分支定界法

分支定界法
分支定界法

整数线性规划之分支定界法

摘要

最优化理论和方法是在上世纪 40 年代末发展成为一门独立的学科。1947年,Dantaig 首先提出求解一般线性规划问题的方法,即单纯形算法,随后随着工业革命、计算机技术的巨大发展,以及信息革命的不断深化,到现在的几十年时间里,它有了很快的发展。目前,求解各种最优化问题的理论研究发展迅速,例如线性规划、非线性规划以及随机规划、非光滑规划、多目标规划、几何规划、整数规划等,各种新的方法也不断涌现,并且在军事、经济、科学技术等方

面应用广泛,成为一门十分活跃的学科。

整数规划(integer programming)是一类要求要求部分或全部决策变量取整数值的数学规划,实际问题中有很多决策变量是必须取整数的。本文主要介绍求解整数线性规划问题的分支定界法及其算法的matlb实现。

关键词:整数线性规划;分支定界法;matlb程序;

1.引言

1.1优化问题发展现状

最优化理论与算法是一个重要的数学分支,它所讨论的问题是怎样在众多的方案中找到一个最优的方案.例如,在工程设计中,选择怎样的设计参数,才能使设计方案既满足要求又能降低成本;在资源分配中,资源有限时怎样分配,才能使分配方案既可以满足各方面的要求,又可以获得最多的收益;在生产计划安排中,怎样设计生产方案才能提高产值和利润;在军事指挥中,确定怎样的最佳作战方案,才能使自己的损失最小,伤敌最多,取得战争的胜利;在我们的生活中,诸如此类问题,到处可见.最优化作为数学的一个分支,为这些问题的解决提供了一些理论基础和求解方法.

最优化是个古老的课题.长期以来,人们一直对最优化问题进行着探讨和研究.在二十世纪四十年代末,Dantzig 提出了单纯形法,有效地解决了线性规划问题,从而最优化成为了一门独立的学科。目前,有关线性规划方面的理论和算法发展得相当完善,但是关于非线性规划问题的理论和算法还有待进一步的研究,实际应用中还有待进一步的完善。传统的非线性全局最优化方法只能求出问题的局部最优解,但由于许多问题的局部最优解不一定是全局最优解,使得传统的非线性最优化方法不能直接成功地应用于求解非线性全局最优化问题。另外,没有一个固定的评判标准来判断得到的局部最优解是否为全局最优解。随着科学技术的发展和计算机计算能力的提高,最优化理论在最近这几年来得到了迅速的发展,涌现出了许多新的算法, 如打洞函数法,填充函数法,lagrangian 乘子函数方法,信赖域方法,虑子方法等。

本文主要介绍求解整数线性规划问题的分支定界法及其算法的matlb实现。

1.2整数线性规划及其数学模型

整数规划主要有以下三大类:

(1)全整数规划(all integer programming):所有的决策变量都取整数值,也称为纯整数规划(pure integer programming);

(2)混合整数规划(mixed integer programming):仅要求一部分决策变量取整数值;

(3)0-1规划(zero-one integer programming):该类问题的决策变量只能取0或1.

本文主要讨论的整数线性规划问题模型为:

min ..0

(1,2,...,)T j j z c x

Ax b s t x x j n =?≤??≥??=??为整数,

其中111,...,),...,),(),(,...,)T T T n n ij m n m c c c x x x A a b b b ?=

===(,(

2.求解整数线性规划的算法——分支定界法

2.1求整数最优解问题的提出

对于整数规划的一个数学问题,把它的整数约束条件改为非负约束,得到一个普通线性规划问题,这个过程叫做从原问题ILP 得到它的一个松弛问题LP,说它是“松弛”的,是因为从整数变为实数,条件放宽了许多。

ILP : min ..0(1,2,...,)T j j z c x

Ax b s t x x j n =?≤??≥??=??为整数,

LP : min ..0,1,2,...,T j z c x

Ax b s t x j n =≤??≥=?()

其中111,...,),...,),(),(,...,)T T T n n ij m n m c c c x x x A a b b b ?====(,(

给定一个整数规划的数字题,一个直观的求解思路是先做出它的松弛问题。如果松弛问题的最优解中每一个整变量(即分量)的值都满足各自的整数约束,原问题得到解决。如果松弛问题的最优解中,某个变量的值不是整数,问题就很难解决。实践表明,求解整数规划是一个很困难的工作。随着计算机技术的迅猛发展,数学运算软件得到了广泛的使用,如:matlab,mathematica,maple 等。计算机已经成为应用数学软件求解问题的主要运算工具。

2.2分支定界法

分支定界算法是20世纪60年代初由Land 和Doig 提出,并由Dakin 修正,

可用于求解纯整数或混合整数线性规划问题。对于一个纯整数规划ILP 问题,求解它的一个基本思路是分支定界法,正如它的名字那样,主要由“分支”和“定界”组成。

首先讨论LP 与ILP 解的相关问题:“LP 的解”。可能有以下3种情况:

(1)LP 没有可行解,这时ILP 也没有可行解,则停止;

(2)LP 有最优解,并且解变量都是整数,因而它也是ILP 的最优解,则停止;

(3)LP 有最优解,但不符合ILP 中的整数条件,此时记它的目标函数值为0z ,这时若记z 为ILP 的最优目标函数值,则必有0z z ≥

其次,给出算法的步骤:

第一步——分支:在LP 的最优解中任选一个不符合整数条件的变量j x ,设其值为j l ,[j l ]是不超过j l 的最大整数。构造两个约束条件:j x ≤[j l ]和j x ≥[j l ]+1,

将两个条件分别加入其松弛问题LP,将LP 分成两个后继问题LP1和LP2。不考虑整数条件要求,求解LP1和LP2。根据需要各后继问题可用类似的方法进行分支,如此不断继续,直到获得整数规划的最优解,这就是所谓的“分支”。

第二步——定界:以每个后继子问题为一分支并标明求解的结果,与其他问题的解的结果一道,找出最优目标函数值最小者作为新的下界,替换0z ,从已符合整数条件的各分支中,找出目标函数值为最小者作为新的上界*z ,即有*0z z z ≥≥。

第三步——比较与剪支:各分支的最优目标函数中若有大于*z 者,则剪掉这一支;若小于*z ,且不符合整数条件,则重复第一步骤,一直到最后得到最优目标函数值*z z =为止,从而得最优整数解*

,1,2,...,.j x j n =

“分支”为整数规划最优解的出现创造了条件,而“定界”则可以提高搜索的效率。经验表明:在可能的情况下根据对实际问题的了解,实现选择一个合理的“界限”,可以提高分支定界法的搜索效率 2.3实例

例1求解下列整数规划

123

123123min 73423835..0(1,2,3)j

j

z x x x x x x x x x s t x x j =++++≥??++≥??≥??=?为整数, 解:设原整数规划问题为ILP, 其松弛问题为

LP :123

123123min 734238..35

0,1,2,3j

z x x x x x x s t x x x x j =++?++≥?++≥??≥=?

求解线性规划问题LP 得:(0)0(0.4,3.8,0);14.2x z ==

按条件和将问题LP 分解成子问题LP1和LP2并赋它们下界为14.2 ①求线性规划子问题LP1得:(1)1(0.5,3,0.5);14.5x z ==;求线性规划子问题LP 得:

(2)2143(,4,0);33

x z ==;{}122min ,z z z =;因(2)x 中113x =,因此以条件10x =和11x ≥将LP2分成两个子问题LP3和LP4并赋它们下界为14.33 ②求线性规划子问题LP3得:(3)3(0,5,0);15x z ==;求线性规划子问题LP4得:(4)4(1,4,0);19x z ==;因(3)x 和(4)x 是原整数规划问题的可行解且{}343min ,z z z =,所以令315z =为上界。再将LP1分支,因(1)x 中10.5x =,因此以条件10x =和11x ≥将LP1分成两个子问题LP5和LP6并赋它们下界为14.33

③求线性规划子问题LP5得:(5)5(0,3,2);17x z ==;求线性规划子问题LP6得:

(6)6749(1,0,);33

x z ==;由于5z ,6z >315z =,所以LP5和LP6都没有继续分支求解的必要,至此求得最优解为*3(0,5,0)x x ==,,最优目标函数值为*315z z ==。

3.matlab 程序实现

下面给出整数线性规划分支定界法的matlab 程序ILp1.m.

function [x,y]=ILp1(f,G,h,Geq,heq,lb,ub,x,id,options)

global upper opt c x0 A b Aeqbeq ID options;

if nargin<10,options=optimset({});options.Display='off';

https://www.360docs.net/doc/7a10657660.html,rgeScale='off';end

if nargin<9,id=ones(size(f));end

if nargin<8,x=[];end

if nargin<7 lisempty(ub),ub=inf*ones(size(f));end

if nargin<6 lisempty(lb),lb=zeros(size(f));end

if nargin<5,heq=[];end

if nargin<4,Geq=[];end

upper=inf;c=f;x0=x;A=G;b=h;Aeq=Geq;beq=heq;ID=id;

ftemp=ILP(lb(:),ub(:));

x=opt;y=upper;

%下面是子函数

function ftemp=ILP(vlb,vub)

global upper opt c x0 A b Aeqbeq ID options;

[x,ftemp,how]=linprog(c,A,b,Aeq,beq,vlb,vub,x0,options);

if how<=0

return;

end;

if ftemp- upper>0.00005 %in order to avoid error

return;

end;

if max(abs(x*ID-round(x*ID)))<0.00005

if upper- ftemp>0.00005 %in order to avoid error

opt=x';upper=ftemp;

return;

else

opt=[opt;x'];

return;

end;

end;

notintx=find(abs(x- round(x))>=0.00005); %in order to avoid er-ror

intx=fix(x);tempvlb=vlb;tempvub=vub;

if vub(notintx(1,1),1)>=intx(notintx(1,1),1)+1;

tempvlb(notintx(1,1),1)=intx(notintx(1,1),1)+1;

ftemp=ILP(tempvlb,vub);

end;

if vlb(notintx(1,1),1)<=intx(notintx(1,1),1)

tempvub(notintx(1,1),1)=intx(notintx(1,1),1);

ftemp=ILP(vlb,tempvub);

end;

对例1的matlab实现

c=[7,3,4];a=[-1,-2,-3;-3,-1,-1];b=[-8;-5];

[x,z]=ILp1(c,a,b,[],[],[0;0;0],[inf;inf;inf])

输出结果

x =

0 5.0000 0

z =

15.0000

这与之前讨论的结果一致,说明该算法的正确性。

4.总结

虽然对于用分支定界法解决整数规则等问题在运筹学里有一套完整的理论,但将它用计算机来实现还是有一定的难度。本文正是在这个方面作了一些探讨,主要介绍了求解整数线性规划问题的分支定界法及其算法的matlb实现,并以实例验证了该算法的正确性。

参考文献

[1]王开荣.最优化方法[M].北京:科学版社,2012.219-222

[2]李胜华.分支与定界算法的实现研究[J].内江师范学院学报,2003,18(2):21-23

[3]潘君.整数规划的分支定界法及其MATLAB 实现[J].科技信息,2008(07):167-168

[4]施光燕,董加礼.最优化方法.北京: 高等教育出版社,1999-09

[5]郭志军,分支定界算法的MATLAB 实现[J].职业圈,2007(20):139-140

整数规划_分支定界法_MATLAB程序

function [x,y]=lpint(f,G,h,lb,ub,x,n,id) % 整数线性规划分枝定界法,可求解线性全整数或线性混合整数规划% 此程序基于Matlab优化工具箱的lp函数写成 % 此程序为GreenSim团队原创作品,转载请注明 % 欢迎访问GreenSim团队的主页https://www.360docs.net/doc/7a10657660.html,/greensim % y = min f'x subject to: Gx <= h x为整 % x % 用法 % [x,y]=lpint(f,G,h) % [x,y]=lpint(f,G,h,lb,ub) % [x,y]=lpint(f,G,h,lb,ub,x) % [x,y]=lpint(f,G,h,lb,ub,x,n) % [x,y]=lpint(f,G,h,lb,ub,x,n,id) % 参数说明 % x: 最优解列向量 % y: 目标函数最小值 % f: 目标函数系数列向量 % G: 约束条件系数矩阵 % h: 约束条件右端列向量 % lb: 解的的下界列向量(Default: -inf) % ub: 解的的上界列向量(Default: inf) % x: 迭代初值列向量 % n: 等式约束数(Default: 0) % id: 整数变量指标列向量。1-整数,0-实数(Default: 1) % 举例 % min Z=x1+4x2 % s.t. 2x1+x2<=8 % x1+2x2>=6 % x1, x2>=0且为整数 %先将x1+2x2>=6化为 - x1 - 2x2<= -6 %》[x,y]=lpint([1;4],[2 1;-1 -2],[8;-6],[0;0]) % Y. MA & L.J. HU 1999 global upper opt c N x0 A b ID; if nargin<8, id=ones(size(f));end if nargin<7|isempty(n), n=0;end if nargin<6, x=[];end if nargin<5|isempty(ub), ub=inf*ones(size(f));end if nargin<4|isempty(lb), lb=zeros(size(f));end

整数规划分支定界算法matlab通用源程序

整数规划分支定界算法matlab通用源程序 %整数规划分支定界算法matlab通用源程序 %各参数的意义同matlab优化工具箱的线性规划函数linprog %调用前,输入参数要化成matlab的标准形式 [x,val]=kfz-f-3(n,f,a,b,aeq,beq,lb,ub) x=zeros(n,1); x1=zeros(n,1); m1=2; m2=1; [x1,val1]=linprog(f,a,b,aeq,beq,lb,ub); if (x1==0) x=x1; val=val1; elseif (round(x1)==x1) x=x1; val=val1; else e1={0,a,b,aeq,beq,lb,ub,x1,val1}; e(1,1)={e1}; zl=0; zu=-val1; while (zu~=zl) for c=1:1:m2 if (m1~=2) if (cell2mat(e{m1-1,c}(1))==1) e1={1,[],[],[],[],[],[],[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e1}; continue; end; end; x1=cell2mat(e{m1-1,c}(8)); x2=zeros(n,1); s=0; s1=1; s2=1; lb1=cell2mat(e{m1-1,c}(6)); ub1=cell2mat(e{m1-1,c}(7)); lb2=cell2mat(e{m1-1,c}(6)); ub2=cell2mat(e{m1-1,c}(7)); for d=1:1:n if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0) s=1;

运筹学 (1)

期末考试《运筹学》B 卷 一、单项选择题(在下列每题的四个选项中,只有一个选项是符合试题要求的。请把答案填入答题框中相应的题号下。每小题2分,共20分) 1.单纯形迭代中,出基变量在紧接着的下一次迭代中( )立即进基。 A .会 B .不会 C .有可能 D .不一定 2.线性规划的约束条件为 X 1 + X 2 + X 3 = 3 ,2X 1+ 2X 2+ X 4= 4,X i ≥0(i=1-4),则基本可行解是( ) A .(0,0,4, 3) B .(0,0,3,4) C .(2,1,0,-2) D .(3,0,0,-2) 3.普通单纯形法的最小比值定理的应用是为了保证( ) A .使原问题保持可行 B .使对偶问题保持可行 C .逐步消除原问题不可行性 D .逐步消除对偶问题的不可行性 4. 原问题与对偶问题都有可行解,则有( ) A .原问题有最优解,对偶问题可能没有最优解 B .原问题与对偶问题可能都没有最优解 C .可能一个问题有最优解,另一个问题具有无界解 D .原问题与对偶问题都具有最优解 5. 求解整数规划问题的分支定界法中,有( ) A .最大值问题的目标值是各分支的上界 B .最大值问题的目标值是各分支的下界 C .最小值问题的目标值是各分支的上界 D .以上结论都不对 6.在运输方案中出现退化现象,是指数字格的数目 ( ) A .等于 m+n B .等于m+n-1 C .小于m+n-1 D .大于m+n-1 7.若运输问题的单位运价表的某一行元素分别加上一个常数k ,最优调运方案将( )。 A .发生变化 B .不发生变化 C .A 、B 都有可能 D. 都不对 8.在产销平衡运输问题中,设产地为m 个,销地为n 个,那么解中非零 变量的个数( )。 A .不能大于(m+n-1) B .不能小于(m+n-1) C .等于(m+n-1) D .不确定 9.在运输问题中,每次迭代时,如果有某非基变量的检验数等于零,则该运输问题( )。 A .无最优解 B .有无穷最优解 C .有唯一最优解 D .出现退化解 10.动态规划问题中最优策略具有性质:( )。 A .每个阶段的决策都是最优的 B .当前阶段以前的各阶段决策是最优的 C .无论初始状态与初始决策如何,对于先前决策所形成的状态而言,其以后的所有决策应构成最优策略 D .它与初始状态无关 二、判断题(每题1分,共10分)

分支定界法详解

1、概念: 分支定界算法(Branch and bound,简称为BB、B&B, or BnB)始终围绕着一颗搜索树进行的,我们将原问题看作搜索树的根节点,从这里出发,分支的含义就是将大的问题分割成小的问题。大问题可以看成是搜索树的父节点,那么从大问题分割出来的小问题就是父节点的子节点了。分支的过程就是不断给树增加子节点的过程。而定界就是在分支的过程中检查子问题的上下界,如果子问题不能产生一比当前最优解还要优的解,那么砍掉这一支。直到所有子问题都不能产生一个更优的解时,算法结束。 2、例子: 用BB算法求解下面的整数规划模型 因为求解的是最大化问题,我们不妨设当前的最优解BestV为-INF,表示负无穷。 1.

首先从主问题分出两支子问题: 通过线性松弛求得两个子问题的upper bound为Z_LP1 = 12.75,Z_LP2 = 12.2。由于Z_LP1 和Z_LP2都大于BestV=-INF,说明这两支有搞头,继续往下。 2. 3.

从节点1和节点2两个子问题再次分支,得到如下结果: 子问题3已经不可行,无需再理。子问题4通过线性松弛得到最优解为10,刚好也符合原问题0的所有约束,在该支找到一个可行解,更新BestV = 10。 子问题5通过线性松弛得到upper bound为11.87>当前的BestV = 10,因此子问题5还有戏,待下一次分支。而子问题6得到upper bound为9<当前的BestV = 10,那么从该支下去找到的解也不会变得更好,所以剪掉! 4.

对节点5进行分支,得到: 子问题7不可行,无需再理。子问题8得到一个满足原问题0所有约束的解,但是目标值为4<当前的BestV=10,所以不更新BestV,同时该支下去也不能得到更好的解了。 6.

整数规划_分支定界法_MATLAB程序

整数规划分支定界法MATLAB程序 1.这种方法绝对能都解出答案,而且答案正确 function [x,val]=fzdj(n,f,a,b,aeq,beq,lb,ub) x=zeros(n,1); x1=zeros(n,1); m1=2; m2=1; [x1,val1]=linprog(f,a,b,aeq,beq,lb,ub); if (x1==0) x=x1; val=val1; elseif (round(x1)==x1) x=x1; val=val1; else e1={0,a,b,aeq,beq,lb,ub,x1,val1}; e(1,1)={e1}; zl=0; zu=-val1; while (zu~=zl) for c=1:1:m2 if (m1~=2) if (cell2mat(e{m1-1,c}(1))==1) e1={1,[],[],[],[],[],[],[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e1}; continue; end; end; x1=cell2mat(e{m1-1,c}(8)); x2=zeros(n,1); s=0; s1=1; s2=1; lb1=cell2mat(e{m1-1,c}(6)); ub1=cell2mat(e{m1-1,c}(7)); lb2=cell2mat(e{m1-1,c}(6)); ub2=cell2mat(e{m1-1,c}(7)); for d=1:1:n if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0) s=1; lb1(d)=fix(x1(d))+1;

分支定界法

分支定界法 function [x,y]=ILp(f,G,h,Geq,heq,lb,ub,x,id,options) %整数线性规划分支定界法,可求解纯整数规划和混合整数规划。 %y=minf’*x s.t. G*x<=h Geq*x=heq x为全整数或混合整数列向量 %用法 %[x,y]=ILp(f,G,h,Geq,heq,lb,ub,x,id,options) %参数说明 %lb:解的下界列向量(Default:-int) %ub:解的上界列向量(Default:int) %x:迭代初值列向量 %id:整数变量指标列向量,1-整数,0-实数(Default:1) global upper opt c x0 A b Aeq beq ID options; if nargin<10,options=optimset({});options.Display='off'; https://www.360docs.net/doc/7a10657660.html,rgeScale='off';end if nargin<9,id=ones(size(f));end if nargin<8,x=[];end if nargin<7

|isempty(ub),ub=inf*ones(size(f));end if nargin<6 |isempty(lb),lb=zeros(size(f));end if nargin<5,heq=[];end if nargin<4,Geq=[];end upper=inf;c=f;x0=x;A=G;b=h;Aeq=Geq;beq=heq;ID=id; ftemp=ILP(lb(:),ub(:)); x=opt;y=upper; %下面是子函数 function ftemp=ILP(vlb,vub) global upper opt c x0 A b Aeq beq ID options; [x,ftemp,how]=linprog(c,A,b,Aeq,beq,vlb,vub,x0,options); if how <=0 return; end; if ftemp-upper>0.00005 %in order to avoid error return; end; if max(abs(x.*ID-round(x.*ID)))<0.00005 if upper-ftemp>0.00005 %in order to

分支定界算法的MATLAB程序

Linprogdis子程序: function [x,fval,exitflag,output,lambda]=... linprogdis(ifint,f,A,b,Aeq,beq,lb,ub,x0,options) %Title: % 分支定届法求解混合整数线性规划模型 % %初步完成:2002年12月 %最新修订: 2004-03-06 %最新注释:2004-11-20 %数据处理 [t1,t2] = size(b); if t2~=1, b=b';%将b转置为列向量 end %调用线性规划求解 [x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb,ub,x0,options); if exitflag<=0,%如果线性规划失败,则本求解也失败 return end %得到有整数约束的决策变量的序号 v1=find(ifint==1);%整数变量的index tmp=x(v1);%【整数约束之决策变量】的当前值 if isempty(tmp), %无整数约束,则是一般的线性规划,直接返回即可 return end v2=find(checkint(tmp)==0);%寻找不是整数的index if isempty(v2), %如果整数约束决策变量确实均为整数,则调用结束 return end %第k个决策变量还不是整数解 %注意先处理第1个不满足整数约束的决策变量 k=v1(v2(1)); %分支1:左分支 tmp1=zeros(1,length(f));%线性约束之系数向量 tmp1(k)=1; low=floor(x(k)); %thisA 分支后实际调用线性规划的不等式约束的系数矩阵A %thisb 分支后实际调用线性规划的不等式约束向量b if ifrowinmat([tmp1,low],[A,b])==1 %如果分支的约束已经存在旧的A,b中,则不改变约束 thisA= A; thisb= b;

整数规划_分支定界法_MATLAB程序

整数规划分支定界法MATLAB 程序 1.这种方法绝对能都解出答案,而且答案正确function [x,val]=fzdj(n,f,a,b,aeq,beq,lb,ub) x=zeros(n,1); x1=zeros(n,1); m1=2; m2=1; [x1,val1]=linprog(f,a,b,aeq,beq,lb,ub); if (x1==0) x=x1; val=val1; elseif (round(x1)==x1) x=x1; val=val1; else e1={0,a,b,aeq,beq,lb,ub,x1,val1}; e(1,1)={e1}; zl=0; zu=-val1; while (zu~=zl) for c=1:1:m2 if (m1~=2) if (cell2mat(e{m1-1,c}(1))==1) e1={1,[],[],[],[],[],[],[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e1}; continue; end; end; x1=cell2mat(e{m1-1,c}(8)); x2=zeros(n,1); s=0; s1=1; s2=1; lb1=cell2mat(e{m1-1,c}(6)); ub1=cell2mat(e{m1-1,c}(7)); lb2=cell2mat(e{m1-1,c}(6)); ub2=cell2mat(e{m1-1,c}(7)); for d=1:1:n if (abs((round(x1(d))-x1(d)))>0.0001)&(s==0) s=1; lb1(d)=fix(x1(d))+1; if (a*lb1<=b) s1=0; end; ub2(d)=fix(x1(d)); if (a*lb2<=b) s2=0; end; end; end; e1={s1,a,b,aeq,beq,lb1,ub1,[],0}; e2={s2,a,b,aeq,beq,lb2,ub2,[],0}; e(m1,c*2-1)={e1}; e(m1,c*2)={e2}; end; m1=m1+1;

分支定界法知识

分支定界(branch and bound) 算法是一种在问题的解空间树上搜索问题的解 的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。 利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是: 1 .产生当前扩展结点的所有子结点; 2 .在产生的子结点中,抛弃那些不可能产生可行解(或最优解)的结点; 3 .将其余的子结点加入活结点表; 4 .从活结点表中选择下一个活结点作为新的扩展结点。 如此循环,直到找到问题的可行解(最优解)或活结点表为空。 分支定界法本质还是一种枚举法,但是是隐枚举法。它是整数规划领域中非常重要的一类算法思想。是很多重要算法的源头。它能解决的实际问题很多,最著名的一个应该就是求解背包问题。 定义 分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。 算法步骤 第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。否则这个解的目标函数值是原问题的最优解的上界。 第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。否则它的目标函数值就是原问题的一个新的上界。另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的一个下界。 第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。 第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。如果已经找到该子问题的最优可行解,那么其目标函数值与前面保留的其他问题在内的所有子问题的可行解中目标函数值最大者,将它作为新的下界,重复第3步,直到求出最优解。

分支定界法和割平面法

分支定界法和割平面法 在上学期课程中学习的线性规划问题中,有些最优解可能是分数或消失,但现实中某些具体的问题,常要求最优解必须是整数,这样就有了对于整数规划的研究。 整数规划有以下几种分类:(1)如果整数规划中所有的变量都限制为(非负)整数,就称为纯整数规划或全整数规划;(2)如果仅一部分变量限制为整数,则称为混合整数规划;(3)整数规划还有一种特殊情形是0-1规划,他的变量取值仅限于0或1。本文就适用于纯整数线性规划和混合整数线性规划求解的分支定界法和割平面法,做相应的介绍。 一、分支定界法 在求解整数规划是,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。对于小型问题,变量数量很少,可行的整数组合数也是很小时,这个方法是可行的,也是有效的。而对于大型的问题,可行的整数组合数很大时,这种方法就不可取了。所以我们的方法一般是仅检查可行的整数组合的一部分,就能定出最有的整数解。分支定界法就是其中一个。 分枝定界法可用于解纯整数或混合的整数规划问题。在二十世纪六十年代初由Land Doig 和Dakin 等人提出。由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。 设有最大化的整数规划问题A ,与它相应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z *的上界,记作z ;而A 的任意可行解的目标函数值将是z *的一个下界z 。分枝定界法就是将B 的可行域分成子区域再求其最大值的方法。逐步减小z 和增大z ,最终求到z *。现用下例来说明: 例1 求解下述整数规划 219040Max x x z += ??? ??≥≥+≤+且为整数0,7020756792 12121x x x x x x 解 (1)先不考虑整数限制,即解相应的线性规划B ,得最优解为: 124.81, 1.82,356 x x z === 可见它不符合整数条件。这时z 是问题A 的最优目标函数值z *的上界,记作z 。而X 1=0,X 2=0显然是问题A 的一个整数可行解,这时0=z ,是z * 的一个下界,记作z ,即0≤z *≤356 。 (2)因为X 1X 2当前均为非整数,故不满足整数要求,任选一个进行分枝。设选X 1进行分枝,于是对原问题增加两个约束条件: [][]114.814, 4.8115 x x ≤=≥+= 于是可将原问题分解为两个子问题B 1和B 2(即两支),给每支增加一个约束条件并不影响问题A 的可行域,不考虑整数条件解问题B 1和 B 2 ,称此为第一次迭代。得到最优解

分支定界法

整数线性规划之分支定界法 摘要 最优化理论和方法是在上世纪 40 年代末发展成为一门独立的学科。1947年,Dantaig 首先提出求解一般线性规划问题的方法,即单纯形算法,随后随着工业革命、计算机技术的巨大发展,以及信息革命的不断深化,到现在的几十年时间里,它有了很快的发展。目前,求解各种最优化问题的理论研究发展迅速,例如线性规划、非线性规划以及随机规划、非光滑规划、多目标规划、几何规划、整数规划等,各种新的方法也不断涌现,并且在军事、经济、科学技术等方 面应用广泛,成为一门十分活跃的学科。 整数规划(integer programming)是一类要求要求部分或全部决策变量取整数值的数学规划,实际问题中有很多决策变量是必须取整数的。本文主要介绍求解整数线性规划问题的分支定界法及其算法的matlb实现。 关键词:整数线性规划;分支定界法;matlb程序;

1.引言 1.1优化问题发展现状 最优化理论与算法是一个重要的数学分支,它所讨论的问题是怎样在众多的方案中找到一个最优的方案.例如,在工程设计中,选择怎样的设计参数,才能使设计方案既满足要求又能降低成本;在资源分配中,资源有限时怎样分配,才能使分配方案既可以满足各方面的要求,又可以获得最多的收益;在生产计划安排中,怎样设计生产方案才能提高产值和利润;在军事指挥中,确定怎样的最佳作战方案,才能使自己的损失最小,伤敌最多,取得战争的胜利;在我们的生活中,诸如此类问题,到处可见.最优化作为数学的一个分支,为这些问题的解决提供了一些理论基础和求解方法. 最优化是个古老的课题.长期以来,人们一直对最优化问题进行着探讨和研究.在二十世纪四十年代末,Dantzig 提出了单纯形法,有效地解决了线性规划问题,从而最优化成为了一门独立的学科。目前,有关线性规划方面的理论和算法发展得相当完善,但是关于非线性规划问题的理论和算法还有待进一步的研究,实际应用中还有待进一步的完善。传统的非线性全局最优化方法只能求出问题的局部最优解,但由于许多问题的局部最优解不一定是全局最优解,使得传统的非线性最优化方法不能直接成功地应用于求解非线性全局最优化问题。另外,没有一个固定的评判标准来判断得到的局部最优解是否为全局最优解。随着科学技术的发展和计算机计算能力的提高,最优化理论在最近这几年来得到了迅速的发展,涌现出了许多新的算法, 如打洞函数法,填充函数法,lagrangian 乘子函数方法,信赖域方法,虑子方法等。 本文主要介绍求解整数线性规划问题的分支定界法及其算法的matlb实现。 1.2整数线性规划及其数学模型 整数规划主要有以下三大类: (1)全整数规划(all integer programming):所有的决策变量都取整数值,也称为纯整数规划(pure integer programming); (2)混合整数规划(mixed integer programming):仅要求一部分决策变量取整数值; (3)0-1规划(zero-one integer programming):该类问题的决策变量只能取0或1. 本文主要讨论的整数线性规划问题模型为:

运筹学方法总结

一.线性规划 1.问题背景:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人 们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题 2.求解方法: a.单纯形法: 适用的问题:约束条件全部为≤,右边常数全部为非负,对目标函数的系数没有要求。 min z=3x1-2x2 s.t. x1+2x2≤12 2x1+ x2≤18 x1,x2≥0 求解步骤: STEP 0 将线性规划问题标准化 STEP 1 是否有明显的初始基础可行解,如果有,转STEP 3,否则,转STEP 2。 STEP 2 构造辅助问题,用两阶段法求解辅助问题。如果辅助问题最优解的目标函数值大于0,原问题无可行解,算法终止。否则转STEP 3。 STEP 3 写出单纯形表,将基变量在约束条件中的系数消为单位矩阵,将基变量在目标函数中的系数消为0。转STEP 4。 STEP 4 如果所有非基变量的检验数全为负数或0,则已获得最优解,算法终止。否则,选择检验数为正数并且绝对值最大的非基变量为进基变量。转STEP 5。 STEP 5 如果进基变量在约束条件中的系数全为负数或0,目标函数无界,算法终止。否则根据右边常数和正的系数的最小比值,确定离基变量。转STEP 6。 STEP 6 进基变量列和离基变量行交叉的元素称为主元。对单纯形表进行行变换,将主元变为1,将主元所在列的其他元素变为0。转STEP 4。 b.对偶单纯形法: 适用的问题:约束条件中至少有一个是≥,相应的右边常数为非负,目标函数系数全部为非负。 min z=3x1+2x2 s.t. x1+2x2≥12 2x1+ x2≤18 x1,x2≥0 求解步骤: 步骤1 确定原问题(L)的初始基B,使所有检验数,即是对偶可行解,建立初始单纯形表。 步骤2 检查基变量的取值,若≥0,则已得最优解,计算停;否则求确定单纯形表第L行对应的基变量为旋出变量。 步骤3 若所有,则原问题无可行解,计算停;否则,计算确定对应的为旋入变量。 步骤4 以为主元作(L,K)旋转变换,得新的单纯形表,转步骤2。可以证明,按上述方法进行迭代,所得解始终是对偶可行解。 二.运输问题 1.问题背景:一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产 地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案。

分支定界法Matlab程序实现与验证

分支定界法Matlab 程序实现与验证 为了更深入理解分支定界法计算流程,从而决定花费几天时间仔细学习该算法,并编写出该算法的Matlab 计算程序。同时为了后面个人的借鉴学习,编写本文档。在进行分支定界法计算程序编写过程中,通过网络搜索,发现了Matlab2014版之后嵌入了混合整数线性规划求解函数intlinprog,从而也将该函数的使用方法撰写下来。 1 整数规划问题简介 在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常有要求解答必须是整数的情形(称为整数解)。例如:所求解是机器的台数、完成工作的人数或装货的车数等,分数或小数的解答就不合要求。为了满足整数解的要求,初看起来,似乎只要把已得到的带有分数或小数的解经过“舍入化整”就可以了。但这常常是不行的,因为化整后不见得是可行解;或虽是可行解,但不一定是最优解。因此,对求最优整数解的问题,有必要另行研究。人们称这样的问题为整数规划(Integer Programming,IP),整数规划是最近几十年发展起来的规划论中的一个分支。 整数规划中如果所有的变数都限制为(非负)整数,就称为纯整数规划(Pure Integer Programming,PIP)或称为全整数规划(All Integer Programming,AIP);如果仅一部分变数限制为整数,则称为混合整数计划(Mixed Integer Programming,MIP)。整数规划的一种特殊情形是0-1规划,该规划中变量的取值仅限于0或1,指派问题就是一类典型的0-1规划问题。 现举例说明用前述单纯形法求得的解不能保证是整数最优解。 例1:某厂拟用集装箱托运甲乙两种货物, 每箱的体积、重量、可获利润以及托运所受限制如表1所示。问两种货物各托运多少箱, 可使获得利润为最大? 表1 货物托运示例数据 货物 体积(m3/箱) 重量(百公斤/箱)利润(百元/箱) 甲 5 2 20 乙 4 5 10 托运限制 24(m3) 13百公斤 设1x 、2x 分别为甲、乙两种货物的托运箱数(为非负整数),列该问题的纯 整数规划模型如下: 12max 2010z x x =+

整数规划分支定界法

一、编程 利用Matlab的线性规划指令: [x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) 编写计算整数规划函数,输入与输出与上述指令相同 分枝定界法(递归实现) function [x,fval,status] = intprog(f,A,B,I,Aeq,Beq,lb,ub,e) %整数规划求解函数 intprog() % 其中 f为目标函数向量 % A和B为不等式约束 Aeq与Beq为等式约束 % I为整数约束 % lb与ub分别为变量下界与上界 % x为最优解,fval为最优值 %例子: % maximize 20 x1 + 10 x2 % S.T. % 5 x1 + 4 x2 <=24 % 2 x1 + 5 x2 <=13 % x1, x2 >=0 % x1, x2是整数 % f=[-20, -10]; % A=[ 5 4; 2 5]; % B=[24; 13]; % lb=[0 0]; % ub=[inf inf]; % I=[1,2]; % e=0.000001; % [x v s]= IP(f,A,B,I,[],[],lb,ub,,e) % x = 4 1 v = -90.0000 s = 1 % 控制输入参数 if nargin < 9, e = 0.00001; if nargin < 8, ub = []; if nargin < 7, lb = []; if nargin < 6, Beq = []; if nargin < 5, Aeq = []; if nargin < 4, I = [1:length(f)]; end, end, end, end, end, end %求解整数规划对应的线性规划,判断是否有解 options = optimset('display','off'); [x0,fval0,exitflag] = linprog(f,A,B,Aeq,Beq,lb,ub,[],options); if exitflag < 0

实验5 整数规划分支定界 的编程实现

实验5 整数规划求解的分支定界法的编程实现 专业班级数学学姓名报告日期. 实验类型:●验证性实验○综合性实验○设计性实验 实验目的:熟练整数规划求解的分支定界法。 实验内容:整数规划求解的分支定界法2个(题目自选1个混合整数规划、1个0-1整数规划) 实验原理整数规划求解的分支定界法,首先确定目标函数的一个初始上下界,然后通过逐步分支使上界减小,下界增大,直到两者相等时,就求出了最优值和最优解。 实验步骤 1 要求上机实验前先编写出程序代码 2 编辑录入程序 3 调试程序并记录调试过程中出现的问题及修改程序的过程 4 经反复调试后,运行程序并验证程序运行是否正确。 5 记录运行时的输入和输出。 预习编写程序代码: 实验报告:根据实验情况和结果撰写并递交实验报告。 实验总结: 参考程序 第一题:混合整数规划

①在lingo中写入如下代码,运行。 max=3*x1+2*x2; 2*x1+3*x2<=14; 2*x1+x2<=9; @gin(x1); @gin(x2); ②结果如下: Global optimal solution found. Objective value: 14.00000 Objective bound: 14.00000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 3 Variable Value Reduced Cost X1 4.000000 -3.000000 X2 1.000000 -2.000000 Row Slack or Surplus Dual Price 1 14.00000 1.000000 2 3.000000 0.000000 3 0.000000 0.000000 可知,最优值为14。此时,x1取4,x2取1。 第二题0-1整数规划 ①在lingo中写入如下代码,运行。 min=2*x1+5*x2+3*x3+4*x4; -4*x1+x2+x3+x4>=0; -2*x1+4*x2+2*x3+4*x4>=4; x1+x2-x3+x4>=1; @bin(x1); @bin(x2); @bin(x3); @bin(x4); ②结果如下: Global optimal solution found. Objective value: 4.000000 Objective bound: 4.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost

分支定界法

分支定界法 分支定界法,顾名思义,就是按照定好的界进行分支。这里说的分支意思是“剪枝”。剪的枝是问题解空间树的枝。所谓解空间树,即此问题所有解和中间解形成的树型结构,是有序的。常有排列树和子集树之分,举个例子,n个物品的0-1背包问题的解空间树就是子集树(每个物品都可能为0或1),而最短路径问题的解空间树是一颗排列树。 分支定界法一般有两种实现形式:1.优先队列法2.FIFO队列法。这与分支定界的思想无太多本质联系,只是前者在一般情况下能更快的求得问题解。分支定界法要对问题的解空间树进行“剪枝”操作以减少对解空间树的搜索。那么问题是,如何“剪枝”?这就要回答如何定界的问题。在分支定界法中,“界”的作用就是用来阻止对不可行分支的搜索的。当解空间树很深时(叶子节点为解),如果能在前面几层就预先的知道了“此路不通”或者“此路不是最优”而停止此路的继续,这样能大幅度的提高算法效率。如何定界要放入具体问题中考虑,一般可以以“理论最大最小”这个概念来求界。以0-1背包问题为例,设所有物品预先已经按照单位价值量递减排列。在解空间树的第i层(此时正在考虑第i个物品是否应该被放入的时刻),设左子树为放入i物品,右子树为不放i物品。那么在确定左子树的上界的时候有:界=当前价值+i

的价值+MaxValue(背包剩余重量-i物品重量);其中的MaxValue为放i后剩余背包容量能获得的最大价值,应该注意的是此最大价值为理论意义上的最大价值,比如在继续放入p个后(按单位价值量递减),放不下第p+1个,此时应该按(Value[p+1]/Weight[p+1])*(WeightLeft)来计p+1物品的价值,(实际中不可能放入零点几个某物品。。。);右子树的情形类似。 知道了如何定界,那么在实际流程中就要根据当前目标节点的界来剪枝了(是用上界还是下界,具体问题具体分析)。今天准备举个稍微有点挑战的例子---NPC问题中的TSP问题。 在TSP问题中,由于是环路,每个节点都要进出各一次,我们可以将每个节点最小的入度和最小的出度的和累加作为一个下界,这个下界几乎不可能达到!(全部最小出度的和即为下面提到的rcost的初值) 初始时我们创建一个最小堆,表示活节点队列。堆中按照每个节点的下界来划分优先级,下界越小的优先级越高。由于有是要求回路最小值,所以可以先判断此图是否有回路,没有直接返回,有再继续往下做。然后开始解空间树的搜索,广度优先遍历当前点的连通点,用curcost 来存当前的耗费总和,rcost表示当前点到叶子节点最小出度之和,那么一个节点的下界计算为:curcost+rcost-MinOut(当前点);如果此下界小于当前最优值,则将这个连

整数规划

第五章整数规划 一、填空题 1.用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的()。 2.在分枝定界法中,若选Xr=4/3进行分支,则构造的约束条件应为()。 3.已知整数规划问题P0,其相应的松驰问题记为P0’,若问题P0’无可行解,则问题P。()。 4.在0 - 1整数规划中变量的取值可能是()或()。 5.对于一个有n项任务需要有n个人去完成的分配问题,其解中取值为1的变量数为()个。 6.分枝定界法和割平面法的基础都是用()求解整数规划。 7.若在对某整数规划问题的松驰问题进行求解时,得到最优单纯形表中,由X。所在行得X1+1/7x3+2/7x5=13/7,则以X1行为源行的割平面方程为()。 8.在用割平面法求解整数规划问题时,要求全部变量必须都为()。 9.用()求解整数规划问题时,若某个约束条件中有不为整数的系数,则需在该约束两端扩大适当倍数,将全部系数化为整数。 10.求解纯整数规划的方法是割平面法。求解混合整数规划的方法是()。 11.求解0—1整数规划的方法是隐枚举法。求解分配问题的专门方法是()。 12.在应用匈牙利法求解分配问题时,最终求得的分配元应是()。 13.分枝定界法一般每次分枝数量为()个. 二、单选题 1.整数规划问题中,变量的取值可能是()。 A.整数B.0或1C.大于零的非整数D.以上三种都可能 2.在下列整数规划问题中,分枝定界法和割平面法都可以采用的是A()。 A.纯整数规划B.混合整数规划C.0—1规划D.线性规划 3.下列方法中用于求解分配问题的是()。 A.单纯形表B.分枝定界法C.表上作业法D.匈牙利法 三、多项选择

分支定界法

分支定界法 分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。 基本信息 中文名称:分支定界法 外文名称:branch and bound 用途:整数规划问题 性质:算法 定义 分支定界法(branch and bound)是一种求解整数规划问题的最常用算法。这种方法不但可以求解纯整数规划,还可以求解混合整数规划问题。 算法步骤 第1步:放宽或取消原问题的某些约束条件,如求整数解的条件。如果这时求出的最优解是原问题的可行解,那么这个解就是原问题的最优解,计算结束。否则这个解的目标函数值是原问题的最优解的上界。 第2步:将放宽了某些约束条件的替代问题分成若干子问题,要求各子问题的解集合的并集要包含原问题的所有可行解,然后对每个子问题求最优解。这些子问题的最优解中的最优者若是原问题的可行解,则它就是原问题的最优解,计算结束。否则它的目标函数值就是原问题的一个新的上界。另外,各子问题的最优解中,若有原问题的可行解的,选这些可行解的最大目标函数值,它就是原问题的最优解的一个下界。 第3步:对最优解的目标函数值已小于这个下界的问题,其可行解中必无原问题的最优解,可以放弃。对最优解的目标函数值大于这个下界的子问题,都先保留下来,进入第4步。

第4步:在保留下的所有子问题中,选出最优解的目标函数值最大的一个,重复第1步和第2步。如果已经找到该子问题的最优可行解,那么其目标函数值与前面保留的其他问题在内的所有子问题的可行解中目标函数值最大者,将它作为新的下界,重复第3步,直到求出最优解。

分支定界问题1

分支定界(branch and bound) s搜索法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是: 1 .产生当前扩展结点的所有孩子结点; 2 .在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点; 3 .将其余的孩子结点加入活结点表; 4 .从活结点表中选择下一个活结点作为新的扩展结点。如此循环,直到找到问题的可行解(最优解)或活结点表为空。从活结点表中选择下一个活结点作为新的扩展结点,根据选择方式的不同,分支定界算法通常可以分为两种形式: 1 .FIFO(First In First Out) 分支定界算法:按照先进先出原则选择下一个活结点作为扩展结点,即从活结点表中取出结点的顺序与加入结点的顺序相同。 2 .最小耗费或最大收益分支定界算法:在这种情况下,每个结点都有一个耗费或收益。如果要查找一个具有最小耗费的解,那么要选择的下一个扩展结点就是活结点表中具有最小耗费的活结点;如果要查找一个具有最大收益的解,那么要选择的下一个扩展结点就是活结点表中具有最大收益的活结点。又称分支定界搜索法。过程系统综合的一类方法。该法是将原始问题分解,产生一组子问题。分支是将一组解分为几组子解,定界是建立这些子组解的目标函数的边界。如果某一子组的解在这些边界之外,就将这一子组舍弃(剪枝)。分支定界法原为运筹学中求解整数规划(或混合整数规划)问题的一种方法。用该法寻求整数最优解的效率很高。将该法原理用于过程系统综合可大大减少需要计算的方案数日。分支定界法的思想是:首先确定目标值的上下界,边搜索边减掉搜索树的某些支,提高搜索效率。在竞赛中,我们有时会碰到一些题目,它们既不能通过建立数学模型解决,又没有现成算法可以套用,或者非遍历所有状况才可以得出正确结果。这时,我们就必须采用搜索算法来解决问题。搜索算法按搜索的方式分有两类,一类是深度优先搜索,一类是广度优先搜索。我们知道,深度搜索编程简单,程序简洁易懂,空间需求也比较低,但是这种方法的时间复杂度往往是指数级的,倘若不加优化,其时间效率简直无法忍受;而广度优先搜索虽然时间复杂度比前者低一些,但其庞大的空间需求量又往往让人望而却步。所以,对程序进行优化,就成为搜索算法编程中最关键的一环。本文所要讨论的便是搜索算法中优化程序的一种基本方法枣“剪枝”。什么是剪枝相信刚开始接触搜索算法的人,都做过类似迷宫这样的题目吧。我们在“走迷宫”的时候,一般回溯法思路是这样的:

相关文档
最新文档