利用神经网络进行调制识别

利用神经网络进行调制识别
利用神经网络进行调制识别

神经网络模式识别Matlab程序

神经网络模式识别Matlab程序识别加入20%噪声的A-Z26个字母。(20%噪声情况下,完全能够识别)clear;close all; clc; [alphabet,targets]=prprob; [R,Q]=size(alphabet); [S2,Q]=size(targets); S1=10; P=alphabet; net=newff(minmax(P),[S1,S2],{'logsig''logsig'},'traingdx'); net.LW{2,1}=net.LW{2,1}*0.01; net.b{2}=net.b{2}*0.01; T=targets; net.performFcn='sse'; net.trainParam.goal=0.1; net.trainParam.show=20; net.trainParam.epochs=5000; net.trainParam.mc=0.95; [net,tr]=train(net,P,T); netn=net; netn.trainParam.goal=0.6; netn.trainParam.epochs=300; T=[targets targets targets targets]; for pass=1:10; P=[alphabet,alphabet,... (alphabet+randn(R,Q)*0.1),... (alphabet+randn(R,Q)*0.2)]; [netn,tr]=train(netn,P,T); end netn.trainParam.goal=0.1; netn.trainParam.epochs=500; netn.trainParam.show=5; P=alphabet; T=targets; [netn,tr]=train(netn,P,T); noise_percent=0.2; for k=1:26 noisyChar=alphabet(:,k)+randn(35,1)*noise_percent; subplot(6,9,k+floor(k/9.5)*9); plotchar(noisyChar); de_noisyChar=sim(net,noisyChar); de_noisyChar=compet(de_noisyChar);

离散Hopfield神经网络的联想记忆-数字识别

1.实现1,2在加噪声之后的识别 array_one=[-1 -1 -1 -1 1 1 -1 -1 -1 -1;-1 -1 -1 -1 1 1 -1 -1 -1 -1;... -1 -1 -1 -1 1 1 -1 -1 -1 -1;-1 -1 -1 -1 1 1 -1 -1 -1 -1;... -1 -1 -1 -1 1 1 -1 -1 -1 -1;-1 -1 -1 -1 1 1 -1 -1 -1 -1; ... -1 -1 -1 -1 1 1 -1 -1 -1 -1;-1 -1 -1 -1 1 1 -1 -1 -1 -1;... -1 -1 -1 -1 1 1 -1 -1 -1 -1;-1 -1 -1 -1 1 1 -1 -1 -1 -1]; array_two=[-1 1 1 1 1 1 1 1 1 -1;-1 1 1 1 1 1 1 1 1 -1;... -1 -1 -1 -1 -1 -1 -1 1 1 -1;-1 -1 -1 -1 -1 -1 -1 1 1 -1;... -1 1 1 1 1 1 1 1 1 -1;-1 1 1 1 1 1 1 1 1 -1;... -1 1 1 -1 -1 -1 -1 -1 -1 -1;-1 1 1 -1 -1 -1 -1 -1 -1 -1;... -1 1 1 1 1 1 1 1 1 -1;-1 1 1 1 1 1 1 1 1 -1 ]; T=[array_one;array_two]'; net=newhop(T); noisy_array_one=array_one; noisy_array_two=array_two; for i=1:100 a=rand; if a<0.1 noisy_array_one(i)=-array_one(i); noisy_array_two(i)=-array_two(i); end end noisy_one={(noisy_array_one)'}; identify_one=sim(net,{10,10},{},noisy_one); identify_one{10}' noisy_two={(noisy_array_two)'}; identify_two=sim(net,{10,10},{},noisy_two); identify_two{10}' subplot(3,2,1) Array_one=imresize(array_one,20); imshow(Array_one) title('standard number 1') subplot(3,2,2) Array_two=imresize(array_two,20); imshow(Array_two) title('standard number 2') subplot(3,2,3) Noisy_array_one=imresize(noisy_array_one,20); imshow(Noisy_array_one) title('noisy number 1') subplot(3,2,4) Noisy_array_two=imresize(noisy_array_two,20); imshow(Noisy_array_two) title('noisy number 2')

基于某某BP神经网络地手写数字识别实验报告材料

基于BP神经网络的手写体数字图像识别 PT1700105 宁崇宇 PT1700106 陈玉磊 PT1700104 安传旭 摘要 在信息化飞速发展的时代,光学字符识别是一个重要的信息录入与信息转化的手段,其中手写体数字的识别有着广泛地应用,如:邮政编码、统计报表、银行票据等等,因其广泛地应用范围,能带来巨大的经济与社会效益。 本文结合深度学习理论,利用BP神经网络对手写体数字数据集MNIST进行分析,作为机器学习课程的一次实践,熟悉了目前广泛使用的Matlab工具,深入理解了神经网络的训练过程,作为非计算机专业的学生,结合该课题掌握了用神经网络处理实际问题的方法,为今后将深度学习与自身领域相结合打下了基础。

1 引言 从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作。利用巨大的存储空间和超高的运算速度,计算机已经可以非常轻易地完成一些对于人类非常困难的工作,然而,一些人类通过直觉可以很快解决的问题,却很难通过计算机解决,这些问题包括自然语言处理、图像识别、语音识别等等,它们就是人工智能需要解决的问题。 计算机要想人类一样完成更多的智能工作,就需要掌握关于这个世界的海量知识,很多早期的人工智能系统只能成功应用于相对特定的环境,在这些特定环

境下,计算机需要了解的知识很容易被严格完整地定义。 为了使计算机更多地掌握开放环境下的知识,研究人员进行了很多的尝试。其中影响力很大的一个领域就是知识图库(Ontology),WordNet是在开放环境中建立的一个较大且有影响力的知识图库,也有不少研究人员尝试将Wikipedia中的知识整理成知识图库,但是建立知识图库一方面需要花费大量的人力和物力,另一方面知识图库方式明确定义的知识有限,不是所有的知识都可以明确地定义成计算机可以理解的固定格式。很大一部分无法明确定义的知识,就是人类的经验,如何让计算机跟人类一样从历史的经验中获取新的知识,这就是机器学习需要解决的问题。 卡内基梅隆大学的Tom Michael Mitchell教授在1997年出版的书籍中将机器学习定义为“如果一个程序可以在任务T上,随着经验E的增加,效果P 也可以随之增加,则称这个程序可以从经验中学习”。逻辑提取算法可以从训练数据中计算出每个特征和预测结果的相关度,在大部分情况下,在训练数据达到一定数量之前,越多的训练数据可以使逻辑回归算法的判断越精确,但是逻辑回归算法有可能无法从数据中学习到好的特征表达,这也是很多传统机器学习算法的共同问题。 对机器学习问题来说,特征提取不是一件简单的事情。在一些复杂问题上,要通过人工的方式设计有效的特征集合,需要很多的时间和精力,甚至需要整个领域数十年的研究投入。既然人工无法很好地抽取实体中的特征,那么是否有自动的方式呢?深度学习解决的核心问题就是自动地将简单的特征组合成更加复杂的特征,并使用这些特征解决问题。 因为深度学习的通用性,深度学习的研究者往往可以跨越多个研究方向,甚至同时活跃于数个研究方向。虽然深度学习受到了大脑工作原理的启发,但现代深度学习研究的发展并不拘泥于模拟人脑神经元和人脑的工作原理,各种广泛应用的机器学习框架也不是由神经网络启发而来的。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MNIST是一个非常有名的手写体数字识别数据集,被广泛用作机器学习的入门样例,它包含了60000张图片作为训练数据,10000张图片作为测试数据,每一张图片代表了0~9中的一个数字,图片的大小为28x28,且数字会出现在图片的正中间。本文以该数据集为例,基于Matlab来分析BP神经网络的性能。 2 运行环境 本设计在Windows 10 下进行设计、主要利用Matlab工具环境,进行模拟演示。

人工神经网络模式识别

人工神经网络模式识别 一、人工神经网络模式识别 1、人工神经网络的概述 人工神经网络从人脑的生理学和心理学角度出发,通过模拟人脑的工作机理,实现机器的部分智能行为,是从微观结构和功能上对人脑进行抽象和简化,是模拟人类智能的一条重要途径。具体的模式识别是多种多样的,如果从识别的基本方法上划分,传统的模式识别大体分为统计模式识别和句法模式识别,在识别系统中引入神经网络是一种近年来发展起来的新的模式识别方法。尽管引入神经网络的方法和引入网络的结构可以各不相同,但都可称为神经网络模式识别。而且这些识别方法在解决传统方法较难处理的某些问题上带来了新的进展和突破,因而得到了人们越来越多的重视和研究。 人工神经元网络(Artificial Neural Network)简称神经网络,是基于日前人们对自然神经系统的认识而提出的一些神经系统的模型,一般是由一系列被称为神经元的具有某种简单计算功能的节点经过广泛连接构成的一定网络结构,而其网络连接的权值根据某种学习规则在外界输入的作用下不断调节,最后使网络具有某种期望的输出特性。神经网络的这种可以根据输入样本学习的功能使得它非常适合于用来解决模式识别问题,这也是神经网络目前最成功的应用领域之一。 2、神经网络进行模式识别的方法和步骤 神经网络模式识别的基本方法是,首先用己知样本训练神经网络,使之对不同类别的己知样本给出所希望的不同输出,然后用该网络识别未知的样本,根据各样本所对应的网络输出情况来划分未知样本的类别。神经网络进行模式识别的一般步骤如图2-1所示,分为如下几个部分: 预处理 样本获取常规处理特征变换神经网络识别 图 2-1 神经网络模式识别基本构成 1、样本获取 这一步骤主要是为了得到一定数量的用于训练和识别的样本。

基于神经网络的手写数字识别系统的设计与实现

中南大学 本科生毕业论文(设计) 题目基于神经网络的手写数字 识别系统的设计与实现

目录 摘要 (Ⅰ) ABSTRACT (Ⅱ) 第一章绪论 (1) 1.1手写体数字识别研究的发展及研究现状 (1) 1.2神经网络在手写体数字识别中的应用 (2) 1.3 论文结构简介 (3) 第二章手写体数字识别 (4) 2.1手写体数字识别的一般方法及难点 (4) 2.2 图像预处理概述 (5) 2.3 图像预处理的处理步骤 (5) 2.3.1 图像的平滑去噪 (5) 2.3.2 二值话处理 (6) 2.3.3 归一化 (7) 2.3.4 细化 (8) 2.4 小结 (9) 第三章特征提取 (10) 3.1 特征提取的概述 (10) 3.2 统计特征 (10) 3.3 结构特征 (11) 3.3.1 结构特征提取 (11) 3.3.2 笔划特征的提取 (11) 3.3.3 数字的特征向量说明 (12) 3.3 知识库的建立 (12) 第四章神经网络在数字识别中的应用 (14) 4.1 神经网络简介及其工作原理 (14) 4.1.1神经网络概述[14] (14) 4.1.2神经网络的工作原理 (14) 4.2神经网络的学习与训练[15] (15) 4.3 BP神经网络 (16) 4.3.1 BP算法 (16) 4.3.2 BP网络的一般学习算法 (16)

4.3.3 BP网络的设计 (18) 4.4 BP学习算法的局限性与对策 (20) 4.5 对BP算法的改进 (21) 第五章系统的实现与结果分析 (23) 5.1 软件开发平台 (23) 5.1.1 MATLAB简介 (23) 5.1.2 MATLAB的特点 (23) 5.1.3 使用MATLAB的优势 (23) 5.2 系统设计思路 (24) 5.3 系统流程图 (24) 5.4 MATLAB程序设计 (24) 5.5 实验数据及结果分析 (26) 结论 (27) 参考文献 (28) 致谢 (30) 附录 (31)

模式识别在神经网络中的研究

摘要:基于视觉理论的神经网络模式识别理论的研究一直是非常活跃的学科,被认为是神经网络应用最成功的一个方面,它的发展与神经网络理论可以说是同步的。几乎所有现有的神经网络物理模型都在模式识别领域得到了成功的应用,神经网络理论取得进步会给模式识别理论的发展带来鼓舞;相反,模式识别理论的进步又会大大推动神经网络理论的长足发展。它们的关系是相互渗透的。 关键词:神经网络;模式识别 Abstract: The research of pattern recognition theories according to the neural network mode of sense of vision theories has been very active in academics, neural network has been thought one of the most successful applications , its development can been seen as the same step with the neural network theories.Almost all existing physics model of the neural network all identified realm to get success in the mode of application, neural network theories' progress will give the development of the pattern recognition theories much encourage;Contrary, the pattern recognition theories of progress again consumedly push neural network theories of substantial development.Their relations permeate mutually. Key word: neural network; pattern recognition

7基于神经网络的模式识别实验要求

实验七基于神经网络的模式识别实验 一、实验目的 理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。通过构建BP网络和离散Hopfield 网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。 二、实验原理 BP学习算法是通过反向学习过程使误差最小,其算法过程从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正。BP网络不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点。输入信号先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。 离散Hopfield神经网络的联想记忆过程分为学习和联想两个阶段。在给定样本的条件下,按照Hebb学习规则调整连接权值,使得存储的样本成为网络的稳定状态,这就是学习阶段。联想是指在连接权值不变的情况下,输入部分不全或者受了干扰的信息,最终网络输出某个稳定状态。 三、实验条件 Matlab 7.X 的神经网络工具箱:在Matlab 7.X 的命令窗口输入nntool,然后在键盘上输入Enter键,即可打开神经网络工具箱。 四、实验内容 1.针对教材P243例8.1,设计一个BP网络结构模型(63-6-9),并以教材图8.5 为训练样本数据,图8.6为测试数据。 (1)运行train_data.m和test_data.m文件,然后从Matlab工作空间导入(Import)训练样本数据(inputdata10,outputdata10)和测试数据(testinputdata,testoutputdata),其次新建一个神经网络(New Network),选择参数如下表1,给出BP神经网络结构图。

神经网络应用于手写数字识别-matlab说课讲解

神经网络应用于手写数字识别-m a t l a b

实验报告 实验课程:管理运筹学 实验名称:神经网络应用于手写数字识别-matlab 学生姓名: 指导教师: 实验时间: 2018年1月16日

实验要求: 运用matlab编程进行神经网络进行手写数字识别。 小组成员: 姓名学号 实验过程: 一、BP神经网络 神经网络是由很多神经元组成,可以分为输入,输出,隐含层。 BP神经网络的特点:信号前向传递,信号反向传播。若输出存在误差,根据误差调整权值和阈值,使网络的输出接近预期。 在用BP神经网络进行预测之前要训练网络训练过程如下: 1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。 2.计算隐含层输出 3.计算输出层输出 4.误差计算 5.权值更新 6.阈值更新 7.判断迭代是否结束 二、模型建立 数据集介绍: 数据集包含0-9这10个数字的手写体。是放在10个文件夹里,文件夹的名称对应存放的手写数字图片的数字,每个数字500张,每张图片的像素统一为28*28。 识别流程: 首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。为了方面,这里的神经网络的创建,训练和测试采用matlab函数来实现。

训练 运行流程: 1.确定神经网络的输入,输出。 输入是BP神经网络很重要的方面,输入的数据是手写字符经过预处理和特征提取后的数据。预处理有二值化,裁剪掉空白的区域,然后再统一大小为70*50为特征提取做准备。特征提取采用的是粗网格特征提取,把图像分成35个区域,每个区域100像素,统计区域中1像素所占的比例。经过预处理特征提取后,28*28图像转成1*35的特征矢量。提取完5000张图片后,依次把所有的特征存于一个矩阵(35*5000)中。 2.神经的网络的训练 用matlab的rands函数来实现网络权值的初始化,网络结构为输入层35,隐藏层34,输出层10,学习速率为0.1,隐藏层激励函数为sigmoid函数。随机抽取4500张图片提取特征后输入,按照公式计算隐含层和输出层输出,误差,更新网络权值。 3.神经网络的预测 训练好神经网络之后,用随机抽取的500个数字字符对网络进行预测,输入特征向量,计算隐含层和输出层输出,得到最后预测的数据。同时计算每个数字的正确率和全体的正确率。最后得到的总体正确率为0.8620。 主函数:

实验七:基于神经网络的模式识别实验

实验七:基于神经网络的模式识别实验 一、实验目的 理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。通过构建BP网络和离散Hopfield网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。 综合掌握模式识别的原理,了解识别过程的程序设计方法。 二、实验内容 熟悉模式识别的理论方法,用选择一种合适的识别方法,对图像中的字符(英文字母)进行识别,能够区分出不同的形态的26个字母。 在Matlab中,采用BP神经网络,对读取的数据进行训练,进而识别。 1. 程序设计 (1)程序各流程图 实验中主程序流程图如图4-1所示:

图4-1主程序流程图 其中图像预处理的流程如图4-2 所示: 图4-2图像预处理的流程神经网络训练的具体流程如图4-3所示:

图4-3 神经网络训练流程 (2)程序清单 %形成用户界面 clear all; %添加图形窗口 H=figure('Color',[0.85 0.85 0.85],... 'position',[400 300 500 400],... 'Name','基于BP神经网络的英文字母识别',... 'NumberTitle','off',... 'MenuBar','none'); %画坐标轴对象,显示原始图像 h0=axes('position',[0.1 0.6 0.3 0.3]); %添加图像打开按钮 h1=uicontrol(H,'Style','push',... 'Position',[40 100 80 60],... 'String','选择图片',... 'FontSize',10,... 'Call','op'); %画坐标轴对象,显示经过预处理之后的图像 h2=axes('position',[0.5 0.6 0.3 0.3]); %添加预处理按钮

离散Hopfield神经网络的联想记忆—数字识别

%%清空环境变量 clc clear %%数据导入 load data1array_one load data2array_two %%训练样本(目标向量) T=[array_one;array_two]'; %%创建网络 net=newhop(T); %%数字1和2的带噪声数字点阵(固定法)load data1_noisy noisy_array_one load data2_noisy noisy_array_two %%数字1和2的带噪声数字点阵(随机法)%noisy_array_one=array_one; %noisy_array_two=array_two; %for i=1:100 %a=rand; %if a<0.3 %noisy_array_one(i)=-array_one(i); %noisy_array_two(i)=-array_two(i); %end %end %%数字识别 %identify_one=sim(net,10,[],noisy_array_one'); noisy_one={(noisy_array_one)'}; identify_one=sim(net,{10,10},{},noisy_one); identify_one{10}'; noisy_two={(noisy_array_two)'}; identify_two=sim(net,{10,10},{},noisy_two);

identify_two{10}'; %%结果显示 Array_one=imresize(array_one,20); subplot(3,2,1) imshow(Array_one) title('标准(数字1)') Array_two=imresize(array_two,20); subplot(3,2,2) imshow(Array_two) title('标准(数字2)') subplot(3,2,3) Noisy_array_one=imresize(noisy_array_one,20); imshow(Noisy_array_one) title('噪声(数字1)') subplot(3,2,4) Noisy_array_two=imresize(noisy_array_two,20); imshow(Noisy_array_two) title('噪声(数字2)') subplot(3,2,5) imshow(imresize(identify_one{10}',20)) title('识别(数字1)') subplot(3,2,6) imshow(imresize(identify_two{10}',20)) title('识别(数字2)')

神经网络应用于手写数字识别-matlab

实验报告 实验课程:管理运筹学 实验名称:神经网络应用于手写数字识别-matlab 学生姓名: 指导教师: 实验时间:2018年1月16日

实验要求: 运用matlab编程进行神经网络进行手写数字识别。 小组成员: 实验过程: 一、BP神经网络 神经网络是由很多神经元组成,可以分为输入,输出,隐含层。 BP神经网络的特点:信号前向传递,信号反向传播。若输出存在误差,根据误差调整权值和阈值,使网络的输出接近预期。 在用BP神经网络进行预测之前要训练网络训练过程如下: 1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。 2.计算隐含层输出 3.计算输出层输出 4.误差计算 5.权值更新 6.阈值更新 7.判断迭代是否结束

二、模型建立 数据集介绍: 数据集包含0-9这10个数字的手写体。是放在10个文件夹里,文件夹的名称对应存放的手写数字图片的数字,每个数字500张,每张图片的像素统一为28*28。 识别流程: 首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。为了方面,这里的神经网络的创建,训练和测试采用matlab函数来实现。 测试图片 特征提取 训练数据分类器 特征提取分类器模型 分类结果 测试 训练 运行流程: 1.确定神经网络的输入,输出。 输入是BP神经网络很重要的方面,输入的数据是手写字符经过预处理和特征提取后的数据。预处理有二值化,裁剪掉空白的区域,然后再统一大小为70*50为特征提取做准备。特征提取采用的是粗网格特征提取,把图像分成35个区域,每个区域100像素,统计区域中1像素所占的比例。经过预处理特征提取后,28*28

神经网络的应用及其发展

神经网络的应用及其发展

神经网络的应用及其发展 来源:辽宁工程技术大学作者: 苗爱冬 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts 合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。 (2) 信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。 (3) 模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别

基于bp神经网络的数字识别

模式识别作业 题目基于BP神经网络的数字识别科目模式识别

基于BP神经网络的数字识别 摘要 人工神经网络技术在现在取得了巨大的发展,它具有的高度非线性,使我们能表达一些至少是目前尚无法用计算理论表达清楚的外部世界模型;同时,神经网络所具有的自学习,自组织能力使我们能在与外部世界的交互作用下,实现无法用当前的计算理论表达清楚的功能;对于那些无法建立精确数学模型的系统,神经网络有着独特的优势。 本课题主要研究基于BP神经网络的方法来实现数字识别。首先对图像进行灰度化、二值化、平滑去噪、归一化、细化的预处理,以便于进行像素值的提取,对设计好的神经网络进行训练,对比训练的结果与期望的结构,并根据对比的结果对神经网络的一些权值进行修改,最终得到训练好的神经网络。并选择测试样本,进行仿真测试。 整个仿真实验中,对含数字的图片进行处理,其数字识别效果可在本课题中的MATLAB仿真实验中体现。 关键词:神经网络;灰度化;预处理;仿真测试

目录 摘要............................................................. II 目录............................................................ III 1 背景介绍 (4) 1.1研究背景 (4) 1.2 数字识别的发展现状 (4) 1.3 本课题主要的研究内容 (4) 2 图像预处理 (5) 2.1 彩色图像的灰度化 (5) 2.2 灰度图像的二值化 (5) 2.3 梯度锐化 (5) 2.4 去离散化噪声 (5) 2.3 归一化调整 (5) 3 模式识别 (6) 3.1 特征提取 (6) 3.2 BP神经网络 (6) 3.2.1 BP算法的多层感知器 (6) 3.2.2 BP算法过程 (7) 3.3 BP神经网络的设计与训练 (9) 3.3.1 BP神经网络的设计方法 (9) 3.3.2 BP神经网络仿真程序设计 (9) 3.3.3 BP神经网络测试 (9) 4仿真实验结果 (9) 5 总结............................................. 错误!未定义书签。参考文献 (11)

基于MATLAB的BP神经网络的数字图像识别

基于MATLAB的BP神经网络的数字图像识别

基于MATLAB BP神经网络的数字图像识别

基于MATLAB BP神经网络的数字图像识别 【摘要】随着现代社会的发展,信息的形式和数量正在迅猛增长。其中很大一部分是图像,图像可以把事物生动的呈现在我们面前,让我们更直观地接受信息。同时,计算机已经作为一种人们普遍使用的工具为人们的生产生活服务。如今我们也可以把这些技术应用在交通领域。作为智能交通系统(InteUigent Traffic System,简称ITS)中的一个重要组成部分的车牌识别技术,当然就是其中的重点研究对象。车辆牌照识别(License P1ate Recognition,简称LPR),是一种关于计算机的包括图像处理、数学技术、数据库、信息技术以及智能技术于一体的综合技术。用MATLAB 做车牌识别比用其他工具有许多优势,因为MATLAB在图像的灰度化、二值化、滤波等方面都有很大优势,所以,本次实验我们利用MATLAB的这些优点来对车牌进行识别。 【关键词】BP神经网络;图像识别;字符识别;特征提取;车牌;Matlab 一课题研究背景 (一)图像识别的提出及应用 随着信息化时代的不断发展,人们越来越多地使用信息化的手段来解决各种问题——办公自动化、先进制造业、电子商务等利用计算机技术而产生的新兴行业正不断靠近我们的生活。在信息社会中,我们每天都接触大量的数据——工

作数据、个人数据、无意间获得的数据等——在这些数据中,有些数据需要我们人工处理,而有些则可以利用计算机快速准确的完成——字符识别就是其中的一个范畴。 字符识别是一种图像识别技术,他的输入是一张带有某种字符的图片,而输出则是计算机中对于图片中字符的反应结果。所以,可以广泛的应用于各种领域:如,车牌检测、手写识别、自动阅读器、机器视觉……在生活生产的各个方面都起到了非常重要的作用。 (二)图像识别技术的发展趋势 虽然图像识别技术还不是非常成熟,但现其已经有了很多可喜的成果,比如图像模式识别,图像文字识别。并且其还在飞速的发展着,图像识别的应用正朝着不同的领域渗透着,像计算机图像生成,图像传输与图像通信,高清晰度电视,机器人视觉及图像测量,办公室自动化,像跟踪及光学制导,医用图像处理与材料分析中的图像分析系统,遥感图像处理和空间探测,图像变形技术等等。从所列举的图像技术的多方面应用及其理论基础可以看出,它们无一不涉及高科技的前沿课题,充分说明了图像技术是前沿性与基

模式识别 神经网络识别MATLAB实现

模糊神经网络模式识别 function retstr = FnnTrain(dt,ld,tt,sp) retstr=-1; %%%% 输入参数赋值开始%%%%%%%%%%%%%%%%%%%%%%% % 方便调试程序用,程序调试时去掉这部分的注释 % dt=4; %学习阈值 % ld=0.05; %学习进度 % tt=10; %训练次数 % sp='data\sample.txt'; %一个点的监测数据 %%%% 输入参数赋值结束%%%%%%%%%%%%%%%%%%%%%%%% global recordDimention; global sampleNumber; global weightNumber; global distanceThread; global WW; global learningDegree; global epochsNumber; distanceThread=dt; learningDegree=ld; traintimes=tt; A=load(sp); [Arow Acol]=size(A); %样本个数 sampleNumber=Arow; recordDimention=Acol; disp(sampleNumber); WW=A(1,:); WW=[WW [1]]; weightNumber=1; epochsNumber=1; for jj=2:1:sampleNumber TrainNN2(A(jj,:)); end for jt=1:traintimes-1 for jt2=1:sampleNumber TrainNN2(A(jj,:)); end end % 将训练结果写入权值文件 dlmwrite('data\w.dat',WW,'\t'); % % 训练子函数

人工神经网络

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

第六章 神经网络在模式识别中的应用

第六章神经网络在模式识别中的应用 模式识别模拟的是人类一部分智能—识别、判断能力,而人类的智能活动都是在大脑的神经系统中完成的,如果我们能够模拟人类大脑的工作机理来实现识别系统,应该能够取得好的效果。人工神经网络的研究证实在这方面所进行的探索。 6.1 人工神经网络的基础知识 一、人工神经网络的发展历史 1943年,心理学家McCulloch和数学家Pitts提出了形式神经元的数学模型; 1949年,心理学家Hebb提出了神经元学习的准则; 20世纪50年代末,Rosenblatt提出了感知器模型,引起了神经元研究的广泛兴趣; 1969年,Minsky等人指出了感知器的局限性,神经网络的研究热潮下降; 1982年,Hopfield提出了一种神经网络的动力学模型,可以用于联想记忆和优化计算; 1986年,Rumelhart等人提出了多层感知器模型,克服了感知器模型的局限性,使得人工神经网络的研究再度受到重视。 二、生物神经元 一个典型的神经元(或称神经细胞)可以看作有三部分组成:细胞体,树突和轴突。 树突是神经元的生物信号输入端,与其它的神经元相连;轴突是神经元的信号输出端,连接到其它神经元的树突上;神经元有两种状态:兴奋和抑制,平时神经元都处于抑制状态,轴突没有输入,当神经元的树突输入信号大到一定程度,超过某个阈值时,神经元有抑制状态转为兴奋状态,同时轴突向其它神经元发出信号。 三、人工神经元

人工神经元是仿照生物神经元提出的,神经元可以有N 个输入:12,,,N x x x ,每个输入端与神经元之间有一定的联接权值:12,,,N w w w ,神经元总的输入为对每个输入的加权求和,同时减去阈值θ: 1 N i i i u w x θ== -∑ 神经元的输出y 是对u 的映射: ()1N i i i y f u f w x θ=?? ==- ??? ∑ f 称为输出函数,可以有很多形式。当f 为阈值函数时,神经元就可以看作是一个线 性分类器。 ()1, 00, x f x x >?=? ≤? 当取f 为Sigmoid 函数时,神经元完成的是连续的线性映射: ()11x f x e -=+ [0,1] ()2211x f x e -= -+ [-1,1] 一个神经元的结构可以简化为下图的形式: x 1x 2 x N 其中输入矢量为增广矢量,最后一维1N x =,用N w 代替阈值θ。

基于BP神经网络手写体数字识别报告

基于BP神经网络的手写体数字识别系统设计 姓名: 专业:通信与信息系统 学号:

一综述 1.引言 近年来人工智能技术飞快发展,数字识别技术就是其中一个非常重要的分支,它在现实生活中的应用越来越广泛。比如在大规模数据统计中的应用,在财务、税务、金融领域中的应用,在邮件分拣中的应用等。这使得手写体数字识别技术成为目前信息技术的研究热点,但同时它也是研究难点。第一,不同数字之间字形相差不大,使得准确区分某些数字相当困难;第二,数字虽然只有十种,而且笔划简单,但同一数字写法千差万别,全世界各个国家各个地区的人都用,其书写上带有明显的区域特性,很难完全做到兼顾世界各种写法的极高识别率的通用性数字识别系统。但在实际的应用中往往要求识别系统具有非常低的错误率,这使得手写体数字的识别技术的实现非常困难。 2.手写体数字识别的现状 手写体数字识别时,首先将印在纸上的数字经过光电扫描产生模拟信号,再通过模数转换变成表示灰度值的数字信号输入计算机。纸张薄厚、洁白度、书写力度和笔划质量都要造成字形的变化,产生污点、飞白、断笔、交连等干扰。因此,一般由扫描得到的数值化的字符还需要多种进一步的处理。经过国内外科学家的研究得出结果,一般在输入手写体之后,首先需对图像进行预处理,为特征提取做好准备。 特征提取一般是基于统计的特征选择方法和基于结构的特征方法进行分析。近年来,国内的一些专家学者研究出很多新型的特征提取方法,更有利于精确地识别手写体数字。 根据基于字符整体特征的快速分类方法对手写体能较灵活的进行识别。其原理是根据字符结构提取其凹凸特征。首先,找出字符存在的圈,对于书写时产生的无效圈设定一定的阀值进行判别,把无效圈直接置为字符前景(像素点设为黑色)。然后,找出字符的凹陷区,如果图像上连接任意两点的直线都属于该图像.那么该图像为凸图像;如果连接图像上两点的直线有部分不属于该图像,那么该图像为凹图像。其中不属于图像部分所在的区域即为图像的凹陷区。最后,再将字

神经网络在模式识别中的简单分析及应用

模式识别就是机器识别、计算机识别或者机器自动化识别,目的在于让机器自动识别事物,使机器能做以前只能由人类才能做的事,具备人所具有的对各种事物与现象进行分析、描述与判断的部分能力。它研究的目的就是利用计算机对物理对象进行分类,在错误概率最小的条件下,使识别的结果尽量与客观事物相符合。 随着人们对人工神经网络的不断地认识,神经网络是指用大量的简单计算单元构成的非线性系统,它在一定程度和层次上模仿了人脑神经系统的信息处理、存储及检索功能,因而具有学习、记忆和计算等智能处理功能。这样人们利用人工神经网络具有高度的并行性,高度的非线性全局作用以及良好的容错性与联想记忆功能,并且具有良好的自适应、自学习功能等突出特点,可运用MATLAB神经网络工具箱中的神经网络模型,对经过训练的神经网络可以有效地提取信号、语音、图像等感知模式的特征,并能解决现有启发式模式识别系统不能很好解决的不变量探测、抽象和概括等问题。这样神经网络可应用于模式识别的特征提取、聚类分析、边缘检测、信号增强以及噪声抑制、数据压缩等各个环节。使用机器来进行模式的识别是一项非常有用的工作,能够辨别符号等系列的机器是很有价值的。目前,模式识别技术可以应用指纹识别、IC卡技术应用、字符识别等实例。模式识别成为人工神经网络特别适宜求解的一类问题。因此,神经网络技术在模式识别中也得到广泛应用与发展。 关键词:模式识别;人工神经网络;神经网络模型;神经网络技术

Pattern Recognition is the machine identification, computer identification or identification of machine automation, machine aimed at automatic identification of things to do before the machine can only be made by man can do, with people with all kinds of things and on an analysis of the phenomenon, described with the ability to determine the part. It is the purpose of the study of the physical object to use the computer for classification, the probability of the smallest in the wrong conditions, so that the results of recognition as far as possible in line with objective things. As artificial neural network to recognize the continuing, neural network refers to a large number of simple calculation unit consisting of non-linear system, which to some extent and level system to imitate the human brain's information processing, storage and retrieval functions, which has learning, memory and computing functions such as intelligent processing. Such people to use artificial neural network with a high degree of parallelism, the overall role of a high degree of non-linear and good fault tolerance and associative memory function, and have good self-adaptive, self-learning function, such as prominent features, the availability of MATLAB neural network toolbox The neural network model trained neural network can effectively extract the signal, voice, video and other features of perceptual patterns and heuristics to solve the existing pattern recognition systems are not well resolved invariant detection, such as abstract and summary issues. This neural network pattern recognition can be applied to feature extraction, clustering analysis, edge detection, signal enhancement and noise suppression, data compression, such as various links. The use of machines for pattern recognition is a very useful work, such as series of symbols to identify the machines are of great value. At present, the pattern recognition technology can be applied to fingerprint identification, IC card technology applications, such as examples of character recognition. Artificial neural network pattern recognition has become especially suitable for solving a class of problem. Therefore, the neural network pattern recognition technology is also widely used and development. Key words:pattern recognition;artificial neural network;neural network model;neural network technology

相关文档
最新文档