介绍 (3)

第3章硬件设计 (6)

3.1系统总电路图 (6)

3.2AT89C51单片机的并行I/O端口设计 (6)

3.3AT89C51单片机时钟电路设计 (7)

3.4A/D转换电路设计 (8)

3.5AT89C51单片机与ADC0809接口 (8)

3.6键盘及显示电路的设计 (9)

3.7抗干扰电路设计 (10)

第4章软件部分设计 (12)

4.1功能模块 (12)

4.2功能软件设计 (12)

第5章系统仿真与调试 (20)

5.1系统调试 (20)

5.2仿真与调试 (21)

结论 (22)

参考文献 (23)

第1章绪论

随着社会的不断发展,人们改造自然的能力也在不断的提高。机器的诞生,为我们减少了部分或者全部的脑力劳动和体力劳动。电子技术的诞生更是带来了翻天覆地的变化。机电控制系统成为机械技术与微电子技术集成的共性关键技术。人们通过它可以使机械完全按照自己的意愿来执行。

单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大的提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。单片机是靠程序的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性。

单片机在日常生活中的运用越来越广泛。温度控制在工业生产中经常遇到。从石油化工到电力生产,从冶金到建材,从食品到机械都要对温度进行控制.甚至在有些产品生产过程中温度的控制直接影响到产品的质量。单片机温度控制无论是现在还是未来都会起到重要作用。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一

种较为理想的温度控制系统是非常有价值的。根据温度变化快慢,并且控制精度不易掌握等特点,本文电烤箱的温度控制为模型,设计了以AT89C51单片机为检测控制中心的温度控制系统。温度控制采用PID数字控制算法,显示采用3位LED静态显示。该设计结构简单,控制算法新颖,控制精度高,有较强的通用性。

本文介绍了以AT89C51单片机为核心的电烤箱温度控制系统。电烤箱的温度控制系统有两个部分组成:硬件部分和软件部分。其中硬件部分包括:单片机电路、传感器电路、放大器电路、转换器电路、以及键盘和显示电路。软件部分包括:主程序、运算控制程序、以及各功能实现模块的程序。文章最后对本设计进行了总结。

第2章系统结构及主要元器件

2.1电烤箱温度控制系统结构

图2-1 电烤箱温度控制系统结构

2.2制作电烤箱主要的元器件

1、AT89C51单片机

2、传感器

3、A/D转换器

4、放大器

5、键盘及显示

2.3部分元器件的介绍

2.3.1单片机引脚功能介绍

AT89C51系列单片机的封装形式有两种:一种是双列直插方式封装;另一种是方形封装。AT89C51单片机40个引脚及总线结构图2-2所示。

1.主电源引脚

主电源引脚两根:VCC接+5V电源正端;VSS接+5V电源地端。

2.外接晶体引脚两根

XTAL1:接外部石英体和微调电源的一端。

XTAL2:接外部晶体和微调电容的另一端。

3. 引脚功能

I\O引脚共32根。

a)PO口:P0.0-P0.7统称为PO口是8位双向I/O口线。P0口即可作为地

址/数据总线使用,又可作为通用的I/O口线。在不接片外存储器与不扩展I/O口时,可作为准双向输入/输出口。在接有片外存储器或扩展I/O 时,P0口分时复用为低8位地址总线和双向数据总线。

b)P1口:P1.0-P1.7统称为P1口。是8位准双向I/O口线。P1口作为通用

的I/O口使用。

c)P2口:P2.0-P2.7统称为P2口。是8位准双向I/O口线。P2口即可作为

通用的I/O口使用。也可作为片外存储器的高8位地址线。与P0口组成16位片外存储器单元地址。

d)P3口:P3.0-P3.7统称为P3口。是8位准双向I/O口线。P3口除作为准

双向口使用外。每个引脚还具有第二功能。P3口的每一个引脚均可独立定义为第一功能的输入输出或第二功能。

4.控制线

控制线共四根。

①ALE/PROG地址锁存有效信号输出率。

②PSEN 片外程序存储器读选通信号输出端低电平有效。

③RST/VPD复位信号备用电源输入信号。

④EA/VPP片外程序存储器选用端。

图2-2 单片机引脚图

2.3.2 传感器的介绍

随着新技术革命的到来,世界开始进入信息时代,在利用信息的过程中,首先要解决的就是获取准确可靠地信息。传感器是获取自然、生产、科研领域中信息的主要途径与手段。

1、传感器概述

根据国家标准,传感器的定义是:能感受规定的被测量并按照一定得规律转换成可用输出信号的器件或装置。

传感器一般由敏感元件,转换元件和转换电路三部分组成。

2、传感器的基本特性

根据被测量的变化状态,可以把传感器的输入量分为静态量和动态量两类。静态量指传感器的输入量位程序状态信号或变化及其缓慢的准静态信号;动态量指传感器的输入量为周期信号、瞬变信号或随机信号等时间变化的信号。其中,传感器的静态特性是指传感器在被测量处于稳定状态下的输出输入关系,传感器的静态特性是在静态标准工作条件测定的。

1、传感器的技术性能指标

a)传感器的动态性能指标

b)环境参数指标

c)可靠性指标:

第3章硬件设计

系统的硬件部分包括单片机电路、A/D转换器电路、传感器电路、放大器电路、键盘及显示电路五部分。其各部分连接关系已在第二章介绍过了如图2-1所示。

3.1系统总电路图

系统总电路图,如图3-1所示

图3-1 系统总电路图

3.2 AT89C51单片机的并行I/O端口设计

AT89C51单片机有4个8位并行I/O端口(P0、P1、P2、P3)每个端口都各有8条I/O口线,每条I/O口线都独立地用作输入输出,在具有片外扩展存储器的系统中,P2口送出高8位地址,P0口分时送出低8位地址和8位数据。

各端口的功能不同,结构上也有差异,但是每个端口的8位结构是完全相同的。如图 3-2所示。

1.P0口。P0口是一个三态双向口,可作为地址/数据分时复用口,也可作为通用I/O接口。

2.P1口。P1口为准双向口,它在结构上与P0口的区别在与输出驱动部分。

其输出驱动部分由场效应管V1与内部上拉电阻组成,当某某位输出高电平时,可以提供上拉电流负载,不必像P0口上那样需要外接上拉电阻。

3.P2口。P2口也为准双向口。其具有通用I/O接口或高8位地址总线输出两种功能,所以其输出驱动结构比P1口输出驱动结构多了一个输出模拟转换开关MUX和反相器3.

4.P3口。P3口的输出驱动由与非门3和V1组成,比P0、P1、P2口结构多了一个缓冲器4.P3口除了可为通用准双向I/O接口外,每一根线还具有第二功能。

(a)P0口结构(b)P1口结构

(c)P2口结构(d)P3口结构

图 3-2 I/O口位结构图

3.3 AT89C51单片机时钟电路设计

1.时钟电路

AT89C51单片机的时钟信号通常有两种方式产生:一种是内部方式,一种是外部方式。图3-3、3-4所示。

图3-3 内部方式时钟电路图3-4 外部方式时钟电路

3.4 A/D转换电路设计

1.ADC0809的内部逻辑结构

图3-5 ADC0809内部逻辑结构图

如图3-5所示,多路开关可达通讯员89模拟通道,允许8路模拟量分时输入,共用一个A/D转换器进行转换。地址锁存与译码电路完成对A、B、C三个地址供进行锁存和译码,其译码输出用于通道选择。

3.5 AT89C51单片机与ADC0809接口

ADC0809与AT89051单片机边接如图3-6所示,电路连接主要涉及两个问题,一是不是路模拟信号通道选择,二是A/D转换完成后数据的传送

1)8路模拟通道选择

A、B、C分别接地址锁存器提供的低三位地址。只要把三位地址写入0809中的地址锁存器就实现了模拟通道选择。对系统来说,地址锁存器是一个输出口,为了把三位地址写入,还要提供口地址。

2)数据的传输方式

A.定时传输方式

B.查询方式

C.中断方式

图3-6 ADC0809与单片机的连接

3.6 键盘及显示电路的设计

3.6.1键盘接口电路

1、键盘的工作原理

a)按键的确认

在单片机应用系统中,按键都是以开关状态来设置控制功能或能入数据的,键的半合与否,反映在电压上就是呈高电平或低电平,如果高电平表示断开的话,那么低电平就是表示闭合,所以通过电平的高代状态的检测,使可以克认按键接下与否。

b)按键的抖动处理

去抖有硬件和软件两种方法,硬件方法通常采用通过RS触发器连接按键除抖,软件方法采用昝方法除抖。

2、独立工按键

独立式按键是直接用I/O口线构成的单个按键电路,其特点是每个按键单独占用一根I/O口线,每个按键的工作不会其他I/O口线的状态

3、矩阵式按键

单片机系统中,若使用按键分明,通常采用矩阵式(也称行列式)键盘。一个4*4的行列结构可以构成一个含有16个按键的键盘。矩阵式键盘中,行列式分别连接到按键开关的两端,行式通过二伴电阻接到+5V上,当无键按下时,行

式于高电平状态,当有键按下时,行列式将贯通,此时将由与此行线相连的列线电平决定,这是识别按键是否按下的关键。

3.6.2 LED显示器接口电路

常用的LED显示器有LED状态显示器(俗称发光二极管)、LED七段显示器(俗称数码管和LED十六段显示器,发光二极管可显示两种状态,用于系统显示;数码管用于数字显示;LED十六段显示器,用于字符显示)。

1、数码管结构

数码管由8个发光二极管(以下简称字段)构成,通过不同组合可用来显示数字0-9.字符A-F及小数点“.”。数码管又分为共阴极和共阳极两种结构。

2、数码管工作原理

共阳极数码管的8个发光二级管的阳极(二极管正端)连接在一起。通常会共阳极接高电平1.一般接电源1.当某个阴极接低电平时,则该数码管导通并点亮。共阴极数码管的8个发光二极管的阴极(二极管负端)连接在一起。公共阴极接低电平(一般接地)当某个阳极接高电平,则该数码管并点亮。

3.7 抗干扰电路设计

3.7.1电磁干扰的形成因素

电池干扰由电磁干扰源发射经过耦合途径传输到被干扰设备(敏感设备)因此形成电磁干扰的要素有:电磁干扰源、传输通到、敏感设备。

3.7.2干扰的分类

a)按干扰源分为自然干扰和人为干扰。

b)按噪声波形及性质分为持续正弦波干扰和浪涌脉冲波形干扰。

c)按干扰传输系统的方式分为共模干扰、差模干扰、传导耦合、感应藕合和辐射耦合。

3.7.3单片机应用系统电磁干扰控制的一般方法

单片机应用系统的干扰源分为内部干扰源和外部干扰源。其中内部干扰源主要来自于印制电路板的布局及布线。

单片机系统的抗干扰技术主要包括以下四个方面的内容

a)精心选择元器件

元器件是构成部件或系统的基础。要选择集成度高、抗干扰能力强功耗小的电子器件。

b)元部件要精密调整

元器件的精密度是保证系统完成设定功能的重要保证。因此在使用前或经过一段运行时间之后,都应该对元器件及部件进行精确调整。

c)采用硬件抗干扰技术

硬件抗干扰技术是设计系统时首选的抗干扰措施,它能有效抑制干扰源,阻断干扰传输通道,只要合理地布置与选择有关参数。

d)采用软件抗干扰技术

软件抗干扰方法具有简单、灵活方便、耗费硬件资源少的特点。在微机测控系统中获得了广泛应用。

3.7.4硬件抗干扰措施

a)屏蔽技术

b)接地技术

电气设备中的“地”通常有两种含义:一种是“大地”.另一种是“工作基准地”。所谓“大地”这里是指电气设备的金属外壳,线路等通过接地线、接地极与地球大地相连接。这种接地可以保证设备和人身安全,提供静电屏蔽。通路降低电磁感应噪声。

电气设备接地的目的有三个:其一是为各电路的工作提供基准电位;其二是为了安全,其三是为了抑制干扰。

第4章软件部分设计

4.1 功能模块

系统软件可以分为以下几个功能模块:

(1) 键盘管理:监测键盘输入,接收温度预置,启动系统工作。

(2) 显示:显示设置温度及当前温度。

(3) 温度检测及温度值变换:完成A/D转换及数字滤波。

(4) 温度控制:根据检测到的温度控制电炉工作。

(5) 报警:当预置温度或当前炉温越限时报警。

4.2 功能软件设计

4.2.1 键盘管理模块

上电或复位后系统处于键盘管理状态,其功能是监测键盘输入,接收温度预置和启动键。程序设有预置温度合法检测报警,当预置温度超过120℃时会报警并将温度设定在120℃。

键盘管理子程序KIN:

KIN:ACAL CHK ;预置温度合法性检测MOV BT1,ST1

MOV BT0,ST0 ;预置温度送显示缓冲区

ACALL DISP ;二次调用显示子程序延时去抖

ACALL KEY ;再检测有无键按下

LCALL DISP ;显示预置温度KIN0:ACALL KEY ;读键值JZ KIN0 ;无键闭合和重新检测

JZ KIN0 ;无键按下重新检测

JB ACC.1,S10

MOV A,#100 ;百位键按下

AJMP SUM

S10:JB ACC.2,S1

MOV A,#10 ;十位键按下

AJMP SUM

S1:JB ACC.3,S0

MOV A,#01 ;个位键按下

SUM:ADD A,ST0 ;预置温度按键+1 MOV ST0,A

MOV A,#00H

ADDC A,ST1

MOV ST1,A

KIN1:CALL KEY ;判断闭合键释放JNZ KIN1 ;未释放继续判断

AJMP KIN ;闭合键释放继续扫描键盘S0:JNB ACC.0,KIN ;无键按下重新扫描键盘

RET ;启动键按下返回KEY:MOV A,P1 ;读键值子程序

CPL A

ANL A,#0FH

RET

4.2.2 显示模块

显示子程序的功能是将显示缓冲区57H和58H的二进制数据先转换成三个BCD码,分别存入百位、十位和个位显示缓冲区(54H、55H和56H单元),然后通过串口送出显示。

显示子程序DISP:

DISP:ACALL HTB ;将显示数据转换为BCD码

MOV SCON,#00H ;置串行口为方式0

MOV R2,#03H ;显示位数送R2

MOV R0,#T100 ;显示缓冲区首地址送R0 LD:MOV DPTR,#TAB ;指向字型码表首地址

MOV A,@R0 ;取显示数据

MOVC A,@A+DPTR ;查表

MOV SBUF,A ;字型码送串行口WAIT:JBC TI,NEXT;发送结束转下一个数据并清中断标志

SJMP WAIT ;发送未完等待NEXT:INC R0 ;修改显示缓冲区指针

DJNZ R2,LD ;判3位显示完否,未完继续

RET

TAB:…;字型码表(略)BCD码转换子程序HTB:

HTB:MOV A,BT0 ;取二进制显示数据低8位

MOV B,#100 ;除100,确定百位数

DIV AB

MOV T100,A ;百位数送54H单元

MOV A,#10 ;除10,确定十位

XCH A,B

DIV A,B

MOV T10,A ;十位数送55H单元

MOV T,B ;个位数送56H单元

MOV A,BT1 ;取二进制显示数据高8位

JNZ L H1 ;高位不为0转LH1继续高8位转换

RET ;高位为0结束,返回LH1:MOV A,#06H

ADD A,T

DA A ;个位加6(十进制加)

MOV T,A ;结果送回个位

MOV A,#05H

ADDC A,T10

DAA ;十位加5(十进制加)

MOV T10,A ;结果送回十位

MOV A,#02H

ADDC A,T100

DA A ;百位加2(十进制加)

MOV T100,A ;结果送回百位

RET

4.2.3 温度检测模块

A/D转换采用查询方式。为提高数据采样的可靠性,对采样温度进行数字滤波。数字滤波的算法很多,这里采用4次采样取平均值的方法。如前所述,本系统A/D转换结果乘2正好是温度值,因此,4次采样的数字量之和除以2就是检测的当前温度。检测结果高位存入50H,低位存入51H。温度检测子程序流程图如图4-1所示。

温度检测子程序TIN:

TIN:MOV TEMP1,#00H ;清检测温度缓冲区

MOV TEMP0,#00H

MOV R2,#04H ;取样次数送R2

MOV DPTR,#7FF8H ;指向A/D转换器0通道LTIN1:MOVX @DPTR,A ;启动转换HERE:JNB IE1,HERE ;等待转换结束

MOVX A,@DPTR ;读转换结果

ADD A,TEMP0 ;累加(双字节加法)

MOV TEMP0,A

MOV A,#00H

ADDC A,TEMP1

MOV TEMP1,A

DJNZ R2,LTIN1 ;4次采样完否,未完继续

CLR C ;累加结果除2(双字节除法)

MOV A,TEMP1

RRC A

MOV TEMP1,A

MOV A,TEMP0

RRC A

MOV TEMP0,A

RET

图4-1温度检测子程序流程图

4.2.4 温度控制模块

将当前温度与预置温度比较,当前温度小于预置温度时,继电器闭合,接通电阻丝加热;当前温度大于预置温度时,继电器断开,停止加热;当二者相等时电炉保持原来状态;当前温度降低到比预置温度低2℃时,再重新启动加热;当前温度超出报警上下限时将启动报警,并停止加热。由于电炉开始加热时,当前温度可能低于报警下限,为了防止误报,在未达到预置温度时,不允许报警,为此设置了报警允许标志F0。模块流程如图4-2:

图4-2 温度控制流程图

4.2.5 温度越限报警模块

报警上限温度值为预置温度+5℃,即当前温度上升到高于预置温度+5℃时报警,并停止加热;报警下限温度值为预置温度-5℃,即在当前温度下降到低于预置温度-5℃,且报警允许时报警,这是为了防止开始从较低温度加温时误报警。报警的同时也关闭电炉。报警子程序流程图如图4-3。

报警子程序ALARM

ALARM:MOV A,TEMP0 ;当前温度低字节→A

CLR C

SUBB A,ST0 ;(当前温度低字节-预置温度低字节)→A

MOV B,A;低字节相减结果送B暂存

MOV A,TEMP1 ;当前温度高字节→A

SUBB A,ST1 ;(当前温度高字节-预置温度高字节)→A

JC LA0 ;有借位,当前温度小于预置温度转LA0

SETB F0 ;当前温度≥预置温度,允许报警

AJMP LA1

LA0:MOV A,ST0 ;预置温度低字节→A

CLR C

SUBB A,TEMP0 ;

MOV B,A ;低字节相减结果送B暂存

MOV A,ST1 ;预置温度高字节→A

SUBB A,TEMP1 ;

LA1:XCH A,B ;

CLR C

SUBB A,#05H ;(低字节差-5)→A

XCH A,B ;(低字节差-5)→B,高字节差→A

SUBB A,#00H ;

JC LA2 ;相减结果小于5,不报警

JNB F0,LA2 ;相减结果≥5,判是否允许报警

CLR P1.6 ;启动报警

SETB P1.7 0 ;关电炉

LCALL D0.6s ;报警延时0.6 s

SETB P1.6 ;关报警LA2:RET

图4-3 报警子程序流程图

4.2.6 主程序和中断服务子程序

主程序采用中断嵌套方式设计,各功能模块可直接调用。主程序完成系统的初始化,温度预置及其合法性检测,预置温度的显示及定时器0设置。定时器0中断服务子程序是温度控制体系的主体,用于温度检测、控制和报警(包括启动A/D转换、读入采样数据、数字滤波、越限温度报警和越限处理、输出可控硅的控制脉冲等)。中断由定时器0产生,根据需要每隔15s中断一次,即每15s采样控制一次。但系统采用6MHz晶振,最大定时为130ms,为实现15s定时,这里另行设了一个软件计数器。

主程序MAIN:(数据缓冲区的定义和初始化部分略)

ORG 0000H

AJMP MAIN

ORG 000BH

AJMP PT0

ORG 0030H

MAIN:MOV SP,#59H ;设定堆栈指针

MOV TMOD,#01H ;定时器0初始化

MOV TL0,#0B0H ;定时器定时时间100 ms

MOV TH0,#3CH

MOV R7,#150 ;置15 s软计数器初值

ACALL KIN ;调键盘管理子程序

SETB ET0 ;允许定时器0中断

SETB EA ;开中断

SETB TR0 ;启动定时器0

SJMP $

定时器0中断服务子程序PT0:

PT0:MOV TL0,#0B0H

MOV TH0,#3CH ;重置定时器0初

DJNZ R7,BACK ;15 s到否,不到返回

MOV R7,#150 ;重置软计数器初值

ACALL TIN ;温度检测

MOV BT1,TEMP1 ;当前温度送显示缓冲区

MOV BT0,TEMP0

ACALL DISP ;显示当前温度

ACALL CONT ;温度控制

LCALL ALARM ;温度越限报警BACK:RETI

精馏塔提馏段的温度控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生XXX 专业班级自动化X X X 学号XXXXXXXXXX 指导老师XXX 2012年6月25日

目录 1.系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10)

6.仪表型号清单 (11) 7.设计总结 (12) 参考文献 (13) 1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔 顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几 倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

温度控制系统

《单片机技术》课程设计任务书 一、设计题目:数字电子钟、数字频率计、数字电压表、交通灯、抢答器、密码 锁、波形发生器、数字温度计、计算器、数字式秒表。 二、适用班级: 三、指导教师: 四、设计目的与任务: 学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《单片机技术》中所学的理论知识和实验技能,掌握单片机应用系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 五、设计内容与要求 设计内容 1、数字电子钟 设计一个具有特定功能的电子钟。该电子钟上电或按键复位后能自动显示系统提示符“P.”,进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从0时0分0秒开始运行,进入时钟运行状态;再次按电子钟启动/调整键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按启动/调整键再次进入时钟运行状态。 2、数字频率计 设计一个能够测量周期性矩形波信号的频率、周期、脉宽、占空比的频率计。该频率计上电或按键复位后能自动显示系统提示符“P.”,进入测量准备状态。按频率测量键则测量频率;按周期测量键则测量周期;按脉宽测量键则测量脉宽;按占空比测量键则测量占空比。 3、数字电压表 设计一个能够测量直流电压的数字电压表。测量电压范围0~5V,测量精度小数点后两位。该电压表上电或按键复位后能自动显示系统提示符“P.”,进入测量准备状态,按测量开始键则开始测量,并将测量值显示在显示器上,按测量结束键则自动返回“P.”状态。 4、交通灯 设计一个具有特定功能的十字路口交通灯。该交通灯上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。按开始键则开始工作,按结束键则返回“P.”状态。要求甲车道和乙车道两条交叉道路上的车辆交替运行,甲车道为

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

大棚温度控制系统设计报告DOC

课程设计主要任务 基于AT89S52单片机的温度测量控制系统,数字温度传感器DS18B20通过单总线与单片机连接,实现温度测量控制,主要性能为: (1 )通过该系统实现对大棚温度的采集和显示; (2)对大棚所需适宜温度进行设定; (3)当大棚内温度参数超过设定值时控制通风机进行降温,当温度低于设定值时利用热风 机进行升温控制; (4)通过显示装置实时监测大棚内温度变化,便于记录和研究; 系统的设计指标 (1 )温度控制范围:0 C ~+50 C; (2)温度测量精度:土2 C; (3)显示分辨率:0.1 C; (4)工作电压:220V/50HZ ± 10%

目录 第一章序言 1 第二章总体设计及个人分工 2 第三章传感器设计及应用 4 第四章总结8

第一章序言 随着人口的增长,农业生产不得不采取新的方法和途径满足人们生活的需要,大棚技术的出现改善了农业生产的窘迫现状。塑料大棚技术就是模拟生物生长的条件,创造人工的气象环境,消除温度对农作物生长的限制,使农作物在不适宜的季节也能满足市场的需求。随着大棚技术的普及,对大棚温度的控制成为了一个重要课题。早期的温度控制是简单的通过温度计测量,然后进行升温或降温的处理,进行的是人工测量,耗费大量的人力物力,温度控制成为一项复杂的程序。 大多数的蔬菜大棚以单个家庭作业为主,种植户为蔬菜大棚配备多参数的智能设备,经济成本很高,因此将温度控制由复杂的人为控制转化为自动化的机械控制成为必然。目前现代化的温度控制已经发展的很完备了,通过传感器检测基本上可以实现对各个执行机构的自动控制,应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。近年来电子技术和信息技术的飞速发展,温度计算机控制与管理系统正在不断吸收自动控制和信息管理领域的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化,产业化。温度计算机控制及管理技术便函先在发达国家得到广泛应用,后来各发展中国家也都纷纷引进,开发出适合自己的系统。这在给各国带来了巨大的经济效益的同时,也极大地推动了各国农业的现代化进程。本系统以AT89S52单片机为控制核心,主要是为了对蔬菜大棚内的温度进行 检测与控制而设计的。该测控仪具有检测精度高、使用简单、成本较 低和工作稳定可靠等特点,所以具有一定的应用前景。

温度控制系统设计方案

温度控制系统设计方案 1引言 温度是工业过程控制中主要的被控参数之一,在冶金、化工、建材、食品、石油等工业中,工艺过程所要求的温度的控制效果直接影响着产品的质量。对于不同场所、不同工艺、所需温度高低围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同,随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。越来越显示出其优越性。 随着集成电路技术的发展,单片微型计算机的功能不断增强,许多高性能的新型机种不断涌现出来。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中广泛应用的器件,在温度控制系统中,单片机更是起到了不可替代的核心作用。在工业生产中,如用于热处理的加热炉、用于融化金属的坩锅电阻炉等,都用到了电阻加热的原理。 鉴于单片机技术应用的广泛性和优越性,温度控制的重要性,因而设计一种较为理想的温度控制系统是非常有价值的。本文就是根据这一思想来展开的。 1.1 系统设计的目的和任务 1.1.1 系统设计的目的 通过本次毕业设计,主要想达到以下目的: 1. 增进对单片机的感性认识,加深对单片机理论方面的理解。 2. 掌握单片机的部功能模块的应用,如定时器/计数器、中断、片外存贮器、I/O口等。 3. 了解和掌握单片机应用系统的软硬件设计过程、方法及实现,为以后工作中设计和实现单片机应用系统打下基础。 4. 熟悉闭环控制系统的组成原理及单片机PID算法的实现方法。 1.1.2 系统设计的任务 1.查阅资料,弄清楚所要解决的问题的思路,确定设计方案。 2.系统硬件电路设计。 3.系统相关软件设计。 4.仿真实现温度参数设定、转换、显示等功能。 5.依据对象模型设计控制器参数, 6.系统调试与分析;并依据调试结果予以完善。 1.2毕业设计论文安排 1.论证系统设计方案,设计系统原理图。

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

自动温度控制系统的设计开题报告

附表1 铜陵学院学生毕业论文(设计)选题审批表院部:专业:

附表2 铜陵学院毕业论文(设计)任务书 同学:你好! 你所预选的毕业论文(设计)题目自动温度控制系统的设计经审定已通过,你可以进入研究(设计)阶段,请你按照以下进程要求完成毕业论文(设计)的研究设计任务。 一、在指导教师的指导下,进一步明确所选课题的目的和意义。 二、根据选题进行广泛调研,并检索主要参考文献。 三、拟定研究(设计)方案(包括内容、方法、预期目标、进度安排等)。 四、毕业论文(设计)的主要内容(或主要技术要求与数据):主要 是设计一个温度自动控制系统,用单片机控制,数字温度传感器采集数据, 并用LCD液晶显示器模块显示。它属于一个恒温系统。通过单片机处理,并 发出指令,使用继电器控制、隔离。 五、编写毕业论文(设计)提纲。 六、将包含上述内容的开题报告于 2015 年 1 月 6 日前送 交指导老师,并于 2015 年 1 月 15 日前完成开题。 七、请你于 2015 年 4 月 20 日前完成毕业论文(设计)的初 稿。 八、请你在 2015 年 4 月 22 日至 5 月 31 日之间反复修改 初稿(要求不少于三次)。 九、请你于 2015 年 6 月 20 日前把符合铜陵学院毕业论文(设 计)撰写格式要求的纸质定稿和相关的附件等材料,按要求装订一式三份, 连同对应的电子文档送交指导老师。 十、你的毕业论文(设计)如果通过了答辩资格审查,请于 2015 年 6月 20 日前准备参加本学院统一组织的毕业论文(设计)答辩(具体答辩

时间另行通知)。 十一、如果你的联系方式发生变动,应及时通知你的指导老师。 指导教师电话: E-mail: 学生电话: E-mail: 指导教师签名:学生签名: 下达任务日期: 2014 年 12 月 23 日接受任务日期: 2014 年 12 月24 日注:本任务书一式两份,一份交给学生,一份指导教师留存。 附表3 铜陵学院毕业论文(设计)开题报告

仪表实验报告——温度控制系统

实验四 温度控制系统(一) 一. 实验目的: 1?了解温度控制系统的组成环节和各环节的作用。 2. 观察比例、积分、微分控制规律的作用,并比较其余差及稳定性。 3. 观察比例度3、积分时间T I 、微分时间T D 对控制系统(闭环特性)控制 品质的影 响。 二. 温度控制系统的组成: 电动温度控制系统是过程控制系统中常见的一种,其作用是通过一套自 动控制装 置,见图4-1,使炉温自动维持在给定值。 图4-1温度控制系统 炉温的变化由热电偶测量,并通过电动温度变送器转化为 DDZ- n 型表的 标准信 号0?10mA 直流电流信号,传送到电子电位差计 XWC 进行记录,同 时传送给电动控制器 DTL ,控制器按偏差的大小、方向,通过预定控制规律 的运算后,输出0?10mA 直流电流信号给可控硅电压调整器 ZK-50,通过控 制可控硅的导通角,以调节加到电炉(电烙铁)电热元件上的交流电压,消 除由于干扰产生的炉温变化,稳定炉温,实现自动控制。 可控硅输出电压 o 干扰开关 电烙铁 电炉

三.实验内容与步骤: (一)观察系统各环节的结构、型号、电路的连接,熟悉可控硅电压调整器和电动控制器上各开关、旋钮的作用。 (二)控制系统闭环特性的测定: 在以下实验中使用以下具体数值:S 1(50%) , S 2(80%), T I i(50s), T I 2 (40s), T DI(30S)来观察比例与积分控制规律的作用 (1) 考察比例作用 将S置于某值50%记住S旋钮在S i的位置,积分时间置最大 (T I =max), 微分开关切向0,将干扰开关从“短”切向“干扰”, 产生一个阶跃干扰(此时为反向干扰) ,同时在记录仪的记录线上作一记 号,以记录阶跃干扰加入的时刻,观察并记录在纯比例作用下达到稳定 的时间及余差大小。 ( 2) 考察积分作用保持S S 1不变,置T I =T I 1,同时在记录仪的记录线上作一记号,以记录积分作用加入的时刻,注意观察积分作用如何消除余差, 直到过程基本稳定。 2.观测Pi 控制作用下的过渡过程 保持S 1, T I 1不变,将干扰开关从“干扰”切向“短”,产生一个正向阶跃干扰,观察过渡过程到基本稳定。 3. 考察S对余差的影响 置S = S 2 , T I =max ,将干扰开关从“短”切向“干扰”,产生一个反向阶跃干扰,同时在记录仪的记录线上作一记号,以记录阶跃干扰加入的时刻,观察并记录在纯比例作用下达到稳定的时间及余差大小。并与1(1)中S =S 1 时的余差相比较。 再加入积分作用T i =T i 1 以消除余差直到过程基本稳定。 4. 考察T i 对过渡过程的影响 置S = S 1 , T I =T I 2 ,将干扰开关从“干扰”切向“短”,产生一个正向阶跃干扰,同时在记录仪的记录线上作一记号,以记录阶跃干扰加入的时刻,观察过渡

温度自动控制系统的设计毕业设计

论文题目:温度自动控制系统的设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

水温自动控制系统

《电子技术综合设计》 设计报告 设计题目:水温自动控制系统 组长姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 时间: 2016 ~ 2017 学年第(1)学期指导教师:陈烨成绩:评阅日期:

一、课题任务 设计并制作一个水温自动控制系统,对1.5L净水进行加。水温保持在一定范围内且由人工设定。 细节要求如下: 1.温度设定范围为40℃~90℃,最小分辨率为0.1℃,误差≤1℃。 2.可通过LCD显示屏显示温度目标值与实时温度。 3.可以通过键盘调整目标温度的数值。 二、方案比较 1.系统模块设计 为完成任务目标,可以将系统分为如下几个部分:5V直流电供电模块、测温模块、80C52单片机控制系统、键盘控制电路、温度显示模块、继电器控制模块、强电加热电路。通过各模块之间的相互配合,可以完成水温检测、液晶显示、目标值设置、水温控制等功能。 系统方框图如下:

2.5V直流电供电模块 方案一:直接用GP品牌的9v电池,然后接通过三端稳压芯片7805稳压成5伏直流电源提供给单片机系统使用,接两个5伏电源的滤波电容后输出。 方案二:通过变压器,将220v的市电转换成9v左右的交流电,变压器输出端的9V电压经桥式整流并电容滤波。要得到一个比较稳定的5v电压,在这里接一个三端稳压器的元件7805。 由于需要给继电器提供稳定的5V电压,而方案一中导致电池的过度损耗,无法稳定带动继电器持续工作,所以我们选用能够提供更加稳定5v电源的方案二。 3.测温模块 经查阅资料,IC式感温器在市场上应用比较广泛的有以下几种: AD590:电流输出型的测温组件,温度每升高1 摄氏度,电流增加1μA,温度测量范围在-55℃~150℃之间。其所采集到的数据需经A/D 转换,才能得到实际的温度值。 DS18B20:内含AD转换器,所以除了测量温度外,它还可以把温度值以数字的方式(9 B i t ) 送出,因此线路连接十分简单,它无需其他外加电路,直接输出数字量,可直接与单片机通信,读取测温数据。它能够达到0.5℃的固有分辨率,使用读取温度暂存寄存器的方法还能达到0.0625℃以上精度,温度测量范围在-55℃~125℃之间,应用方便。 SMARTEC感温组件:这是一只3个管脚感温IC,温度测量范围在 -45℃~13℃,误差可以保持在0.7℃以内。 max6225/6626:最大测温范围也是-55~+125℃,带有串行总线接口,测量温度在可测范围内的的误差在4℃以内,较大,故舍弃该方案。 本设计选用DS18B20感温IC,这是因其性能参数符合设计要求,接口简单,内部集成了A/D 转换,测温更简便,精度较高,反应速度快,且经过市场考察,该芯片易购买,使用方便。 下面是DS18B20感温IC的实物和接口图片

精馏塔温度控制系统设计

精馏塔温度控制系统设计 The Standardization Office was revised on the afternoon of December 13, 2020

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而

基于单片机的温度控制系统设计报告

基于单片机的温度控制系统设计报告

智能仪器仪表综合实训 题目基于单片机的温度控制系统设计 学院 专业电子信息工程 班级 (仪器仪表) 学生姓名 学号 指导教师 完成时间:

目录 一、系统设计---------------------------------------------------------第 1 页 (一)系统总体设计方案----------------------------------------------第 1 页 (二)温度信号采集电路选择和数据处理--------------------------------第 3 页 (三)软件设计------------------------------------------------------第 3 页二、单元电路设计-----------------------------------------------------第 5 页 (一)温度信号采集电路----------------------------------------------第 5 页 (二)步进电机电路------------------------------------------------- 第 5 页(三)液晶显示模块---------------------------------------------------------- 第6 页 (四)晶振复位电路--------------------------------------------------第 7 页三、总结体会--------------------------------------------------------------------------------------第 7 页 四、参考文献-------------------------------------------第 8 页 附录:程序清单------------------------------------------第 8 页

自动温度控制系统的设计

上海电力学院电子系统设计实验报告 题目:自动温度控制系统的设计 院系:电子与信息工程学院 专业:电子科学与技术 班级:2013142班 学号:20132481 姓名:当当当

自动温度控制系统的设计 1、任务要求 以单片机为核心控制器件,通过温度传感器进行温度测量,设置温度的上下限。当温度超出正常范围,则由指示灯和蜂鸣器报警提示。当温度低于下限值时,要求通风电机停转,当温度高于上限值时,通风电机转动。 2、设计方案 本设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:设定需求的温度为30~60摄氏度,当温度低于设定温度下限30摄氏度时,指示灯和蜂鸣器报警提示并且通风电机停转,使温度上升。当温度高于设定温度上限60摄氏度时,指示灯和蜂鸣器报警提示且通风电机转动,使温度下降。当温度达到设定温度界限时,通风机停止工作。为了实现以上功能首先完成了系统的整体设计,硬件以及软件的设计。在硬件上采用了由DS18B20温度传感器采集温度,送入单片机与设定温度进行对比处理,再通过显示器进行显示使其很直观的了解当前的状态。在软件设计上完成了系统的各个功能程序以及流程图包括系统程序主要包括主程序,读出温度子程序,复位应答子程序,写入子程序等,并且采用与C51系列单片机相对应的51汇编语言和结构化程序设计方法进行软件编程。 总体设计框图 3.硬件电路设计 3.1最小系统 按键设置 单 片 机 降热 温度采集 显示 加热

3.1.1 AT89C51的单片机 采用STC89C51芯片作为硬件核心。STC89C51内部具有8KB ROM 存储空间,512字节数据存储空间,带有2K字节的EEPROM存储空间,与MCS-51系列单片机完全兼容,STC89C51可以通过串口下载。 引脚介绍 ①主电源引脚(2根) VCC(Pin40):电源输入,接+5V电源 GND(Pin20):接地线 ②外接晶振引脚(2根) XTAL1(Pin19):片内振荡电路的输入端 XTAL2(Pin20):片内振荡电路的输出端 ③控制引脚(4根) RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。ALE/PROG(Pin30):地址锁存允许信号 PSEN(Pin29):外部存储器读选通信号 EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。

毕业设计-温度控制系统-开题报告-文献综述

燕山大学 本科毕业设计(论文)开题报告 课题名称:温度传感与温度过程控制研究 学院(系):里仁学院电气工程系 年级专业:07仪表2班 学生姓名:饶佳新 指导教师:程淑红 完成日期:2011.3.15

一、综述本课题国内外研究动态,说明选题的依据和意义 1.国内外研究动态 温度控制器属于信息技术的前沿尖端产品,尤其是温度控制器被广泛用于工农业生产、科学研究和生活等领域,数量日渐上升。温度控制器是一种温度控制装置,它根据用户所需温度与设定温度之差值来控制加热器运作,从而达到改变用户所需温度的目的。近百年来,温度控制器的发展大致经历了以下阶段: (1)模拟、集成机械式温度控制器; (2) 电子式智能温度控制器。目前,国际上新型温度控制器正从模拟式向数字式、电子式由集成化向智能化、网络化的方向发展。 现今基于单片机的温度控制系统在生产、安全保护以及节约能源等方面发挥了着重要作用。近年来,国内基于单片机的温度控制系统在技术上得到迅速发展,性能不断完善,功能不断增强,适用范围也不断扩大,市场占有率逐年增长,进入21世纪后,智能的温控系统正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟温控器和网络温控器、研制单片测温控温系统等高科技的方向迅速发展。但是比起国外,我们仍处于起步晚,高度低,技术创新能力薄弱的状况,技术密集型产品明显落后于发达工业国家,自主研发产品少,缺乏核心技术是硬伤。就单片而言,以欧美和日韩的技术最为成熟,他们几乎霸占了智能市场,并制定了相关的行业标准,在技术方面不断的革新使产品不断的更新换代,使之功能、精度、安全性等都不断得到新的提升。在这方面我们做的还远远不够,与发达国家的差距还很大。我们在研究新技术的同时还要加强产业结构的调整,在产品的科技含量上下功夫,不断地提高产品的科技附加值,使产品向着更加智能化、的方向发展,努力缩小同发达国家之间的差距。 2.选题的依据和意义 在人类的生活环境中,温度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展与是否能掌握温度有着密切的联系,在冶金、化工、建材、

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

温度自动控制系统的设计

毕业设计 论文题目:温度自动控制系统的设计 院(部)名称:电气信息工程学院学生姓名: 专业: 学号 : 指导教师姓名: 论文提交时间: 论文答辩时间: 学位授予时间:

摘要 随着科技的不断进步,在工业生产中温度是常用的被控参数,而采用单片机来对这些被控参数进行控制已成为当今的主流。本文介绍了数字温度测量及自动控制系统的设计。阐述了以AT89C52单片机为核心的温度控制系统的工作原理和设计方法。主要组成部分:AT89C52单片机、温度传感器、显示电路、温度控制电路。它可以实时的显示和设定温度,实现对温度的自动控制。而且设有超温报警程序。测试表明,本设计对温度的控制有方便、简单的特点,大幅提高了被控温度的技术指标。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测与温度控制电路。单片机通过对信号进行相应处理,从而实现温度控制的目的。 关键词:温度自动控制,AT89C52,DS18B20,PID

ABSTRACT With the development of science and technology, temperature is used to be controlled parameter in industrial production. Controlling controlled parameter by microcontroller has been main trend in today's society. This paper introduces the design of digital temperature measurement and automatic control system .It consists of AT89C52 microcontroller, temperature sensor, show circuit and temperature control circuit. It is able to display and set temperature in real-time. The purpose is to achieve the control of temperature. Besides, it has over- temperature alarm program. Tests show that this design not only controls temperature conveniently and simply but also improve the technical indicators of controlled temperature greatly. With as the core of microcontroller, this design achieves the control of temperature. Temperature signal is collected by temperature chip DS18B20 and transmitted to microcontroller in the form of digital signal. This paper introduces the hardware of the system including temperature detection and temperature control circuit. Microcontroller achieves the purpose of temperature control by processing sign correspondingly. KEY WORDS:automatic temperature control, AT89C52 , DS18B20, PID

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

相关文档
最新文档