福建省福清市海口镇高中数学第二章基本初等函数Ⅰ2.2.2对数函数及其性质第1课时学案新人教A版1 精品

福建省福清市海口镇高中数学第二章基本初等函数Ⅰ2.2.2对数函数及其性质第1课时学案新人教A版1 精品
福建省福清市海口镇高中数学第二章基本初等函数Ⅰ2.2.2对数函数及其性质第1课时学案新人教A版1 精品

§2.2.2 对数函数及其性质(第1课时)

班级: 姓名: 座号:

【自学检测】

a b a ,则、已知1.5log 1.5log 1< b

2、函数2lg 11y x ??=-

?+??

的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 3、比较下列各题中两个值的大小:

;与);(与)(4log 6log 28log 6log 15.05.01010 )1,0(9.5log 1.5log 3≠>a a a a 且与)(

4、求下列函数的定义域:

;);()()34(log 2)1(log 15.02-=-=x y x y a )32(log )3(2)1(++-=-x x y x

【课堂探究】

探究活动1:回顾指数函数的图象及性质,观察画出的4个对数函数的图象,探究对数函数图象特征及其性质,并完成下表:

指数函数与对数函数对照表

数图象有什么关系?

底数互为倒数的对数函图象的变化?特别的,且是如何影响对数函数:底数探究活动)1,

0(log 2≠

>=a a x y a a

【典型例题】

1、比较下列各题中两个值的大小:

6log 7log 176与)( 3log 3log 245与)(

3

2

log 3log 32

32与)(

【当堂训练】

的图象只可能是与、函数x y a x y a log 1=+=( )

(B ) (C ) (D )

2、设f(x)=x x -+22lg

,则)2

()2(x

f x f +的定义域为( ) A .),(),(-4004 B .(-4,-1) (1,4)

C .(-2,-1) (1,2)

D .(-4,-2) (2,4)

3、函数)a ax x (log )x (f 23-+=的定义域是R ,求实数a 的取值范围.

的大小比较已知1,0,,,7log 7log )4(n m n m <

【小结与反馈】 1、对数函数的概念;

2、对数函数的图象与性质(对比指数函数);利用图象及函数性质比较大小;

3、底数a 对对数函数(图象及性质)的影响;

4、求对数函数的定义域时注意以下三方面:真数、底数、函数的单调性。

必修1§2.2.2 对数函数及其性质(第1课时)

班级: 姓名: 座号:

【课后练习】

{}.1211log 12B A x y y B x x y y A x

,求,,,、已知集合??

????????>???

??==>==

且的定义域。(其中、求函数1,0)

(log 112≠>+-=

a a a x y a

的奇偶性,并说明理由)判断函数(的定义域;

)求函数(且,已知函数选做、)()(2)()(1)1,0)(1(log )()1(log )()(3x g x f x g x f a a x x g x x f a a ++≠>-=+=

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

(完整word)高中数学必修一对数函数

2.3对数函数 重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用. 考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用; ②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点; ③知道对数函数是一类重要的函数模型; ④了解指数函数与对数函数互为反函数. 经典例题:已知f(logax)=,其中a>0,且a≠1. (1)求f(x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则() A.B.C.D. 2.设表示的小数部分,则的值是() A.B.C.0 D. 3.函数的值域是() A.B.[0,1] C.[0,D.{0} 4.设函数的取值范围为() A.(-1,1)B.(-1,+∞)C.D. 5.已知函数,其反函数为,则是() A.奇函数且在(0,+∞)上单调递减B.偶函数且在(0,+∞)上单调递增C.奇函数且在(-∞,0)上单调递减D.偶函数且在(-∞,0)上单调递增 6.计算= .

7.若2.5x=1000,0.25y=1000,求. 8.函数f(x)的定义域为[0,1],则函数的定义域为. 9.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是. 10.函数图象恒过定点,若存在反函数,则的图象必过定点. 11.若集合{x,xy,lgxy}={0,|x|,y},则log8(x2+y2)的值为多少. 12.(1) 求函数在区间上的最值. (2)已知求函数的值域. 13.已知函数的图象关于原点对称.(1)求m的值; (2)判断f(x) 在上的单调性,并根据定义证明. 14.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称. (1)求函数y=g(x)的解析式及定义域M; (2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数. 参考答案:

高中数学中对称性问题总结.doc

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

高中数学总结归纳 抽象函数的对称性

抽象函数的对称性 关于抽象函数图象的对称问题,下面给出四种常见类型及其证明。 一、设y f x =()是定义在R 上的函数,若f a x f b x ()()+=-,则函数y f x =()的图象关于直线x a b =+2 对称。 证明:设点A (m ,n )是y f x =()图象上任一点,即f m n ()=,点A 关于直线x a b = +2的对称点为()A a b m n '+-,。 []∵f a b m f b b m f m n ()()()+-=--== ∴点A'也在y f x =()的图象上,故y f x =()的图象关于直线x a b =+2 对称。 二、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于直线x b a =-2 的对称点为()A b a m n '--,。 ∵f b b a m f a m n [()]()---=+= ∴点A'在y f b x =-()的图象上 反过来,同样可以证明,函数y f b x =-()图象上任一点关于直线x b a =-2 的对称点也在函数y f a x =+()的图象上,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 说明:可以从图象变换的角度去理解此命题。

易知,函数y f x a b =++? ? ???2与y f x a b =-++?? ?? ?2的图象关于直线x =0对称,由y f x a b =++?? ???2的图象平移得到y f x b a a b f a x =--?? ???++?? ????=+22()的图象,由y f x a b =-++?? ???2的图象平移得到y f x b a a b f b x =---?? ???++????? ?=-22()的图象,它们的平移方向和长度是相同的,故函数y f a x =+()与函数y f b x =-()的图象关于直线x b a =-2 对称。 三、设y f x =()是定义在R 上的函数,若f a x c f b x ()()+=--2,则函数y f x =()的图象关于点a b c +?? ?? ?2,对称。 证明:设点() A m n ,是y f x =()图象上任一点,则f m n ()=,点A 关于点a b c +?? ?? ?2,的对称点为()A a b m c n '+--,2。 []∵f a b m c f b b m c f m c n ()()()+-=---=-=-222 ∴点A'也在y f x =()的图象上,故y f x =()的图象关于点a b c +?? ?? ?2,对称 说明:(1)当a b c ===0时,奇函数图象关于点(0,0)对称。(2)易知此命题的逆命题也成立。 四、设y f x =()是定义在R 上的函数,则函数y f a x =+()与函数y c f b x =--2()的图象关于点b a c -?? ?? ?2,对称。 证明:设点A (m ,n )是y f a x =+()图象上任一点,即f a m n ()+=,点A 关于点b a c -?? ?? ?2,的对称点为()A b a m c n '---,2

高一数学必修一指数函数、对数函数习题精讲

指数函数、对数函数习题精讲 一、指数及对数运算 [例1](1)已知x 21 +x 21-=3,求3 2222323++++--x x x x 的值 (2)已知lg(x +y )+lg(2x +3y )-lg3=lg4+lg x +lg y ,求y x 值. (1)【分析】 由分数指数幂运算性质可求得x 23+x 23 -和x 2+x -2的值. 【解】 ∵x 21+x 21-=3 ∴x 23 +x 23 -=(x 21+x 21 -)3-3(x 21+x 21-)=33-3×3=18 x 2+x -2=(x +x -1)2-2=[(x 21+x 21 -)2-2]2-2 =(32-2)2-2=47 ∴原式= 347218++=5 2 (2)【分析】 注意x 、y 取值范围,去掉对数符号,找到x 、y 关系式. 【解】 由题意可得x >0,y >0,由对数运算法则得 lg(x +y )(2x +3y )=lg(12xy ) 则(x +y )(2x +3y )=12xy (2x -y )(x -3y )=0 即2x =y 或x =3y 故y x =21或y x =3 二、指数函数、对数函数的性质应用 [例2]已知函数y =log a 1(a 2x )·log 2a ( ax 1)(2≤x ≤4)的最大值为0,最小值为-81,求a 的值. 【解】 y =log a 1(a 2x )·log 2a ( ax 1)=-log a (a 2x )[-21log a (ax )] = 21(2+log a x )(1+log a x )=21(log a x +23)2-8 1 ∵2≤x ≤4且-8 1≤y ≤0 ∴log a x +23=0,即x =a 23-时,y min =-81

高中数学对数函数教案

高中数学对数函数教案 数学对数函数教案【教学目标】 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 数学对数函数教案【教学建议】 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 数学对数函数教案【教学设计示例】 一.引入新课 一.对数函数的概念 1.定义:函数的反函数叫做对数函数. 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的 认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故 有着相同的限制条件. 在此基础上,我们将一起来研究对数函数的图像与性质.

高中数学中的对称性问题

高中数学中的对称性与周期性 一、函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 7函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。 二、关于点对称 (1) 点关于点的对称点问题 若点A 11(,)x y , B 22(,)x y , 则线段AB 中点M 的坐标是( 1212 ,22 x x y y ++);据此可以解求点与点的中心对称,即求点M 00(,)x y 关于点P (,)a b 的对称点' M 的坐标(,)x y ,利用中点坐标公式可得 00, 22 x x y y a b ++= =,解算的' M 的坐标为00(2, 2)a x b y --。

高一数学 对数函数的图象与性质教案

课题:4.2.3 对数函数的图象和性质 【教学目标】 1. 初步了解对数函数的性质,并初步运用对数函数的性质解决诸如比较大小等简单问题; 2. 在用描点法或借助计算工具画出对数函数的图象,并探索对数函数的性质的过程中,发展学生的直观想象、数学抽象、逻辑推理等核心素养; 3. 类比指数函数的研究过程,让学生经历设计对数函数图象和性质的研究内容方法、步骤并实施,再次提升和丰富了函数的图象和性质研究的基本思想和基本活动经验. 【教学重点】 了解对数函数的图象和性质并能初步应用. 【教学难点】 抽象、概括出对数函数性质(底数a 对对数函数图象变化的影响). 【教学过程】 教学流程:明确思路→感知图象→发现性质→尝试应用→归纳小结→布置作业 (一) 回顾经验、明确思路 教师导语:对于具体的函数,我们一般按照“概念—图象—性质—应用”的过程进行研究.前面我们学习了对数函数的概念,接下来就要研究它的图象和性质.回顾指数函数的研究过程,你能说说我们要研究哪些内容?研究方法又是什么? 师生活动:教师引导学生类比指数函数的学习,共同商议、制定研究对数函数的图象和性质的内容、方法以及步骤. 【设计意图】:从初中到现在,学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究函数的方法有了一定的了解和掌握,可以通过类比的方法研究学习,从而明确了对数函数的图象与性质的研究内容、方法以及步骤,为接下来的学习建立先行组织者. (二)尝试画图、形成感知 教师导语:在明确了探究方向后,下面请同学们按照“数学实验活动探究卡”的步骤进行探究活动. 活动(1)自主探究:用描点法画出对数函数x y 2log =的图象. 师生活动:由于描点法作图时列举点的个数的限制,学生对对数函数的图象特征缺乏直观感受.教师借助几何画板作出对数函数x y 2log =图象,验证猜想. 教师追问1:在同一个坐标系中,如何画出对数函数x y 2 1log =的图象?

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

高中数学-函数的单调性、奇偶性、周期性、对称性及函数的图像

函数的单调性、奇偶性、周期性、对称性及函数的图像 (一)复习指导 单调性: 设函数y =f (x )定义域为A ,区间M ?A ,任取区间M 中的两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称f (x )在区间M 上是增函数,当Δy =f (x 2)-f (x 1)<0时,就称f (x )在区间M 上是减函数. 如果y =f (x )在某个区间M 上是增(减)函数,则说y =f (x )在这一区间上具有单调性,这一区间M 叫做y =f (x )的单调区间. 函数的单调性是函数的一个重要性质,在给定区间上,判断函数增减性,最基本的方法就是利用定义:在所给区间任取x 1,x 2,当x 1<x 2时判断相应的函数值f (x 1)与f (x 2)的大小. 利用图象观察函数的单调性也是一种常见的方法,教材中所有基本初等函数的单调性都是由图象观察得到的. 对于y =f [φ(x )]型双重复合形式的函数的增减性,可通过换元,令u =φ(x ),然后分别根据u =φ(x ),y =f (u )在相应区间上的增减性进行判断,一般有“同则增,异则减”这一规律. 此外,利用导数研究函数的增减性,更是一种非常重要的方法,这一方法将在后面的复习中有专门的讨论,这里不再赘述. 奇偶性: (1)设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=-f (x ),则这个函数叫做奇函数;设函数f (x )的定义域为D ,如果对D 内任意一个x ,都有-x ∈D ,且f (-x )=f (x ),则这个函数叫做偶函数. 函数的奇偶性有如下重要性质: f (x )奇函数?f (x )的图象关于原点对称. f (x )为偶函数?f (x )的图象关于y 轴对称. 此外,由奇函数定义可知:若奇函数f (x )在原点处有定义,则一定有f (0)=0,此时函数f (x )的图象一定通过原点. 周期性: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x )成立,则函数f (x )叫做周期函数,非零常数T 叫做这个函数的周期. 关于函数的周期性,下面结论是成立的. (1)若T 为函数f (x )的一个周期,则kT 也是f (x )的周期(k 为非零整数). (2)若T 为y =f (x )的最小正周期,则 | |ωT 为y =Af (ωx +φ)+b 的最小正周期,其中ω≠0. 对称性: 若函数y =f (x )满足f (a -x )=f (b +x )则y =f (x )的图象关于直线2 b a x += 对称,若函数y =f (x )满足f (a -x )=-f (b +x )则y =f (x )的图象关于点( 2 b a +,0)对称. 函数的图象: 函数的图象是函数的一种重要表现形式,利用函数的图象可以帮助我们更好的理解函数的性质,我们首先要熟记一些基本初等函数的图象,掌握基本的作图方法,如描点作图,三角函数的五点作图法等,掌握通过一些变换作函数图象的方法.同时要特别注意体会数形结合的思想方法在解题中的灵活应用. (1)利用平移变换作图:

高中数学函数的对称性与周期性讲义

高中数学函数的对称性与周期性讲义 一、引例:若)(x f 是定义在R 上的函数,对于满足下例条件中,)(,x f r x ∈?某一个,那么对于每个条件下的)(x f ,各具有哪些特殊性质? (1),)1()1(x f x f -=+ (4),)1()1(x f x f --=+ (7),)1()1(-=+x f x f (2),)2()(x f x f -= (5),)2()(x f x f --+ (8),)()2(x f x f =+ (3),)3()1(x f x f -=+- (6),)2(4)(x f x f --= (9),)()1(x f x f -=+ 二、 函数的对称性 1、轴对称 )()()() 2()() ()()(] 0[x f x f y x f x a f x f x a f x a f a x x f a =-?-=?-=+?=?=轴对称关于对称关于 2、点对称 0 )()()()()00()(] 0[) ()()2()()0,()(] 0[2)()()2(2)(),()(=-+?--=?=-=+?--=?==-++?--=?x f x f x f x f x f a x a f x a f x a f x f a x f b b x a f x a f x a f b x f b a x f 对称,关于对称关于对称关于 3、本质特征: 【自变量】 为常数) (定义域)且a a x x D x x (2212,1=+∈? 【函数值】 a x x x x x f x f =→+=→→=对称轴对称轴轴对称性2 )()(2121 ),)22,2(2)()(2121b a b x x b x f x f 对称中心(对称中心中心对称 →+→→=+ 模型:对称关于2 )()()(,b a x x f x b f x a f D x +=?-=+∈? 对称关于)0,2 ()()()(,b a x f x b f x a f D x +?--=+∈? 三,函数的周期性 定义:设定义在D 上的函数,),(D x x f ∈?对于都存在非零常数T ,使得)()(x f T x f =+则函数)(x f 为周期函数,T 为)(x f 的一个周期, 【自变量】 D x x ∈?21,(定义域)且T x x =-21(T 为非零常数)

高一数学_指数函数对数函数幂函数练习(含答案)

分数指数幂 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>=m m m 3、求下列各式的值 (1)2 325= (2)32 254- ?? ??? = 4、解下列方程 (1)13 1 8 x - = (2)151243 =-x 分数指数幂(第 9份)答案 153 ,a a 2、33 2 22 ,x y m 3、(1)125 (2) 8125 4、(1)512 (2)16 指数函数(第 10份) 1、下列函数是指数函数的是 ( 填序号) (1)x y 4= (2)4 x y = (3)x y )4(-= (4)2 4x y =。 2、函数)1,0(12≠>=-a a a y x 的图象必过定点 。 3、若指数函数x a y )12(+=在R 上是增函数,求实数a 的取值范围 。 4、如果指数函数x a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2a C 、21<

5、下列关系中,正确的是 ( ) A 、51 31 )21()21(> B 、2.01.022> C 、2 .01.022--> D 、11 5311()()22 - - > 6、比较下列各组数大小: (1)0.5 3.1 2.3 3.1 (2)0.3 23-?? ? ?? 0.24 23-?? ? ?? (3) 2.52.3- 0.10.2- 7、函数x x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。 函数x x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。 8、求满足下列条件的实数x 的范围: (1)82>x (2)2.05=a a a y x 的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。 11、函数x y ??? ??=31的图象与x y -?? ? ??=31的图象关于 对称。 12、已知函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值多2,求a 的 值 。 13、已知函数)(x f =1 22+-x x a 是奇函数,求a 的值 。 14、已知)(x f y =是定义在R 上的奇函数,且当0

高中数学-对数函数图像和性质及经典例题

对数函数的概念: 函数y 对数函数的图象和性质 高中数学-对数函数图像和性质及经典例题 第一部分:回顾基础知识点 log a x(a 0,且a 1)叫做对数函数其中x是自变量,函数的定义域是(o, +3). 在同一坐标系中画岀下列对数函数的图象; (1) y log 2 x (2)y log! x 2 (3)y log3x(4)y log i x 3 ■0 5 -? 图象特征函数性质 a 10 a 1 a 10 a 1函数图象都在y轴右侧函数的定义域为(0,+x) 图象关于原点和y轴不对称非奇非偶函数 向y轴正负方向无限延伸函数的值域为R 函数图象都过定点(1 , 1) 1 1 自左向右看,图象逐渐上升自左向右看, 图象逐渐下降 增函数减函数 第一象限的图象纵坐标都大于0 第一象限的图象 纵坐标都大于0 x 1, log a x 00 x 1, log a x 0 第二象限的图象纵坐标都小于0 第二象限的图象 纵坐标都小于00 x 1, log a x 0x 1, log a x 0 -1 -- 底数a是如何影响函数log a x 的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大

第二部分:对数函数图像及性质应用 例1 ?如图,A , B , C 为函数y log i x 的图象上的三点,它们的横坐标分别是 t , t +2, t +4(t 1). 2 ⑴设 ABC 的面积为S 。求S=f (t ); ⑵判断函数S=f (t )的单调性; 解:(1 )过A,B,C,分别作AAi,BB i ,CC i 垂直于x 轴,垂足为 Ai,B i ,C i , 则 S =S 梯形 AA i B i B +S 梯形 BB 1C 1C — S 上是减函数,且 1

高中数学函数对称性和周期性小结

高中数学函数对称性和周期性小结 一、函数对称性: 1.f(a+x) = f(a-x) ==> f(x) 关于x=a对称 2.f(a+x) = f(b-x) ==> f(x) 关于x=(a+b)/2 对称 3.f(a+x) = -f(a-x) ==> f(x) 关于点(a,0)对称 4.f(a+x) = -f(a-x) + 2b ==> f(x) 关于点(a,b)对称 5.f(a+x) = -f(b-x) + c ==> f(x) 关于点[(a+b)/2 ,c/2] 对称 6.y = f(x) 与y = f(-x) 关于x=0 对称 7.y = f(x) 与y = -f(x) 关于y=0 对称 8.y =f(x) 与y= -f(-x) 关于点(0,0) 对称 例1:证明函数y = f(a+x) 与y = f(b-x) 关于x=(b-a)/2 对称。 【解析】求两个不同函数的对称轴,用设点和对称原理作解。 证明:假设任意一点P(m,n)在函数y = f(a+x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a+m) = f[ b – (2t – m)] ∴b – 2t =a ,==> t = (b-a)/2 ,即证得对称轴为x=(b-a)/2 . 例2:证明函数y = f(a - x) 与y = f(x – b) 关于x=(a + b)/2 对称。 证明:假设任意一点P(m,n)在函数y = f(a - x) 上,令关于x=t 的对称点Q(2t – m,n),那么n =f(a-m) = f[ (2t – m)– b] ∴2t - b =a ,==> t = (a + b)/2 ,即证得对称轴为x=(a + b)/2 . 二、函数的周期性 令a , b 均不为零,若: 1.函数y = f(x) 存在f(x)=f(x+a) ==> 函数最小正周期T=|a| 2.函数y = f(x) 存在f(a + x) = f(b + x) ==> 函数最小正周期T=|b-a| 3.函数y = f(x) 存在f(x) = -f(x + a) ==> 函数最小正周期T=|2a| 4.函数y = f(x) 存在f(x + a) =1/f(x) ==>函数最小正周期T=|2a| 5.函数y = f(x) 存在f(x + a) = [f(x) + 1]/[1 – f(x)] ==>函数最小正周期T=|4a| 这里只对第2~5点进行解析。 第2点解析: 令X=x+a ,f[a +(x –a)] = f[b +(x – a)] ∴f(x) = f(x + b – a) ==> T=b – a

高中数学点线对称问题

对称问题专题 【知识要点】 1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下: 设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有 x x y y -'-'·k =-1, 2 y y +'=k ·20x x +'+b , 特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0). 3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0. (2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法: 设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(x ,y ),则由(2)知,P 与P ′的坐标满足 x x y y --·k =-1, 2 0y y +=k ·20x x ++b , 代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0.利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程. 4.两点关于点对称、两点关于直线对称的常见结论: (1)点(x ,y )关于x 轴的对称点为(x ,-y ); (2)点(x ,y )关于y 轴的对称点为(-x ,y ); (3)点(x ,y )关于原点的对称点为(-x ,-y ); (4)点(x ,y )关于直线x -y =0的对称点为(y ,x ); (5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x ). 【典型例题】 【例1】 求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程. 剖析:由平面几何知识可知若直线a 、b 关于直线l 对称,它们具有下列几何性质:(1)若a 、b 相交,则l 是a 、b 交角的平分线;(2)若点A 在直线a 上,那么A 关于直线l 的对称点B 一定在直线b 上,这时AB ⊥l ,并且AB 的中点D 在l 上;(3)a 以l 为轴旋转180°,一定与b 重合.使用这些性质,可以找出直线b 的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程. 2x +y -4=0, 3x +4y -1=0, 可求出x ′、y ′. 从中解出x 0、y 0, 解:由 解得a 与l 的交点E (3,-2),E 点也在b 上

相关文档
最新文档