51单片机波特率的计算方法

51单片机波特率的计算方法
51单片机波特率的计算方法

51单片机波特率计算的公式和方法

51单片机芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用SCON寄存器。它的各个位的具体定义如下:

SM0SM1SM2REN TB8RB8TI RI

SM0、SM1为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。串行口工作模式设置。

波特率在使用串口做通讯时,一个很重要的参数就是波特率,只有上下位机的波特率一样时才可以进行正常通讯。波特率是指串行端口每秒内可以传输的波特位数。这里所指的波特率,如标准9600不是每秒种可以传送9600个字节,而是指每秒可以传送9600个二进位,而一个字节要8个二进位,如用串口模式1来传输那么加上起始位和停止位,每个数据字节就要占用10个二进位,9600波特率用模式1传输时,每秒传输的字节数是9600÷10=960字节。

51芯片的串口工作模式0的波特率是固定的,为fosc/12,以一个12M的晶振来计算,那么它的波特率可以达到1M。模式2的波特率是固定在fosc/64或fosc/32,具体用那一种就取决于PCON寄存器中的SMOD位,如SMOD为0,波特率为focs/64,SMOD为1,波特率为focs/32。

模式1和模式3的波特率是可变的,取决于定时器1或2(52芯片)的溢出速率,就是说定时器1每溢出一次,串口发送一次数据。那么我们怎么去计算这两个模式的波特率设置时相关的寄存器的值呢?可以用以下的公式去计算。

上式中如设置了PCON寄存器中的SMOD位为1时就可以把波特率提升2倍。通常会使用定时器1工作在定时器工作模式2下,这时定时值中的TL1做为计数,TH1做为自动重装值,这个定时模式下,定时器溢出后,TH1的值会自动装载到TL1,再次开始计数,这样可以不用软件去干预,使得定时更准确。在这个定时模式2下定时器1溢出速率的计算公式如下:

溢出速率=(计数速率)/(256-TH1初值)

溢出速率=fosc/[12*(256-TH1初值)]

上式中的“计数速率”与所使用的晶体振荡器频率有关,在51芯片中定时器启动后会在每一个机器周期使定时寄存器TH的值增加一,一个机器周期等于十二个振荡周期,所以可以得知51芯片的计数速率为晶体振荡器频率的1/12,一个12M的晶振用在51芯片上,那么51的计数速率就为1M。通常用11.0592M 晶体是为了得到标准的无误差的波特率,那么为何呢?计算一下就知道了。如我们要得到9600的波特率,晶振为11.0592M和12M,定时器1为模式2,SMOD 设为1,分别看看那所要求的TH1为何值。代入公式:

11.0592M

9600=(2÷32)×((11.0592M/12)/(256-TH1))

TH1=250

12M

9600=(2÷32)×((12M/12)/(256-TH1))

TH1≈249.49

上面的计算可以看出使用12M晶体的时候计算出来的TH1不为整数,而TH1的值只能取整数,这样它就会有一定的误差存在不能产生精确的9600波特率。当然一定的误差是可以在使用中被接受的,就算使用11.0592M的晶体

振荡器也会因晶体本身所存在的误差使波特率产生误差,但晶体本身的误差对波特率的影响是十分之小的,可以忽略不计。

吴鉴鹰单片机开发板,学习单片机必备

AT89C51单片机简易计算器的设计

AT89C51单片机简易计算器的设计 单片机的出现是计算机制造技术高速发展的产物,它是嵌入式控制系统的核心,如今,它已广泛的应用到我们生活的各个领域,电子、科技、通信、汽车、工业等。本设计是基于51系列单片机来进行的数字计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除六位数范围内的基本四则运算,并在LCD上显示相应的结果。设计电路采用AT89C51单片机为主要控制电路,利用MM74C922作为计算器4*4键盘的扫描IC读取键盘上的输入。显示采用字符LCD静态显示。软件方面使用C语言编程,并用PROTUES仿真。 一、总体设计 根据功能和指标要求,本系统选用MCS-51系列单片机为主控机。通过扩展必要的外围接口电路,实现对计算器的设计。具体设计如下:(1)由于要设计的是简单的计算器,可以进行四则运算,为了得到较好的显示效果,采用LCD 显示数据和结果。 (2)另外键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键和等号键,故只需要16 个按键即可,设计中采用集成的计算键盘。 (3)执行过程:开机显示零,等待键入数值,当键入数字,通过LCD显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数

值,按等号就会在LCD上输出运算结果。 (4)错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LCD上提示溢出;当除数为0时,计算器会在LCD 上提示错误。 系统模块图: 二、硬件设计 (一)、总体硬件设计 本设计选用AT89C51单片机为主控单元。显示部分:采用LCD 静态显示。按键部分:采用4*4键盘;利用MM74C922为4*4的键盘扫描IC,读取输入的键值。 总体设计效果如下图:

51单片机串口通信及波特率设置

51单片机串口通信及波特率设置 MCS-51单片机具有一个全双工的串行通信接口,能同时进行发送和接收。它可以作为UART(通用异步接收和发送器)使用,也可以作为同步的移位寄存器使用。 1. 数据缓冲寄存器SBUF SBUF是可以直接寻址的专用寄存器。物理上,它对应着两个寄存器,即一个发送寄存器一个接收寄存器,CPU写SBUF就是修改发送寄存器;读SBUF就是读接收寄存器。接收器是双缓冲的,以避免在接收下一帧数据之前,CPU未能及时的响应接收器的中断,没有把上一帧的数据读走而产生两帧数据重叠的问题。对于发送器,为了保持最大的传输速率,一般不需要双缓冲,因为发送时CPU是主动的,不会产生重叠问题。 2. 状态控制寄存器SCON SCON是一个逐位定义的8位寄存器,用于控制串行通信的方式选择、接收和发送,指示串口的状态,SCON即可以字节寻址也可以位寻址,字节地址98H,地址位为98H~9FH。它的各个位定义如下: MSB LSB SM0 SM1 SM2 REN TB8 RB8 TI RI SM0和SM1是串口的工作方式选择位,2个选择位对应4种工作方式,如下表,其中Fosc是振荡器的频率。 SM0 SM1 工作方式功能波特率 0 0 0 8位同步移位寄存器Fosc/12 0 1 1 10位UART 可变 1 0 2 11位UART Fosc/64或Fosc/32 1 1 3 11位UART 可变 SM2在工作方式2和3中是多机通信的使能位。在工作方式0中,SM2必须为0。在工作方式1中,若SM2=1且没有接收到有效的停止位,则接收中断标志位RI不会被激活。在工作方式2和3中若SM2=1且接收到的第9位数据(RB8)为0,则接收中断标志RB8不会被激活,若接收到的第9位数据(RB8)为1,则RI置位。此功能可用于多处理机通信。 REN为允许串行接收位,由软件置位或清除。置位时允许串行接收,清除时禁止串行接收。 TB8是工作方式2和3要发送的第9位数据。在许多通信协议中该位是奇偶位,可以按需要由软件置位或清除。在多处理机通信中,该位用于表示是地址帧还是数据帧。 RB8是工作方式2和3中接收到的第9位数据(例如是奇偶位或者地址/数据标识位),在工作方式1中若SM2=0,则RB8是已接收的停止位。在工作方式0中RB8不使用。 TI 为发送中断标志位,由硬件置位,软件清除。工作方式0中在发送第8位末尾由硬件置位;在其他工作方式时,在发送停止位开始时由硬件置位。TI=1时,申请中断。CPU 响应中断后,发送下一帧数据。在任何工作方式中都必须由软件清除TI。 RI为接收中断标志位,由硬件置位,软件清除。工作方式0中在接收第8位末尾由硬件置位;在其他工作方式时,在接收停止位的中间由硬件置位。RI=1时,申请中断,要求CPU取走数据。但在工作方式1中,SM2=1且未接收到有效的停止位时,不会对RI置位。在任何工作方式中都必须由软件清除RI。 系统复位时,SCON的所有位都被清除。 控制寄存器PCON也是一个逐位定义的8位寄存器,目前仅仅有几位有定义,如下所示:MSB LSB

基于51单片机的计算器设计程序代码汇编

DBUF EQU 30H TEMP EQU 40H YJ EQU 50H ;结果存放 YJ1 EQU 51H ;中间结果存放GONG EQU 52H ;功能键存放 ORG 00H START: MOV R3,#0 ;初始化显示为空MOV GONG,#0 MOV 30H,#10H MOV 31H,#10H MOV 32H,#10H MOV 33H,#10H MOV 34H,#10H MLOOP: CALL DISP ;PAN调显示子程序WAIT: CALL TESTKEY ; 判断有无按键JZ WAIT CALL GETKEY ;读键 INC R3 ;按键个数 CJNE A,#0,NEXT1 ; 判断就是否数字键 LJMP E1 ; 转数字键处理NEXT1: CJNE A,#1,NEXT2 LJMP E1 NEXT2: CJNE A,#2,NEXT3 LJMP E1 NEXT3: CJNE A,#3,NEXT4 LJMP E1 NEXT4: CJNE A,#4,NEXT5 LJMP E1 NEXT5: CJNE A,#5,NEXT6 LJMP E1 NEXT6: CJNE A,#6,NEXT7 LJMP E1 NEXT7: CJNE A,#7,NEXT8 LJMP E1 NEXT8: CJNE A,#8,NEXT9 LJMP E1 NEXT9: CJNE A,#9,NEXT10 LJMP E1 NEXT10: CJNE A,#10,NEXT11 ;判断就是否功能键LJMP E2 ;转功能键处理NEXT11: CJNE A,#11,NEXT12 LJMP E2 NEXT12: CJNE A,#12, NEXT13 LJMP E2

51单片机课设 串口计算器

[二0一三年]

1作品简介 本作品为带有串口通信功能的计算器,PC可通过串口助手软件将算式发送至单片机,单片机立即将计算结果发送回PC,并且在液晶上显示结果。串口通信波特率为两档可调,分别为9600bps和4800bps,可通过两个按键调整,同时在液晶上会显示当前的波特率。 计算器可自动识别输入的字符串,并自动判断输入的算式是否正确;可自动识别算式中包含错误字符、除数为零、浮点数做取余运算等错误。当计算结果超出设定范围时在液晶上出现“超出范围”提示,同时向PC发送“The result is out of range! ”。 2作品整体方案 2.1 串行通信功能: 实验板和PC电脑通过USB线相连,使MCU和PC软件“串口助手”能够进行串行通信。 (1)当实验板上电时默认波特率为9600bps,并发送欢迎词和提示词,例如“Welcome to Calculator V1.0”,"You can press key1 and key2 to change baud rate.".... (2)当实验板上按键1按下时波特率变更为4800bps,按键2按下时波特率变更为9600bps,并用两个LED灯指示相应的波特率。 2.2 计算器功能 通过串口助手发送框发送需要计算的公式,例如20*4=,MCU收到后解析公式并计算结果,将结果返回给串口,例如“The result is 80”,同时将计算结果显示在数码管上,具体细节如下: (1)可以进行加(+)、减(-)、乘(*)、除(\)、取余(%)运算; (2)整形、浮点型运算; (3)当计算结果为整形数时,有效的运算结果范围是-999~9999,超过此结果,返回相应的提示符,例如“The result is out of range.”,液晶上显示“超出范围”; (4)当计算结果为浮点数时,有效的运算结果范围是-99.9~999.9,液晶上保

51单片机简易计算器程序

#include <reg51.h>#include <intrins.h> #include <ctype.h> #include <stdlib.h> #define uchar unsigned char #define uint unsigned int uchar operand1[9], operand2[9]; uchar operator; void delay(uint); uchar keyscan(); void disp(void); void buf(uint value); uint compute(uint va1,uint va2,uchar optor); uchar code table[] = {0xc0,0xf9,0xa4,0xb0,0x99, 0x92,0x82,0xf8,0x80,0x90,0xff}; uchar dbuf[8] = {10,10,10,10,10,10,10,10}; void delay(uint z) { uint x,y; for(x=z;x>0;x--)

for(y=110;y>0;y--); } uchar keyscan() { uchar skey; P1 = 0xfe; while((P1 & 0xf0) != 0xf0) { delay(3); while((P1 & 0xf0) != 0xf0) { switch(P1) { case 0xee: skey = '7'; break; case 0xde: skey = '8'; break; case 0xbe: skey = '9'; break; case 0x7e: skey = '/'; break; default: skey = '#'; }

8051的串口波特率的计算(笔记版)

8051的串口波特率的计算 1、方式0的波特率,固定为晶振频率的十二分之一。 2、方式2的波特率,取决于PCON寄存器的SMOD位。PCON是一个特殊的寄 存器,吹了最高位SMOD位,其他位都是虚设的。计算方法如下: SMOD=0,波特率为晶振的1/64; SMOD=1,波特率为晶振的1/32. 3、方式1与方式3的波特率都是由定时器的溢出率决定的。 公式为: BR=(2SOMD/32)*(定时器TI的溢出率) 通常情况下,我们使用定时器的方式2,即比率发生器,自动重载计数常数。 溢出的周期为: T=(256-X)*12/fosc 溢出率为溢出周期的倒数,即 T1=1/T 所以: 式中:SMOD是所选的方式,fosc是晶振频率。X是初始值。 51单片机模拟串口波特率计算方法 1.计算波特率位间隔时间(即定时时间,其实就是波特率的倒数) 位间隔时间(us)=10(6)(us)/波特率(bps)

2.计算机单片机指令周期: 指令周期(us)=12/晶振频率(Mhz) 补充问题:做串口通信时,为什么要把晶振频率设为11.0592,为什么要把波特率设为9600? 先说波特率。波特率从300到115200都可以,甚至更高或更低。一般规范的波特率都是3的倍数,比如9600、19200、38400;但是并不是一定的,波特率也可以是10000或者10001、10002,只要你的设备能产生符合这个要求的频率,尤其是自己用时,波特率都是很随意的,没有限制。只是多数时候为了和电脑配合,波特率才规范为固定的几个值,且为了传输稳定,用9600。 用11.0592晶振的原因是51单片机的定时器导致的。通常用11.0592M晶振是为了得到标准的无误差的波特率。举例说来,如我们要得到的9600的波特率,晶振为11.0592M和12M,定制器1为2SMOD设为1,分别看看那所求的TH1为何值。代入公式: 11.0592M 9600=(2/32)*((11.0592M/12)(256-TH1)) TH 1=250 12M 9600=(2/32)*((12M/12)(256-TH1)) TH1=249.49

AT89C51单片机C实现简易计算器

AT89C51单片机简易计算器的设计 一、总体设计 根据功能和指标要求,本系统选用MCS-51系列单片机为主控机。通过扩展必要的外围接口电路,实现对计算器的设计。具体设计如下:(1)由于要设计的是简单的计算器,可以进行四则运算,为了得到较好的显示效果,采用LCD 显示数据和结果。 (2)另外键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键和等号键,故只需要16 个按键即可,设计中采用集成的计算键盘。 (3)执行过程:开机显示零,等待键入数值,当键入数字,通过LCD显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数值,按等号就会在LCD上输出运算结果。 (4)错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LCD上提示溢出;当除数为0时,计算器会在LCD 上提示错误。 系统模块图:

二、硬件设计 (一)、总体硬件设计 本设计选用AT89C51单片机为主控单元。显示部分:采用LCD 静态显示。按键部分:采用4*4键盘;利用MM74C922为4*4的键盘扫描IC,读取输入的键值。 总体设计效果如下图:

(二)、键盘接口电路 计算器输入数字和其他功能按键要用到很多按键,如果采用独立按键的方式,在这种情况下,编程会很简单,但是会占用大量的I/O 口资源,因此在很多情况下都不采用这种方式,而是采用矩阵键盘的方案。矩阵键盘采用四条I/O 线作为行线,四条I/O 线作为列线组成键盘,在行线和列线的每个交叉点上设置一个按键。这样键盘上按键的个数就为4×4个。这种行列式键盘结构能有效地提高单片机系统中I/O 口的利用率。 矩阵键盘的工作原理: 计算器的键盘布局如图2所示:一般有16个键组成,在单片机中正好可以用一个P口实现16个按键功能,这种形式在单片机系统中也最常用。 图 2 矩阵键盘布局图 矩阵键盘内部电路图如图3所示:

单片机波特率的计算方法

51单片机波特率计算的公式和方法 51单片机芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用SCON寄存器。它的各个位的具体定义如下: SM0SM1SM2REN TB8RB8TI RI SM0、SM1为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。串行口工作模式设置。 波特率在使用串口做通讯时,一个很重要的参数就是波特率,只有上下位机的波特率一样时才可以进行正常通讯。波特率是指串行端口每秒内可以传输的波特位数。这里所指的波特率,如标准9600不是每秒种可以传送9600个字节,而是指每秒可以传送9600个二进位,而一个字节要8个二进位,如用串口模式1来传输那么加上起始位和停止位,每个数据字节就要占用10个二进位,9600波特率用模式1传输时,每秒传输的字节数是9600÷10=960字节。 51芯片的串口工作模式0的波特率是固定的,为fosc/12,以一个12M的晶振来计算,那么它的波特率可以达到1M。模式2的波特率是固定在fosc/64或fosc/32,具体用那一种就取决于PCON寄存器中的SMOD位,如SMOD为0,波特率为focs/64,SMOD为1,波特率为focs/32。 模式1和模式3的波特率是可变的,取决于定时器1或2(52芯片)的溢出速率,就是说定时器1每溢出一次,串口发送一次数据。那么我们怎么去计算这两个模式的波特率设置时相关的寄存器的值呢?可以用以下的公式去计算。

上式中如设置了PCON寄存器中的SMOD位为1时就可以把波特率提升2倍。通常会使用定时器1工作在定时器工作模式2下,这时定时值中的TL1做为计数,TH1做为自动重装值,这个定时模式下,定时器溢出后,TH1的值会自动装载到TL1,再次开始计数,这样可以不用软件去干预,使得定时更准确。在这个定时模式2下定时器1溢出速率的计算公式如下: 溢出速率=(计数速率)/(256-TH1初值) 溢出速率=fosc/[12*(256-TH1初值)] 上式中的“计数速率”与所使用的晶体振荡器频率有关,在51芯片中定时器启动后会在每一个机器周期使定时寄存器TH的值增加一,一个机器周期等于十二个振荡周期,所以可以得知51芯片的计数速率为晶体振荡器频率的1/12,一个12M的晶振用在51芯片上,那么51的计数速率就为1M。通常用11.0592M 晶体是为了得到标准的无误差的波特率,那么为何呢?计算一下就知道了。如我们要得到9600的波特率,晶振为11.0592M和12M,定时器1为模式2,SMOD 设为1,分别看看那所要求的TH1为何值。代入公式: 11.0592M 9600=(2÷32)×((11.0592M/12)/(256-TH1)) TH1=250

51单片机简易计算器代码

#include"reg52.h" #define uchar unsigned char #define uint unsigned int sbit busy=P0^7; void delay(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } char i,j,temp,num; long a,b,c; //a,第一个数b,第二个数c,得数 uchar flag,fuhao;//flag表示是否有符号键按下,fuhao表征按下的是哪个符号uchar code table[]={7,8,9,0,4,5,6,0,1,2,3,0,0,0,0,0}; uchar code table1[]={7,8,9,0x2f-0x30,4,5,6,0x2a-0x30,1,2,3,0x2d-0x30,0x01-0x30,0,0x3d-0x30,0 x2b-0x30}; //按键显示编码表 sbit lcden=P2^2; sbit lcdwrite=P2^1; sbit lcdrs=P2^0; //lcd的写指令 void write_com(uchar com) { lcdrs=0; lcden=0; P0=com; delay(1); lcden=1; delay(1); lcden=0; } //lcd的写数据 void write_date(uchar da) { lcdrs=1; lcden=0; P0=da; delay(1); lcden=1; delay(1); lcden=0; } //初始化

void init() //初始化 { uchar num; num=-1; lcdwrite=0; lcden=0; write_com(0x38); write_com(0x0c); write_com(0x06); write_com(0x01); delay(500);//延时0.5s write_com(0x01); i=0; j=0; a=0; //第一个参与运算的数 b=0; //第二个参与运算的数 c=0; flag=0; //flag表示是否有符号键按下, fuhao=0; // fuhao表征按下的是哪个符号 } void keyscan() // 键盘扫描程序 { P3=0xfe; if(P3!=0xfe) { delay(10); //延迟20ms if(P3!=0xfe) { temp=P3&0xf0; switch(temp) { case 0xe0:num=0; break; case 0xd0:num=1; break; case 0xb0:num=2; break; case 0x70:num=3; break; } } while(P3!=0xfe); if(num==0||num==1||num==2)//如果按下的是'7','8'或'9 { if(j==1)//确认一次计算完毕,清屏 { write_com(0x01);

MCS-51单片机串行口工作方式与波特率计算举例

MCS-51单片机串行口工作方式与波特率计算举例 1)方式0 方式0是外接串行移位寄存器方式。工作时,数据从RXD串行地输入/输出,TXD 输出移位脉冲,使外部的移位寄存器移位。波特率固定为fosc/12(即,TXD每机器周期输出一个同位脉冲时,RXD接收或发送一位数据)。每当发送或接收完一个字节,硬件置TI=1或RI=1,申请中断,但必须用软件清除中断标志。 实际应用在串行I/O口与并行I/O口之间的转换。 2)方式1 方式1是点对点的通信方式。8位异步串行通信口,TXD为发送端,RXD为 接收端。一帧为10位,1位起始位、8位数据位(先低后高)、1位停止位。波特率由T1或T2的溢出率确定。 在发送或接收到一帧数据后,硬件置TI=1或RI=1,向CPU申请中断;但必须用软件清除中断标志,否则,下一帧数据无法发送或接收。 (1)发送:CPU执行一条写SBUF指令,启动了串行口发送,同时将1写入 输出移位寄存器的第9位。发送起始位后,在每个移位脉冲的作用下,输出移位寄存器右移一位,左边移入0,在数据最高位移到输出位时,原写入的第9位1的左边全是0,检测电路检测到这一条件后,使控制电路作最后一次移位,/SEND 和DATA无效,发送停止位,一帧结束,置TI=1。 (2)接收:REN=1后,允许接收。接收器以所选波特率的16倍速率采样RXD 端电平,当检测到一个负跳变时,启动接收器,同时把1FFH写入输入移位寄存器(9位)。由于接、发双方时钟频率有少许误差,为此接收控制器把一位传送时间16等分采样RXD,以其中7、8、9三次采样中至少2次相同的值为接收值。接收位从移位寄存器右边进入,1左移出,当最左边是起始位0时,说明已接收8位数据,再作最后一次移位,接收停止位。此后: A、若RI=0、SM2=0,则8位数据装入SBUF,停止位入RB8,置RI=1。

51单片机 实现计算器功能

51单片机多为计算器汇编程序 此程序并不仅仅局限于255以内操作 FIR0 EQU 30H FIR1 EQU 31H FIR2 EQU 32H FIR3 EQU 33H ;第一个操作数 SEC0 EQU 34H SEC1 EQU 35H SEC2 EQU 36H SEC3 EQU 37H ; 第二个操作数 LIN0 EQU 38H LIN1 EQU 39H LIN2 EQU 40H LIN3 EQU 41H ; 数据暂存 RES0 EQU 42H RES1 EQU 43H RES2 EQU 44H RES3 EQU 45H ;结果暂存区 XLINE EQU 46H YLINE EQU 47H ;记录按键按键位置 SYMBLE EQU 48H ;操作符存储 DDE0 EQU 49H DDE1 EQU 50H DDE2 EQU 51H ;用于延时 FLEL4 EQU 52H FLEL5 EQU 53H FLEL6 EQU 54H BEFOR EQU 55H HH BIT 01H ;比较大 EE BIT 02H ;比较相等 FIL BIT 03H ;溢出标记 FLAG BIT 04H ;有无按键标记 ERR BIT 05H ;错误标记 YESY BIT 06H ; 有无操作符按键标记

NUM BIT 07H ;按键个数标记 YESN BIT 08H ;有无数字按键标记 ORG 0000H LJMP MAIN ORG 0003H LJMP INTERUPT MAIN: MOV IE,#01H ;初始化 MOV SP,#6FH LCALL CLRI SETB IT0 SETB EA DISPLAY: ;数码管显示函数 CJNE R3,#00H,TT1 MOV R3,#0AH TT1: CJNE R3,#0AH,STARTD CJNE R2,#00H,TT2 MOV R2,#0AH TT2: CJNE R2,#0AH,STARTD CJNE R1,#00H,STARTD MOV R1,#0AH STARTD: MOV A,R0 LCALL TRANS ;将所要显示的值转化为数码管对应的数据 MOV P2,A MOV P1,#10H LCALL DELAY10ms MOV A,R1 LCALL TRANS MOV P2,A MOV P1,#20H LCALL DELAY10ms MOV A,R2 LCALL TRANS MOV P2,A MOV P1,#40H LCALL DELAY10ms

基于51单片机的波特率自动识别系统程序

#include #define uint unsigned int #define uchar unsigned char #define disp_off 0x3e //关显示 #define disp_on 0x3f //开显示 #define disp_x 0xb8 //页地址 #define disp_z 0xc0 //行地址 #define disp_y 0x40 //列地址 #define comm 0 //命令标志 #define dat 1 //数据标志 #define data_ora P0 //MCU P0<------> LCM sbit cs1=P2^0; //cs1=L,选择左半屏 sbit cs2=P2^1; //cs2=L,选择右半屏 sbit rs =P2^2; //H:写数据,L:写指令 sbit rw =P2^3; //H:读,L:写 sbit e =P2^4; //读写使能 sbit bf =P0^7; //执行操作标志 sbit res=P0^4; //复位初始化标志 uchar uart_data,temp,baud_set=0x00; uchar dispnum[90]; uchar baud[5]={0x00,0x09,0x06,0x00,0x00}; uchar r_dat[4]={0x00,0x10,0x00,0x00}; uchar code baudrate[7][5]={ {0x00,0x00,0x03,0x00,0x00}, {0x00,0x00,0x06,0x00,0x00}, {0x00,0x01,0x02,0x00,0x00}, {0x00,0x02,0x04,0x00,0x00}, {0x00,0x04,0x08,0x00,0x00}, {0x00,0x09,0x06,0x00,0x00}, {0x01,0x04,0x04,0x00,0x00}, }; //波特率大小 uchar code hz11[]={ /*-- 隶书12; 此字体下对应的点阵为:宽x高=16x16 --*/ /*-- 文字: 发--*/ 0x00,0x00,0x00,0xE0,0xA0,0x80,0x80,0xF0, 0x80,0xA0,0xB0,0x80,0x00,0x00,0x00,0x00, 0x00,0x08,0x08,0x08,0x1C,0x14,0x13,0x1B, 0x0D,0x07,0x0B,0x18,0x18,0x30,0x10,0x00, /*-- 文字: 送--*/

51单片机计算器设计

1引言 当今时代,是一个新技术层出不穷的时代。在电子领域,尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统正以前所未见的速度被单片机智能控制系统所取代。单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。过去习惯于传统电子领域的工程师、技术员正面临着全新的挑战,如不能在较短时间内学会单片机,势必会被时代所遗弃,只有勇敢地面对现实,挑战自我,加强学习,争取在较短的时间内将单片机技术融会贯通,才能跟上时代的步伐。 它所给人带来的方便也是不可否定的,它在一块芯片内集成了计算机的各种功能部件,构成一种单片式的微型计算机。20世纪80年代以来,国际上单片机的发展迅速,其产品之多令人目不暇接,单片机应用不断深入,新技术层出不穷。20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。 本设计是由单片机实现的模拟计算器,它不仅能实现数据的加减乘除运算,而且还能使数据及其计算结果在数码管上显示出来,能够实现0-256的数字四则运算。本设计是用单片机AT89C51来控制,采用共阳极数码显示,软件部分是由C语言来编写的。设计任务利用键盘和数码管设计一个简单的数学计算器,可以完成简单的如加,减,乘,除的四则运算,并将运算结果在数码管上显示出来。 2.方案论证与设计 根据功能和指标要求,本系统选用MCS 51 单片机为主控机。通过扩展必要的外围接口 电路,实现对计算器的设计。具体设计考虑如下: ①由于要设计的是简单的计算器,可以进行四则运算,对数字的大小范围要求不高,故 我们采用可以进行四位数字的运算,选用8 个LED 数码管显示数据和结果。 ②另外键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键和等号键,故只需要16 个按键即可。系统模块图: 2.1 输入模块: 键盘扫描计算器输入数字和其他功能按键要用到很多按键,如果采用独立按键的方式,在这种情况下,编程会很简单,但是会占用大量的I/O 口资源,因此在很多情况下都不采用这种方式。为此,我们引入了矩阵键盘的应用,采用四条I/O

51单片机定时计数器溢出率计算和串口的波特率之间的关系

51单片机定时计数器溢出率计算和串口的波特率之间的关系 作者:wang1jin | 来源:网络| 查看:128 次 51芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用 SCON 寄存器。它的各个位的具体定义如下: SM0 SM1 SM2 REN TB8 RB8 TI RI SM0、SM1为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。串行口工 作模式设置。 SMO SM 檯式功能 0 0 0 同歩移位寄存器 1 1 8 位 UART 1 0 2 9位UART 1 1 3 9 位 UART 波特率在使用串口做通讯时,一个很重要的 参数就是波特率,只有上下位机的波特率一 样时才可以进行正常通讯。 波特率是指串行端口每秒内可以传输的波特位数。 这里所指的波 特率,如标准9600 不是每秒种可以传送 9600个字节,而是指每秒可以传送 9600 个二 进位,而一个字节要 8个二进位,如用串口模式 1来传输那么加上起始位和停止位,每个 数据字节就要占用10个二进位,9600波特率用模式1传输时,每秒传输的字节数是 9600 - 10 = 960 字节。 51芯片的串口工作模式 0的波特率是固定的,为 fosc/12 ,以一个12M 的晶振 来计算,那么它的波特率可以达到 1M 。模式2的波特率是固定在 fosc/64 或fosc/32 , 具体用那一种就取决于 PCON 寄存器中的SMOD 位,如SMOD 为0 ,波特率为 focs/64,SMOD 为 1,波特率为 focs/32 。 模式1和模式3的波特率是可变的,取决于定时器1或2 (52芯片)的溢出速率, 就是说定时器1每溢出一次,串口发送一次数据 。那么我们怎么去计算这两个模式的波特 率设置时相关的寄存器的值呢?可以用以下的公式去计算。 发布:2010-1-05 01:08 | 波特率 £osc/12 可变 fosc/32 或fosc/64 可变

51单片机计算器程序

#include #include #include #include"1602.h" #include"math.h" #define uchar unsigned char #define uint unsigned int uchar KeyV; uchar Y=0; //长度 uchar K=0; //错误标示uchar Z=0; //扫描位uchar S=0; //结束标志uchar A=0; uchar code show1[16]={ '1','2','3','+', //键位显示 '4','5','6','-', '7','8','9','*', '.','0','=','/' }; uchar code key1[16]={ //键位 1,2,3,'+', 4,5,6,'-', 7,8,9,'*', '.',0,'=','/' }; uchar code Key[16]= { 0x77,0x7b,0x7d,0x7e, 0xb7,0xbb,0xbd,0xbe, 0xd7,0xdb,0xdd,0xde, 0xe7,0xeb,0xed,0xee, }; uchar mode[17]; uchar show[16]; uint ch1[16]; /*void T0Server() interrupt 1 { EA=0; } void delay_50ms() { TMOD=0x01;//定时器0 方式1 TL0=0XAF;

TH0=0X3C;//50mS TR0=1;//启动定时 ET0=1;//启动中断 EA=1; } void delay_1s() { uchar h; for(h=0;h<20;h++) {delay_50ms();} }*/ void delay(uchar i) { uchar h,t; t=200; for(h=0;h15)S=1; show[Y]=show1[i]; mode[Y]=key1[i]; Display(0,0,show) ; Y++; break; } } }

51单片机串口通信

一、串口通信原理 串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。串口通信的工作原理请同学们参看教科书。 以下对串口通信中一些需要同学们注意的地方作一点说明: 1、波特率选择 波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。MSC-51串行端口在四种工作模式下有不同的波特率计算方法。其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。 在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1)) 其中,SMOD——寄存器PCON的第7位,称为波特率倍增位; TH1——定时器的重载值。 在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。这要根据系统的运作特点,确定通信的频率范围。然后考虑通信时钟误差。使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。 下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。则TH1=256-62500/波特率 根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。列计数器重载值,通信误差如下表: 因此,在通信中,最好选用波特率为1200,2400,4800中的一个。 2、通信协议的使用 通信协议是通信设备在通信前的约定。单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。 在系统工作过程中,单片机接收到PC机数据信息后,便查找协议,完成相应的操作。当单片机接收到0xA1时,读取P0端口数据,并将读取数据返回PC机;当单片机接收到0xA2时,单片机等待从PC机接收一段控制数据;当PC机接收到0xA3时,就表明单片机操作已经成功。 3、硬件连接 51单片机有一个全双工的串行通讯口,所以单片机和计算机之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如计算机的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和计算机的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。

51单片机的简易计算器要点

华侨大学厦门工学院单片机控制系统课程设计报告 题目:基于51单片机的简易计算器 专业、班级: 学生姓名: 学号: 指导教师: 2014年 5 月20 日

目录 一、设计任务目的 (2) 二、计任务要求 (2) 三、设计方案选取与论证 (2) 四、电路设计 (3) 4.1总体电路图 (3) 4.2 硬件设计 (4) 4.2.1 矩阵按键 (4) 4.2.2 AT89C52主芯片 (4) 4.2.3 LCD显示 (7) 4.3软件设计 (7) 4.3.1 键盘模块 (8) 4.3.2 计算模块 (8) 4.3.3 显示模块 (9) 五.制作及调试过程 (10) 5.1 制作过程 (10) 5.2 软件调试 (10) 5.3 硬件调试 (11) 结论 (12) 致谢 (13) 参考文献 (13)

一、设计任务目的 设计一个计算器,可以进行简易的四则运算。 二、计任务要求 1、能够进行简单的四则运算,包括带负数的运算。用LCD显示数据和结果(6位即可) 2、采用键盘输入方式,键盘包括数字键(0~9)、符号(+、-、×、÷)、清除键(c)和等号键(=),故只需要16 个按键即可。 3、在执行过程中,开机显示零,等待键入数值,当键入数字,通过LCD显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数值,按等号就会在LCD上输出运算结果。 4、错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LCD 上提示OV;当除数为0时,计算器会在LCD上提示ERR。 三、设计方案选取与论证 1、单片机部分 单片机以AT89C51来做为核心元器件。 2、按键部分 设计思路:采用4*4行列式键盘,分别设定数字键和功能键,采用查询方式,每次有键按下时,先判断是实数字键还是功能键。但是这种方式采用了大量的I/O口线。 3、显示部分 在单片机应用系统中,使用的显示器主要有LED(发光二极管显示器)、LCD液晶显示器以及CRT接口。 思路:使用液晶显示器来显示。液晶是介于固态和液态间的有机化合物,将其加热会变成透明液态,冷却后变成结晶的混浊固态。在电的作用下,产生冷热变化,从而影响它的透光性,来达到显示的目的。LCD还具有以下几个优点(1)低压、微功耗(2)显示信息量大(3)长寿命(4)无辐射,无污染。 其系统结框图如下:

51单片机串口通信(相关例程)

51单片机串口通信 1./*打开串口调试程序,将波特率设置为9600,无奇偶校验 晶振11.0592MHz,发送和接收使用的格式相同,如都使用 字符型格式,在发送框输入hello,I Love MCU ,在接 收框中同样可以看到相同字符,说明设置和通信正确*/ #include /*主程序*/ void main (void) { SCON = 0x50; /* SCON: 模式1, 8-bit UART, 使能接收*/ TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload*/ TH1 = 0xFD; /* TH1: reload value for 9600 baud @ 11.0592MHz */ TR1 = 1; /* TR1: timer 1 run */ EA = 1; /*打开总中断*/ ES = 1; /*打开串口中断*/ while (1) /*主循环不做任何动作*/ { } } void UART_SER (void) interrupt 4 //串行中断服务程序 { unsigned char Temp; //定义临时变量 if(RI) //判断是接收中断产生 { RI=0; //标志位清零 Temp=SBUF; //读入缓冲区的值 P1=Temp; //把值输出到P1口,用于观察 SBUF=Temp; //把接收到的值再发回电脑端 } if(TI) //如果是发送标志位,清零 TI=0; } 2.51单片机与电脑串口通信的C程序,最好是中断方式的 #include #include unsigned char ch; bit read_flag= 0 ; void init_serialcom( void ) //串口通信初始设定 { SCON = 0x50 ; //UART为模式1,8位数据, 允许接收 TMOD |= 0x20 ; //定时器1为模式2,8位自动重装 PCON |= 0x80 ; //SMOD=1; TH1 = 0xFD ; //Baud:19200 fosc="11".0592MHz IE |= 0x90 ; //Enable Serial Interrupt TR1 = 1 ; // timer 1 run

相关文档
最新文档