人教A版高中数学选修1-2:1.1回归分析的基本思想及其初步应用(二)

人教A版高中数学选修1-2:1.1回归分析的基本思想及其初步应用(二)

1.1 回归分析的基本思想及其初步应用(二)

一、选择题

1.下列说法正确的是( )

①线性回归方程适用于一切样本和总体;②线性回归方程一般都有时间性; ③样本的取值范围会影响线性回归方程的适用范围;

④根据线性回归方程得到的预测值是预测变量的精确值.

A .①③④

B .②③

C .①②

D .③④

2.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不

全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12

x +1上,则这组样本数据的样本相关系数为( )

A .-1

B .0 C.12

D .1 3.某地财政收入x 与支出y 满足回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )

A .10亿

B .9亿

C .10.5亿

D .9.5亿

4.有下列说法:

①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;

②相关指数R 2来刻画回归的效果,R 2值越大,说明模型的拟合效果越好; ③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.

其中正确命题的个数是( )

A .0

B .1

C .2

D .3

5.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t .那么下列说法正确的是

( )

A .直线l 1和l 2有交点(s ,t )

B .直线l 1和l 2相交,但是交点未必是点(s ,t )

C .直线l 1和l 2由于斜率相等,所以必定平行

D .直线l 1和l 2必定重合

6.一次实验中,当变量x 取值分别为1111,,,234

时,变量y 的值依次为2,3,4,5,则x 与y 之间的回归曲线方程为( ) 1?.1A y x =+ 2?.3B y x

=+ ?.21C y x =+ ?.1D y x =+ 二、填空题

高二数学《1.1回归分析的基本思想及其初步应用》教案 文

第一章统计案例 1.1回归分析的基本思想及其初步应用(一) 第一课时 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ①例1从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编号 1 2 3 4 5 6 7 8 165 165 157 170 175 165 155 170 身高 /cm 体重 48 57 50 54 64 61 43 59 /kg 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路→教师演示→学生整理) 第一步:作散点图第二步:求回归方程第三步:代值计算 ②提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身次函数y bx a 高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即 =++,其中残差残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e 变量e中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同. 备课人:张颖岳新霞王莉

高中数学解题中数学分析法的运用

高中数学解题中数学分析法的运用 摘要:数学在高中是一项重要的学科,所以一定要引起师生的高度重视。而在 通过研究后了解到,学生若想提升数学成绩,不要只是做大量的习题,因为这样 会让思维产生局限性,不能让学生真正地理解数学题的含义。所以一定要加强学 生数学分析思想的水平,从而确保课堂教学效果达到理想的要求。 关键词:高中数学;数学分析法 一、数学分析思想概述 数学分析思想主要是把数学题目分成几个部分,同时来对这些部分做好正确 的分类,最终根据认真的分析来找到最为合理的答题思路。而之所以要进行数学 分析,作用在于能够找到答题的基本脉络,为随后的解题带来清晰的思路。在学 习高中数学的过程中,学生不但要掌握书本上的知识,同时也要了解多种解题的 技巧,这就增加了他们的负担。所以学生有必要丰富数学分析思想,并合理地运 用到数学解题的过程当中,这样不但能够确保解题的正确率,还能够提高学生对 于学习的积极性,这样一来就可以为学生成为一名综合性的人才助力。 二、高中数学解题采用数学分析思想的作用 (一)能够开发学生的思想潜能 在高中数学课堂教学期间,如果可以在教师的引导中采用数学分析思想来解题,那么便可以锻炼发散思维,同时还可以合理地利用所掌握的知识。除此之外 也可以丰富学生的解题思路,这样一来就能提升学生的思维和创造水平。所以具 备合理的数学分析思想是加强学生数学学习效率的重要方式。 (二)能够锻炼学生的观察水平 在高中数学课堂教学期间,想提高学生的学习效率,前提是要锻炼他们的洞 察力,如果教师在进行课堂教学期间可以合理地采用数学分析思维,那么便可以 达到理想的教学效果。教师不要只限于理论内容,而是要从数学题中发现问题的 本质,这样便能够让学生全面掌握数学内容,成为一名具有综合素养的人才。 (三)能够把不熟悉的题型转变成熟悉的题型 尽管数学概念和原理不多,不过能够根据数学题型的转化去检验学生对概念 和原理的理解情况,所以学生在做新题型的过程中,或许会觉得是相同类型的题,不过实际上是不熟悉的题型。而在做不熟悉的题型的时候,一部分学生找不到解 题的思路,这样就会让解题变得更加困难。所以学生要具有把不熟悉的题型转变 成熟悉的数学分析思想,创建辅助元素、题目已知条件和问题之间所存在的关联性,这是非常实用的分析思想。 三、数学分析思想在高中解题中的应用 (一)通过数学分析思想来转变解题思路 在高中数学当中,和数学题相比,数学概念和原理会少一些,同时数学题的 类型时常会出现变化,这无疑增加了解题的困难性。学生对于新题型总是会手足 无措,无法滤清思路,从而运算不出正确的答案。所以在这样的状况下,学生要 增强对于数学题的理解力,而这就要求他们要具备完善的数学分析思想。着重分 析数学题中已知条件和问题间所存在的关联性,这样就可以形成清晰的思路。 (二)采用类比和归纳的方式来解题 类比指的是把两者所具有的相同性质采取比较,然后由此分析出其余的性质 中会包括的类似方面。而归纳指的是从局部到整体的一种推理过程,在大量的事 物里对普遍的概念进行分析,并给出最终的结论。而无论是以上哪种形式,在进

高中数学方法篇之配方法

高中数学方法篇之配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 一、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 2 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5] B. [5,+∞) C. (-1,5] D. [5,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则实 数a=_____。

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

(完整)高中数学知识点:线性回归方程,推荐文档

高中数学知识点:线性回归方程 1.回归直线方程 (1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。 2.回归直线方程的求法 设与n 个观测点(,i i x y )()1,2,,i n =???最接近的直线方程为$ ,y bx a =+,其中a 、b 是待定系数. 则$,(1,2,,)i i y bx a i n =+=L .于是得到各个偏差 μ(),(1,2,,)i i i i y y y bx a i n -=-+=L . 显见,偏差$i i y y -的符号有正有负,若将它们相加会造成相互抵 消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--=Λ 表示n 个点与相应直线在整体上的接近程度. 记21()n i i i Q y bx a ==--∑. 上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即 1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====?---??==??--??=-??∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11

相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。 要点诠释: 1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程. 2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性. 3.求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误. 4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.

高中数学 选修 非线性回归模型

2.非线性回归模型 教学目标 班级____姓名________ 1.进一步体会回归分析的基本思想. 2.通过非线性回归分析,判断几种不同模型的拟合程度. 教学过程 一、非线性回归模型. 非线性回归分析的步骤:(1)确定研究对象;(2)采集数据;(3)作散点图;(4)选取函数模型,并转化成线性回归模型,并转化数据;(5)求线性回归方程;(6)建线性回归模型,求残差,画残差图;(7)求2R ,刻画拟合效果. 二、例题分析. 例1:研究红铃虫产卵数与温度的关系. (例见教科书2P ) 1.确定研究对象:红铃虫产卵数与温度的关系. 2.采集数据: 3.作散点图: 4.选取函数模型,并转化成线性回归模型,并转化数据: (1)根据样本点的变化趋势,选取函 数模型:x c e c y 21=(指数函数模 型); (2)令y z ln =,将指数函数 模型转化成一次函数模型a bx z +=(1ln c a =,2c b =); (3)数据转化: (4)新散点图: 5.求线性回归方程: 温度C x ο/ 21 23 25 27 29 32 35 产卵数/y 个 7 11 21 24 66 115 325 21 23 25 27 29 32 35 1.946 2.398 3.045 3.178 4.190 4.745 5.784

运用公式求得272.0?=b ,849.3?=a ,线性回归方程为849.3272.0?-=x z , 而红铃虫的产卵数对温度的非线性回归方程为849.3272.0)1(?-=x e y . 6.建线性回归模型,求残差,画残差图; 残差849.3272.0)1() 1(??--=-=i x i i i i e y y y e 7.求2R ,刻画拟合效果. 注意事项: (1)根据样本点的变化趋势,选取函数模型时,可能的选择不止一个; (2)本例可选取二次函数模型423c x c y +=, (3)令2x t =,将二次函数模型转化成一次函数模型43c t c y +=; (4)不同模型拟合效果不同,可根据2R 来判断,2R 越大,拟合效果越好. 作业:为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下: 天数x /天 1 2 3 4 5 6 繁殖个数y / 个 6 12 25 49 95 190 (1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算相关指数 2R .

高中数学选修2-2《分析法》教学案例

人教版高中数学(选修2-2)《分析法》教学案例本节课的教学课题是:人民教育出版社出版的普通高中课程标准实验教科书《数学(选修2-2)》,第二章“2.2.1综合法和分析法”中“分析法”的第一课时。 一、设计要点 本教案在挖掘教材中的创新因素和蕴涵的数学思想方法的基础上,以“创设情境、切入主题、感受新知、合作交流、尝试练习、感悟探究、综合提高、回顾小结”为基本教学过程,通过揭示知识的发现和发生过程,使学生在掌握分析法的同时,体验有关的数学思想,提高观察与交流、分析与解决问题的能力,培养“用数学”的意识和合作意识。 二、教学目标 1.知识与技能:结合数学实例,了解用分析法思考问题的过程和特点,对分析法的有一个较完整的认识; 2.过程与方法:通过学习分析法,掌握探索和分析问题的基本方法,培养思维的灵活性和深刻性,提高分析问题、解决问题的能力,提高观察、交流能力和发散性思维能力; 3.情感、态度与价值观:体会数学证明的特点,感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯,激发勇于探索、创新的精神,磨练意志品质。 三、教学重点、难点、关键 1.重点:(1)了解分析法的思考过程和特点; (2)运用分析法证明数学问题。 2.难点:对分析法的思考过程和特点的概括。 3.关键:展现知识的内在联系,启发学生思考、探索。 四、教学方法 启发式与探究式相结合 五、教学过程 1.创设情境

教师请全体学生一起完成如下填空。 已知:如图,SA ⊥平面ABC,AB ⊥BC,D 为直线BS 上一点,求证:BC ⊥AD 证明:∵SA ⊥平面ABC ∵BC ?平面ABC ∴(___________________) ∵(___________________) ∴BC ⊥平面SAB ∵点D 在直线BS 上 ∴AD ?平面SAB ∴BC ⊥AD 教师教学时注意知识点拨:综合法表述形式:因为…,所以…;综合法思维过程:由因导果;综合法推理特点:顺推。并通过思路分析启发学生产生新的证明思路和方法。 设计意图:利用立体几何问题创设情境,既使学生自然地融入情境之中,又拓展了分析法的知识背景。让学生通过综合法的证明及思路分析,从数学问题本身探究新的思维方法,温故知新,体验新旧知识的密切联系,激发探索的热情。 2.切入主题 一般地, 从要证明的结论出发, 逐步寻找使它成立的充分条件, 直至最后, 把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等), 这种证明方法叫做分析法. 用Q 表示要证明的结论,则分析法可用框图表示如下: 表述形式:要证命题Q 成立, 只需证命题P 1 成立, 思路分析: 要证BC ⊥AD 只需证BC ⊥平面SAB( ∵______________) 只需证BC ⊥SA( ∵____________________) 由SA ⊥平面ABC 知上式成立 ∴BC ⊥AD 成立

人教版高中数学(理科)选修线性回归(一)

线性回归(一) 教学目的: 1 了解相关关系、回归分析、散点图的概念 2.明确事物间是相互联系的,了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握回归直线方程的求解方法 3.会求回归直线方程 教学重点:散点图的画法,回归直线方程的求解方法 教学难点:回归直线方程的求解方法 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 客观事物是相互联系的过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度所以说,函数关系存在着一种确定性关系但还存在着另一种非确定性关系——相关关系 二、讲解新课: 1.相关关系的概念 当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系 相关关系是非随机变量与随机变量之间的关系,函数关系是两个非随机变量之间的关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系(有因果关系,也有伴随关系).因此,相关关系与函数关系的异同点如下: 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系. 2.回归分析: 对具有相关关系的两个变量进行统计分析的方法叫做回归分析通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性 3.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度粗略地看,散点分布具有一定的规律 4. 回归直线 设所求的直线方程为,^ a bx y +=,其中a 、 b 是待定系数. 则),,2,1(,^ n i a bx y i i =+= .于是得到各个偏差 ),,2,1(),(^ n i a bx y y y i i i i =+-=-. 显见,偏差i i y y ^ -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--= 表示n 个点与相应直线在整体上的接近程度.

高中数学 3.1回归分析(一)教案 北师大选修2-3

3.1 回归分析 教学目标 (1)通过实例引入线性回归模型,感受产生随机误差的原因; (2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程. 教学重点,难点 线性回归模型的建立和线性回归系数的最佳估计值的探求方法. 教学过程 一.问题情境 1. 情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计当 时刻x /s 1 2 3 4 5 6 7 8 位置观测值y /cm 5.54 7.52 10.02 11.73 15.69 1 6.12 16.98 21.06 根据《数学(必修)》中的有关内容,解决这个问题的方法是: 先作散点图,如下图所示: 从散点图中可以看出,样本点呈直线趋势,时间x 与位置观测值y 之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据线性回归的系数公式, 1 221()n i i i n i i x y nx y b x n x a y bx ==? -? ?=??-??=-??∑∑ 可以得到线性回归方为$3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为$22.6287y = 2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗? 二.学生活动 思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学 1.线性回归模型的定义: 我们将用于估计y 值的线性函数a bx +作为确定性函数; y 的实际值与估计值之间的误差记为ε,称之为随机误差; 将y a bx ε=++称为线性回归模型.

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

人教版高中数学选修1-1知识点总结

高中数学选修1-1知识点总结 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. 7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于 12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

几种常用的高中数学方法

几种常用的数学方法 ①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问 题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。 ②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更 加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。 ③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个 错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。 ④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象 的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。 ⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的 方法。 ⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推 理得出结果的方法。 ⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否 定错误选择支而得出正确选择支的方法。 ⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符 合条件的结论,或从反面出发得出结论。 ⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确 判断的方法。 ⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案) 高中苏教数学③ 2. 4线性回归方程测试题 一、选择题 1.下列关系属于线性负相关的是() A.父母的身高与子女身高的关系 B.身高与手长 C.吸烟与健康的关系 D.数学成绩与物理成绩的关系 答案:C 2.由一组数据得到的回归直线方程,那么下面说法不正确的是() A.直线必经过点 B.直线至少经过点中的一个点 C.直线 a的斜率为 D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线 答案:B 3.实验测得四组的值为,则y与x之间的回归直线方程为() A.B. C.D.

答案:A 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是() A.直线和一定有公共点 B.直线和相交,但交点不一定是 C.必有直线 D.和必定重合 答案:A 二、填空题 5.有下列关系: (1)人的年龄与他(她)拥有的财富之间的关系 (2)曲线上的点与该点的坐标之间的关系 (3)苹果的产量与气候之间的关系 (4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系 其中,具有相关关系的是. 答案:(1)(3)(4) 6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表

中的各对数据在直角坐标系中描点得到的表示具有相关关 系的两个变量的一组数据的图形,叫做. 答案:统计分析;相关关系;散点图 7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是. 答案:;; 8.已知回归直线方程为,则可估计x与y增长速度之比约为. 答案: 三、解答题 9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下: 3 5 2 8 9 12 4 6 3 9 12 14 求y对x的回归直线方程. 解:,, 回归直线方程为. 10.已知10只狗的血球体积及红血球的测量值如下: 45 42 46 48 42 6.53 6.30 9.25 7.580 6.99 35 58 40 39 50

高中数学学案回归分析

§3.2 回归分析(1) 教学目标 (1)通过实例引入线性回归模型,感受产生随机误差的原因; (2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法; (3)能求出简单实际问题的线性回归方程. 教学重点,难点 线性回归模型的建立和线性回归系数的最佳估计值的探求方法. 教学过程 一.问题情境 1. 情境:对一作直线运动的质点的运动过程观测了8次,得到如下表所示的数据,试估计当 根据《数学(必修)》中的有关内容,解决这个问题的方法是: 先作散点图,如下图所示: 从散点图中可以看出,样本点呈直线趋势,时间x 与位置观测值y 之间有着较好的线性关系.因此可以用线性回归方程来刻画它们之间的关系.根据 线性回归的系数公式, 1 221()n i i i n i i x y nx y b x n x a y bx ==? -? ?=??-??=-??∑∑ 可以得到线性回归方为 3.5361 2.1214y x =+,所以当9x =时,由线性回归方程可以估计其位置值为22.6287y = 2.问题:在时刻9x =时,质点的运动位置一定是22.6287cm 吗? 二.学生活动 思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映x 与y 之间的关系,y 的值不能由x 完全确定,它们之间是统计相关关系,y 的实际值与估计值之间存在着误差. 三.建构数学 1.线性回归模型的定义: 我们将用于估计y 值的线性函数a bx +作为确定性函数; y 的实际值与估计值之间的误差记为ε,称之为随机误差; 将y a bx ε=++称为线性回归模型.

说明:(1)产生随机误差的主要原因有: ①所用的确定性函数不恰当引起的误差; ②忽略了某些因素的影响; ③存在观测误差. (2)对于线性回归模型,我们应该考虑下面两个问题: ①模型是否合理(这个问题在下一节课解决); ②在模型合理的情况下,如何估计a ,b ? 2.探求线性回归系数的最佳估计值: 对于问题②,设有n 对观测数据(,)i i x y (1,2,3, ,)i n =,根据线性回归模型,对于 每一个i x ,对应的随机误差项()i i i y a bx ε=-+,我们希望总误差越小越好,即要使 2 1 n i i ε =∑越小越好.所以,只要求出使2 1 (,)() n i i i Q y x αββα== --∑取得最小值时的α,β值作 为a ,b 的估计值,记为a ,b . 注:这里的i ε就是拟合直线上的点(),i i x a bx +到点(),i i i P x y 的距离. 用什么方法求a ,b ? 回忆《数学3(必修)》“2.4线性回归方程”P71“热茶问题”中求a ,b 的方法:最小二乘法. 利用最小二乘法可以得到a ,b 的计算公式为 1 1 22211 ()()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x n x a y bx ====? ---? ?==??--??=-??∑∑∑∑, 其中11n i i x x n ==∑,1 1n i i y y n ==∑ 由此得到的直线y a bx =+就称为这n 对数据的回归直线,此直线方程即为线性回归方程.其中a ,b 分别为a ,b 的估计值,a 称为回归截距,b 称为回归系数,y 称为回归值. 在前面质点运动的线性回归方程 3.5361 2.1214y x =+中, 3.5361a =, 2.1214b =. 3. 线性回归方程y a bx =+中a ,b 的意义是:以a 为基数,x 每增加1个单位,y 相应地

相关文档
最新文档