A SUPPORT VECTOR DATA DESCRIPTION APPROACH FOR BACKGROUND MODELING IN VIDEOS

A SUPPORT VECTOR DATA DESCRIPTION APPROACH FOR BACKGROUND MODELING IN VIDEOS
A SUPPORT VECTOR DATA DESCRIPTION APPROACH FOR BACKGROUND MODELING IN VIDEOS

International Journal on Arti?cial Intelligence Tools

Vol.17,No.4(2008)635–658

c Worl

d Scienti?c Publishing Company

A SUPPORT VECTOR DATA DESCRIPTION APPROACH FOR

BACKGROUND MODELING IN VIDEOS WITH

QUASI-STATIONARY BACKGROUNDS

ALIREZA TAVAKKOLI

Department of Computer Science and Engineering,

University of Nevada,Reno,Reno,Nevada89557USA

tavakkol@https://www.360docs.net/doc/8511449110.html,

MIRCEA NICOLESCU

Department of Computer Science and Engineering,

University of Nevada,Reno,Reno,Nevada89557USA

mircea@https://www.360docs.net/doc/8511449110.html,

GEORGE BEBIS

Department of Computer Science and Engineering,

University of Nevada,Reno,Reno,Nevada89557USA

bebis@https://www.360docs.net/doc/8511449110.html,

MONICA NICOLESCU

Department of Computer Science and Engineering,

University of Nevada,Reno,Reno,Nevada89557USA

monica@https://www.360docs.net/doc/8511449110.html,

Received12January2007

Accepted11December2007

Video segmentation is one of the most important tasks in high-level video processing applications.Stationary cameras are usually used in applications such as video surveil-lance and human activity recognition.However,possible changes in the background of the video such as waving?ags,?uctuating monitors,water surfaces,etc.make the detec-tion of objects of interest particularly challenging.These types of backgrounds are called quasi-stationary backgrounds.In this paper we propose a novel,non-statistical technique to generate a background model and use this model for background subtraction and fore-ground region detection in the presence of such challenges.The main advantage of the proposed method over the state of the art is that unlike statistical techniques the accu-racy of foreground regions is not limited to the estimate of the probability density.Also, the memory requirements of our method are independent of the number of training sam-ples.This makes the proposed method useful in various scenarios including the presence of slow changes in the background.A comprehensive study is presented on the e?ciency of the proposed method.Its performance is compared with various existing techniques quantitatively and qualitatively to show its superiority in various applications.

Keywords:Background modeling;background subtraction;quasi-stationary back-grounds;support vector data description;support vectors.

635

636 A.Tavakkoli et.al.

(a)(b)(c)

Fig. 1.Examples of challenges in quasi-stationary backgrounds:(a)Fluctuating monitors.

(b)Rain/Snow.(c)Waving tree branches.

1.Introduction

Detecting foreground regions in videos is one of the most important tasks in high-level video processing applications.One of the major issues in detecting foreground regions using background subtraction techniques is that because of inherent changes in the background,such as?uctuations in monitors and?uorescent lights,waving ?ags and trees,water surfaces,etc.the background may not be completely station-ary.These di?cult situations are illustrated in Fig.1.

In the presence of these types of backgrounds,referred to as quasi-stationary,a single background frame is not enough to accurately detect moving regions.There-fore the background of the video has to be modeled in order to detect foreground regions which are newly introduced objects to the scene,while allowing for quasi-stationary backgrounds.

There is also a great amount of diversity in scenarios where the background modeling techniques are used to detect foreground regions.Applications vary from indoor scenes to outdoor,from completely stationary to dynamic backgrounds,from high quality videos to low contrast scenes and so on.Therefore,a single system that addresses all possible situations while being time and memory e?cient is yet to be devised.

Pless et al.28evaluated di?erent models for dynamicbac kgrounds.Typic ally, background models are de?ned independently on each pixel,and depending on the complexity of the problem employ the expected pixel features(i.e.colors)7,31or consistent motion.27,49They also may employ pixel-wise information48or regional models of the features.46,10,20To improve robustness to noise,spatial24or spatio-temporal19features may be used.

In Ref.48a single3-D Gaussian model for each pixel in the scene is built,where the mean and covariance of the model are learned in each frame.This system tried to model the noise and used a background subtraction technique to detect those pixels whose probabilities are smaller than a threshold.However,the system fails to label a pixel as foreground or background when it has more than one modal-ity due to?uctuations in its values,such as a pixel belonging to a?uctuating monitor.

A Support Vector Data Description Approach on Background Modeling637

Kalman Filtering16,13,14is also used to update the model,while linear prediction using Wiener?ltering is presented in Ref.46.These background models were unable to represent multi-modal situations.

A mixture of Gaussians modeling technique was proposed in Refs.35,34and8 to address the multi-modality of the underlying background.In this modeling technique background pixels are modeled by a mixture of a number of Gaussian functions.During the training stage,parameters of each Gaussian and their weights are trained and used in the background subtraction,where the probability of each pixel is generated using the mixture of Gaussians.The pixel is labeled as foreground or background based on its probability.

There are several shortcomings for mixture learning methods.First,the number of Gaussians needs to be speci?ed.Second,this method does not explicitly handle spatial dependencies.Even with the use of incremental-EM,the parameter estima-tion and its convergence is noticeably slow where the Gaussians adapt to a new cluster.The convergence speed can be improved by sacri?cing memory as proposed in Refs.21and22,limiting its applications where mixture modeling is pixel-based and over long temporal windows.

A recursive?lter formulation is proposed by Lee in Ref.18to speed up the convergence.However,the problem of specifying the number of Gaussians as well as the adaptation in later stages still exists.Moreover,this model does not account for situations where the number of Gaussians changes due to occlusion or uncovered parts of the background.

In Ref.7,El Gammal et al.proposed a non-parametrickernel density estimation method(KDE)for pixel-wise background modeling without making any assumption on its probability distribution.Therefore,this method can easily deal with multi-modality in background pixel distributions without specifying the number of modes in the background.However,there are several issues to be addressed using non-parametrickernel density estimation.

These methods are memory and time consuming since the system has to com-pute the average of all kernels centered at each training sample for each pixel in each frame.Also the size of temporal window used as the background model needs to be speci?ed.Too small a window increases speed,while it does not incorporate enough history for the pixel,resulting in a less accurate model.Another issue is that the adaptation will be problematicby using small window sizes.Inc reasing the window size improves the model accuracy but at the cost of higher memory requirements and slower convergence.Finally,the non-parametric KDE methods are pixel-wise techniques and do not use spatial correlation of pixel features.In order to adapt the model a sliding window is used in Ref.23.However the model convergence is problematic in situations where the illumination suddenly changes.

In order to update the background for scene changes such as moved objects, parked vehicles or opened/closed doors,Kim et al.in Ref.15proposed a layered modeling technique.This technique needs an additional model called cache and

638 A.Tavakkoli et.al.

assumes that the background modeling is performed over a long period of time.It should also be used as a post-processing stage after the background is modeled.

Another approach to model variations in the background is to represent these changes as di?erent states,corresponding to di?erent environments,such as lights on/o?,night/day,sunny/cloudy.For this purpose Hidden Markov Models(HMM) have been used in Refs.29and36.However,these techniques su?er from slow model training speed and are sensitive to model selection and initialization.

Recently,we investigated two statistical methods for background modeling, based on adaptive kernel density estimation(AKDE),39and recursive modeling (RM).41

The theory behind the AKDE algorithm is to estimate the probability of each pixel being background based on a number of samples in its history.One advantage of the AKDE method over existing density estimation techniques is that in the proposed algorithm,instead of a single threshold for all pixels in the scene,for each pixel a di?erent threshold is used.By employing these localized thresholds the system works e?ciently on di?erent video scenes and is more robust to local changes in the same scene.Also the AKDE method exploits dependency between pixel color components.This results in a more accurate background model.

The RM method is a recursive counterpart for the AKDE technique which uses pixel intensity/color values in new frames to update the background model at that pixel location.Since the update process is performed continuously,the background model converges to the actual one as more frames are processed.This gives the RM method the ability to detect foreground regions in situations where the background changes are very slow and do not?t in a small number of training frames.Also in videos without a set of empty background frames the RM technique has the ability to generate a clear background model.The proposed RM method uses a schedule for learning,which makes the background model converge to the actual one and recover from the expired model faster.

There is a major drawback in all of the statistical modeling methods including the AKDE and the RM techniques.The accuracy of these methods is limited to the accuracy of the estimated probability density function for the background pixels. In this paper we present a non-statistical method that addresses this di?culty.

Furthermore,there is an additional issue with all statistical foreground detection techniques including the AKDE and the RM methods.In all statistical methods the assumption is that there are two classes,namely foreground and background, and the model is trained on background samples which are present during a short period of time(the AKDE)or from the beginning of the video(the RM).Note that until a foreground object appears in the scene,there is no information about the foreground class.This problem is addressed by using thresholds in the classi?cation stage to label pixels as foreground/background.

The contribution of this paper is in its ability to explicitly address the above issues,dependence to probability estimation and the single-class classi?cation prob-lem.We propose a non-statistical background modeling technique based on support

A Support Vector Data Description Approach on Background Modeling639 vector data description modeling(SVDDM).The SVDDM uses support vectors to generate a description for the known data;i.e.the background.These support vec-tors along with the classi?er information for each pixel are stored and used in the classi?cation stage to label pixels in new frames as foreground/background.The performance of this system is studied and its experimental results on both syn-thetic data and real video sequences are compared with other existing techniques in the literature.

The rest of this paper is organized as follows.In Section2the theory behind the support vector data description is presented.Section3gives a detailed algorithm of the support vector data description method in detecting foreground regions in video sequences.The performance of the proposed method is evaluated in Section4. Section5presents a comparison between the performance of the proposed method and other existing techniques on real videos as well as synthetic data and a com-parison summary is drawn in Section6.Finally,Section7concludes the proposed method and gives future direction of research.

2.Support Vector Data Description Modeling(SVDDM)

In this section a novel technique in describing one class of known data samples, called Support Vector Data Description Modeling,40is presented.The backbone of the proposed method is a theory based on describing a data set using their support vectors.44,42In the following we present the SVDDM theory and the algorithm which detects foreground regions using this theory in detail.

A normal data description is a description which gives a closed boundary around the data.A simple normal data description can be considered as a sphere with center a and radius R>0,which encloses all of the training samples x i.The data description is achieved by minimizing the error function:

F(R,a)=R2(1) subject to the constraints:

x i?a 2≤R2,?i.(2) In order to allow for outliers in the training data set,the distance of each training sample x i to the center of the sphere a should not be strictly smaller than R2.However,large distances should be penalized.Therefore,after introducing slack variables i≥0the minimization problem becomes:

F(R,a)=R2+C

i(3)

i

subject to the new constraints:

x i?a 2≤R2+ i,?i(4) where C controls the trade-o?between the sphere volume and the description error.

640 A.Tavakkoli et.al.

In order to solve the minimization problem in equation(3),the constraints of equation(4)are introduced to the error function using Lagrange multipliers:

L(R,a,αi,γi, i)=R2+C

i i?

i

αi[R2+ i?( x i?a 2)]?

i

γi i(5)

whereαi≥0andγi≥0are lagrange multipliers.Optimization is achieved by minimizing L.

?L ?R =0:

i

αi=1,(6)

?L ?a =0:a=

i

αi x i

i

αi

=

i

αi x i,(7)

?L

?γi

=0:C?αi?γi=0.(8) From the above equations and the fact that the Lagrange multipliers are not all negative,when we add the condition0≤αi≤C,Lagrange multipliersγi can be safely removed.By replacing results of(6)-(8)into(5)we have:

L=

i αi(x i·x i)?

i,j

αiαj(x i·x j)?αi:0≤αi≤C.(9)

A set ofαi values can be achieved using equation(9).If a sample x i satis?es the inequality in equation(4)its corresponding Lagrange multiplier will be zero (αi=0).For all the training samples for which the equality in Eq.(4)is satis?ed the Lagrange multipliers become greater than zero(αi>0).These are the possible scenarios for a given sample y i:

|y i?a|2

|y i?a|2=R2?0<αi0,(11) |y i?a|2>R2?αi=C,γi=0.(12) Note that from equation(7),the center of the sphere is a linear combination of the training samples.Only those training samples x i which satisfy(4)by equality are needed to generate the description since their coe?cients are not zero.Therefore these samples are called Support Vectors.

The above theory describes the normal data description which is the smallest sphere surrounding the training data.However,this simple,normal description is not enough for more complex data which dose not?t into a sphere,i.e.the description needs more complex boundaries.

Here we describe the extension of the normal data description in order to allow more general boundaries.To achieve a more?exible description,instead of a simple dot product of the training samples(x i·x j),we can perform the dot product using a kernel function:

K(x i,x j)=Φ(x i)·Φ(x j).(13)

A Support Vector Data Description Approach on Background Modeling 641

Fig.2.General vs.simple data descriptions,using the kernel function to extend the description to higher dimensions.

This is done by using a mapping function Φwhich maps the data into another (higher dimensional)space.By performing this mapping any complicated boundary (description of data)in low dimension can be modeled by a hyper-sphere in a higher dimension.Several kernel functions have been proposed in the literature,47among which the Gaussian kernel gives a closed data description:K (x i ,x j )=exp ? x i ?x j 2σ2

.(14)This can be seen from Figure 2,where the blue dots are the samples,the red dashed line is the simple description and the green dotted line is the extended (general)description obtained by mapping the data into the kernel space using equation (14).

According to the above theory the proposed SVDDM method generates a sup-port vector data description for each pixel in the scene using its history.These descriptions are then used to classify each pixel in new frames as a background or a novel/foreground pixel.In the following section the actual implementation of the system is presented.

3.The Algorithm

The methodology described in section 2is used in our technique to build a de-scriptive boundary for each pixel in the background training frames in order to generate its model for the background.These boundaries are then used to classify

642 A.Tavakkoli et.al.

1.Initialization;C:Confidence,N:Number of training frames,σ:bandwidth

For each pixel x ij

1.1.Training stage

SVD(i,j)←Train(x ij[1:N]) 2.For each frame at time t

For each pixel x ij

2.1.Classi?cation stage

DV(i,j)←Test(x ij[Current Frame],SVD(i,j))

Label pixel based on DV(i,j).

2.2.Update stage

if!(t mod10)

SVD(i,j)←Train(x ij[t?N:t])

Fig.3.The SVDDM algorithm.

their corresponding pixels in new frames as background and novel(foreground) pixels.There are several advantages in using the Support Vector Data Description (SVDD)method in detecting foreground regions:

?The proposed method,as opposed to existing statistical modeling methods, explicitly addresses the single-class classi?cation problem.Existing statistical approaches try to estimate the probability of a pixel being background,and then use a threshold for the probability to classify it into background or foreground regions.The disadvantage of these approaches is in the fact that it is impossible to have an estimate of the foreground probabilities,since there are no foreground samples in the training frames.

?The proposed method has lower memory requirements compared to non-parametricdensity estimation tec hniques,where all the training samples for the background need to be stored in order to estimate the probability of each pixel in new frames.The proposed technique only requires a very small portion of the training samples,the support vectors,to classify new pixels.

?The accuracy of our method is not limited to the accuracy of the estimated probability density functions for each pixel.Also the fact that there is no need to assume any parametricform for the underlying probability density of pixels gives the proposed method superiority over the parametricdensity estimation techniques,i.e.mixture of Gaussians.

?The e?ciency of our method can be explicitly measured in terms of false reject rates.The proposed method considers a goal for false positive rates,and generates the description of data by?xing the false positive tolerance of the system.This helps in building a robust and accurate background model.

Figure3shows the proposed algorithm in pseudo-code format.a The only critical parameter is the number of training frames(N)that needs to be initialized.The support vector data description con?dence parameter C is the target false reject rate of the system,which accounts for the system tolerance.Finally the Gaussian a The proposed method is implemented in MATLAB6.5,using Data Description toolbox.45

A Support Vector Data Description Approach on Background Modeling643 kernel bandwidth,σdoes not have a particular e?ect on the detection rate as long as it is not set to be less than one,since features used in our method are normalized pixel chrominance values.For all of our experiments we set C=0.1andσ=5. The optimal value for these parameters can be estimated by a cross-validation stage.

3.1.Training stage

In order to generate the background model for each pixel the SVDDM method uses a number of training frames.The background model in this technique is the description of the data samples(color and or intensity of pixels).The background training bu?er is a First In First Out(FIFO)bu?er with Round Robin replacement policy.Since the bu?er uses Round Robin replacement policy,once the bu?er is full the new frames replace the oldest ones in the bu?er.

The data description is generated in the training stage of the algorithm.In this stage for each pixel a SVDD classi?er is trained using the training frames,detecting support vectors and the values of Lagrange multipliers that maximize equation(9).

The support vectors and their corresponding Lagrange multipliers are stored as the classi?er information for each pixel.This information is used for the clas-si?cation step of the algorithm.The training stage can be performed o?-line in cases where there are no global changes in the illumination or can be performed in parallel to the classi?cation to achieve e?cient foreground detection.

In the current implementation the training stage is computationally extensive since a quadratic programming optimization is performed to compute Lagrange multipliers.However,an on-line training scheme is under investigation to train the system based on the trained values from previous frames.

3.2.Classi?cation stage

In this stage,for each frame its pixels are evaluated by their corresponding classi?er to label them as background or foreground.To test each pixel z t the distance to the center of the description hyper-sphere is calculated:

z t?a 2=(z t·z t)?2

i αi(z t·x i)+

i,j

αiαj(x i·x j).(15)

A pixel is classi?ed as a background pixel if its distance to the center of the hyper-sphere is smaller or equal to R2:

z t?a 2≤R2.(16) R2is the distance from the center of the hyper-sphere to its boundary which is also equivalent to the distance of each support vector to the center of the hyper-sphere.All support vectors which fall outside the boundary are disregarded:

R2=(x k·x k)?2

i αi(x i·x k)+

i,j

αiαj(x i·x j).(17)

644 A.Tavakkoli et.al.

Note that in the implementation of the algorithm,since the boundaries of the data description are more complicated than a hyper-sphere,a kernel is used to map the training samples into a higher dimension according to equations(13)and(14). As the result the mapped samples in the higher dimension can be described by a high dimensional hyper-sphere and the above discussion can be used.

3.3.Update stage

In order to update the classi?ers for each pixel to adapt the system to changes in the illumination a similar approach to AKDE39is devised for the SVDDM method. We assume that the scene illumination may undergo gradual changes all the time. To adapt the system to gradual changes,every16seconds(corresponding to480 frames of the video)each pixel in the scene undergoes a re-training process.

This retraining process is performed in a similar fashion to the original training, but using as samples only the current support vectors and the current pixel value. To make the system adaptive to gradual changes in illumination,we replace pixels in the oldest background frame with those pixels belonging to the current background mask.

In order to detect sudden global changes in the illumination,the area of the detected foreground objects is checked.If the foreground mask area is greater than 50%of the frame size a sudden global change is detected.Upon the detection of sudden global illumination change the classi?cation stage of the algorithm is suspended and new frames replace all those in the background training bu?er.

However,because of the high computational cost of the training stage,this adaptation process is not performed at each frame.

In the current implementation the time needed for retraining is about0.8sec-onds for the whole frame.Before the results of retraining are ready the system uses the previous support vector description to detect foreground regions.When the retraining is completed its results are used in the detection stage.The detection stage is very fast since it only uses a few support vectors compared to the number of initial training sample points.The classi?cation stage detects foreground regions at a rate of10frames per second.

Currently an online training scheme is under investigation to improve the re-training speed of the system and make it suitable for real-time applications.In the current implementation,the retraining process is performed in parallel to the clas-si?cation stage and as soon as the new classi?er is trained for each pixel it is used instead of the older classi?er.

4.Performance Evaluation

In this section the SVDDM performance is evaluated in terms of memory require-ments and computation cost.The key to evaluate the performance of this technique is to analyze the optimization problem solved by the system to?nd support vectors. This issue is discussed in detail in the following.

A Support Vector Data Description Approach on Background Modeling645

Table1.Per-pixel memory requirements for the SVDDM method.

Memory Req.Intensity Chrominance Both Asymp.

Bytes/pixel[5×f(C,σ)]≥10[8×f(C,σ)]≥24[f(C,σ)]≥32O(1)

No.of SVs f(C,σ)≥2f(C,σ)≥3f(C,σ)≥4O(1)

f is a function of the description target accuracy.

?Parameters.As described earlier in this chapter the support vector data de-scription(SVDD)is an elegant technique to describe one class of data samples without any information about data belonging to other(novel)classes.In order to generate the data description,a hyper-sphere of minimum size which contains most of the training samples is constructed,which represents the boundary of the known class.There are parameters involved with the construction of the class boundary(i.e.hyper-sphere),namely,the number of training samples N and trade o?factor C in equation(3)and the bandwidth of the Gaussian kernel σin(14).As mentioned in section3for all experiments the values for C and σare0.1and5,respectively.This leaves the system with only the number of frames as a scene-dependent parameter.

?Memory requirements.It is not easy to answer how many data samples are required to?nd a su?ciently accurate description of a target class boundary.It not only depends on the complexity of the data itself but also on the distribution of the outlier(unknown)class.However,there is a trade-o?between the number of support vectors to describe the data set and the driven description accuracy. In that sense a lower limit can be found for the number of samples that can describe the data which corresponds to the rigid hyper-sphere containing most of the data samples with the target error goal.

In theory only d+1support vectors in d dimensions are su?cient to con-struct a hyper-sphere and their corresponding Lagrange multipliers(αi)sum to 1.The center of the sphere lies within the convex hull of these support vectors. This translates to the function f in Table1.The minimum number of support vectors needed is a function of the accuracy of description that we require.The least accurate description which is a hyper-sphere requires only d+1support vectors.To preserve more accuracy one needs to retain more support vectors which results in more memory requirements and less generalization.So there is a trade o?between memory requirements of the system and its generalization and accuracy.

—Using only intensity values.Since by using intensity for each pixel there is only one feature value the support vectors are1-D and therefore the mini-mum number of support vectors required to describe the data will be2.For each pixel2bytes are required to store the intensity and8bytes to store the Lagrange multipliers,resulting in at least10bytes per pixel memory requirements.

646 A.Tavakkoli et.al.

Table2.Per-pixel memory requirements for the AKDE,the RM and the SVDDM.

Memory Req.Intensity Chrominance Both Asymptotic

The AKDE39N+88N+209N+40O(N)

The RM38102420483072O(1)

The SVDDM[f(C,σ)×5]≥10[f(C,σ)×8]≥24f(C,σ)≥32O(1)—Using chrominance values.By using red and green chrominance values,c r and c g,a minimum of3support vectors need to be used.This results in at least24bytes per pixel memory requirements.

The above argument is about the lower limit of the number of support vectors. Obviously in practical applications this lower limit is far from being useful for implementation.The only fact that can be used from the above discussion is that the number of support vectors required to su?ciently describe a data set is related to the target accuracy of the description.Therefore,the memory requirements of the SVDDM method are independent of the number of training frames.

Table1shows memory requirements in bytes per pixel for the SVDDM method using intensity,chrominance values and their combinations respectively. In conclusion the asymptotic memory requirements of the SVDDM algorithm are constant O(1)since they are independent of the number of training frames.?Computation cost.Training the SVDDM system for each pixel needs to max-imize(9)which is a quadratic programming(QP)optimization problem.The most common technique to solve the above QP is Platt’s algorithm(sequential minimal optimization),26,25which runs in polynomial time.

5.Experimental Results and Comparison

In this section we evaluate the performance of proposed technique using several real video sequences that pose signi?cant challenges.The performance is also compared to the mixture of Gaussians method,35the spatio-temporal modeling presented in Ref.19,the RM in Ref.38,the AKDE method in Ref.39and the simple KDE method.7We use di?erent scenarios to test the performance of the proposed tech-niques and discuss where each method appears to be particularly suitable.

In some experiments the results of the proposed method are compared with re-sults of the AKDE method39and/or the RM method.38,41As mentioned in Refs.38–41,these methods outperform other existing algorithms.

In the real video experiments conducted below,N=300frames are used in the background training stage unless otherwise stated,corresponding to10seconds of the videos sequence.The background training bu?er is a First In First Out(FIFO) bu?er with Round Robin replacement policy.

From Table2we notice that the memory requirements of the AKDE technique presented in Ref.39and the SVDDM are lower than those of the RM method38if the number of training frames is small enough.That is,for situations when a small

A Support Vector Data Description Approach on Background Modeling647

(a)(b)(c)(d)

Fig.4.Rapidly?uctuating background:(a)Handshake video sequence.Detected foreground regions using(b)AKDE;(c)RM;(d)SVDDM.

number of frames can cover most changes that occur in the background,by using a sliding window of limited size the AKDE method needs less memory than the RM technique.Note that SVDDM needs even less memory than the AKDE and like the RM its memory requirements are independent of the number of training samples.

5.1.Rapidly?uctuating backgrounds

As described above,for videos with rapidly changing backgrounds,the AKDE method has a better performance in terms of memory requirements and speed. Our experiments showed that for videos where possible?uctuations in the back-ground occur in about10seconds,the AKDE technique needs less memory and works faster compared to the RM and SVDDM methods.

Figure4shows the detection results of the AKDE,RM and the SVDDM algorithms on the Handshake video sequence where the pixel values correspond-ing to monitors?uctuate rapidly.As it can be seen from this?gure,capturing dependencies between chrominance features results in more accurate foreground regions(Fig.4(b)),showing that AKDE performs better than both the RM and the SVDDM.Note that in this particular frame the color of foreground objects is very close to the background in some regions.The SVDDM technique results in very smooth and reliable foreground regions because this technique uses the con?dence factor C to eliminate false positives in the classi?cation.This may lead to missing some parts of the foreground which are very close in color to the background.Also notice that in all methods?uctuations in monitors are completely modeled as a part of background and not detected as foreground regions.

5.2.Low contrast videos

To evaluate the accuracy of the SVDDM technique in low contrast video sequences and compare its results with those of the AKDE technique the experiment is per-formed again on the Handshake video sequence but we intentionally decreased the quality of the images by down-sampling them by a factor of4.Figure5shows a frame where the background and foreground colors are reasonably di?erent.The accuracy of the foreground region detected using the SVDDM technique is clearly better than that of the AKDE method.The reason is that the SVDDM method

648 A.Tavakkoli et.al.

(a)(b)(c)

Fig.5.Low contrast videos:(a)Handshake video sequence.Detected foreground regions using (b)AKDE;(c)SVDDM.

?xes the false reject rate of the classi?er and generates a discrimination boundary independent of the estimated probability density function of the single known class;

i.e.,the background class.On the other hand,the AKDE method attempts to use a statistical binary classi?cation for a single-class classi?er introducing statistical Bayes error to the model.

5.3.Slowly changing backgrounds

For videos with slowly changing backgrounds or backgrounds whose changes are not periodic,the AKDE method needs more training frames to generate a good model for the background.This increases the system memory requirements and drastically decreases its training and foreground detection speed.In this example in order to get a reasonably accurate foreground,a large number of frames is required.Since asymptotictraining time,detec tion time and memory requirements of the AKD E are O(N),it is not an e?cient method for this scenario.In order to achieve an e?cient foreground detection in the AKDE we used N=300frames as background training frames.

In these situations the SVDDM technique is a very good alternative,since its detection speed and memory requirements are independent of the number of train-ing frames.Note that in order to cover the possible changes in slowly changing backgrounds,both SVDDM and AKDE require a large number of training frames. However,in SVDD once the background model is trained the system only retains support vectors.As discussed earlier in section4the number of support vectors needed to detect foreground regions is asymptotically constant and independent of the number of training frames.The proposed retraining scheme makes the SVDDM adaptation more e?cient.As seen in Fig.6the SVDDM results are better than the AKDE.

Figure6(a)shows an arbitrary frame of the Water video sequence.In this?g-ure the detection results of the AKDE and the SVDDM methods are presented. This example is particularly di?cult because waves do not follow a regular mo-tion pattern and their motion is slow.As it can be seen from Fig.6(b),using the AKDE method without any post-processing results in many false positives where

A Support Vector Data Description Approach on Background Modeling649

(a)(b)(c)

Fig.6.Slowly changing background:(a)Water video sequence.Detected foreground region using (b)AKDE;(c)SDDM.

the SVDDM(Fig.6(b))learns the background more accurately using more training frames.

From this?gure we can conclude that the SVDDM method has a better perfor-mance compared to the AKDE in situations where the background has a slow and irregular motion.Also in the AKDE there is a sliding window of limited size which may not cover all changes in the background resulting in an inaccurate probability density estimation but the model built in the SVDDM uses the decision bound-aries of the single training class instead of bounding the training accuracy to the accuracy of the probability estimation.

5.4.Other di?cult examples

Figure7shows three more video sequences with challenging backgrounds.In column (a)the original frames are shown,while column(b)and(c)show the results of the AKDE and the SVDDM methods,respectively.In this?gure,from top row to the bottom,heavy rain,waving tree branches and the water fountain pose signi?cant di?culties in detecting accurate foreground regions.

5.5.Quantitative evaluation

Performance of our proposed method is evaluated quantitatively on randomly se-lected samples from di?erent video sequences,taken from Ref.19.Figure8shows the ground truth masks for some challenging video sequences.

To evaluate the performance of each method we use the similarity measure between two regions A(detected foreground regions)and B(ground truth),de?ned by:

S(A,B)=A∩B

A∪B.(18)

This measure increases monotonically with the similarity between detected masks and the ground truth,ranging between0and1.By using this measure we report the performance of the SVDDM method,the AKDE,39the spatio-temporal technique presented in Ref.19and the mixture of Gaussians(MoG)in Ref.35.

650 A.Tavakkoli et.al.

(a)(b)(c)

Fig.7.Other di?cult examples:(a)Original frame.Detected foreground region using(b)AKDE;

(c)SVDDM.

(a)(b)

(c)(d)

Fig.8.Ground truth masks for some challenging video sequences:(a)Meeting Room.(b)Water Surface.(c)Fountain.(d)Side Walk.

A Support Vector Data Description Approach on Background Modeling

651

Table 3.Quantitative evaluation and comparison.The sequences are Meeting

Room,Lobby,Campus,Side Walk,Water and Fountain ,from left to right.Video Method MR LB CAM SW W AT FT Avg.S (A ,B )SVDDM

0.840.780.700.650.870.800.77AKDE 39

0.740.660.550.520.840.510.64Spatio-Temp 19

0.910.710.690.570.850.670.74MoG 350.440.420.480.360.54

0.660.49??????

Table 4.

Computation time.Videos

Init.Train Retraining ?Segmentation ?Avg.Time ?Speed ??Handshake

240.80.08527912Fountain 25.60.850.132611?:Mean time for 1frame,every 480frames (sec)?:Mean time for 1frame,every frame (sec)?:Mean process time over 3000frames (sec)??:Speed (fps)

By comparing the average of the similarity measure over di?erent video sequences in Table 3,we can see that the SVDDM method outperforms other techniques.This also shows that the SVDDM method works consistently well on a wide range of video sequences.Also note that unlike the existing techniques the SVDDM and AKDE methods are automatic,without the need for ?ne-tuning a large number of parameters for each scene.

https://www.360docs.net/doc/8511449110.html,putation time

In this section we discuss the speed of our algorithm on the Handshake and Foun-tain video sequences.The frame size is 120×160and it is in RGB color format.The system is implemented on an Intel Dual Processor Pentium 4with 4.8GHz cpu clock.We used N =300frames for the initial background training process.The retraining is performed every 16seconds.

In the current implementation,the retraining stage is performed on the whole frame in parallel with detection process.Once ready,the results of the retraining process are used in the foreground detection stage.

Table 4shows the computation time of the system.The initial training is per-formed once at the beginning of the process as well as after the detection of a sudden global change.The rest of the adaptation process uses the retraining stage.

5.7.Synthetic data sets

In this section we use a synthetic data set,which represents randomly distributed training samples with an unknown distribution function (banana data set).Figure 9

652 A.Tavakkoli et.al.

(a)

(b)

https://www.360docs.net/doc/8511449110.html,parison between di?erent classi?ers on a synthetic data set:(a)Decision boundaries of di?erent classi?ers after training.(b)Data points(blue dots)outside decision boundaries are false rejects.

shows a comparison between di?erent classi?ers.This experiment is performed on 150training samples using support vector data description(SVDDM),mixture of Gaussians(MoG),kernel density estimation(AKDE)and k-nearest neighbors (KNN).

Parameters of these classi?ers are manually determined to give a good perfor-mance.For all classi?ers the con?dence parameter is set to be0.1.In MoG,we used 3Gaussians.The Gaussian kernel bandwidth in the AKDE classi?er is considered σ=1,for the KNN we used5nearest neighbors,and for the SVDDM classi?er the Gaussian kernel bandwidth is chosen to be5.

Figure9(a)shows the decision boundaries of di?erent classi?ers on150training samples from banana dataset.From Fig.9(b),SVDDM generalizes better than the other three classi?ers and classi?es the test data more accurately.In this?gure the test data is composed of150samples drawn from the same probability distribution function as the training data,which should be classi?ed as the known class.

Here we need to de?ne the False Reject Rate(FRR)and Recall Rate(RR)for a quantitative evaluation.By de?nition,FRR is the percentage of missed targets,and RR is the percentage of correct predictions(True Positive rate).These quantities are given by:

FRR=#Missed targets

#Samples

,RR=

#Correct predictions

#Samples

.(19)

Table5shows a quantitative comparison between di?erent classi?ers.In this table,FRR and RR of classi?ers are compared after training them on150data points drawn from an arbitrary probability function and tested on the same number of samples drawn from the same distribution.As it can be seen from the above example,the FRR for SVDDM is less than that of the other three,while its RR is higher.This proves the superiority of this classi?er in the case of single class classi?cation over the other three techniques.

A Support Vector Data Description Approach on Background Modeling653

https://www.360docs.net/doc/8511449110.html,parison of False Reject Rate and

Recall Rate for di?erent classi?ers.

Method SVDDM MoG AKDE KNN

FRR0.10670.14000.16670.1333

RR0.89330.86000.83330.8667

Table6.Need for manual optimization and number of parameters.

Method SVDDM MoG AKDE KNN RM

No.of parameters14222

Need manual selection No Yes Yes Yes Yes

https://www.360docs.net/doc/8511449110.html,parison of memory requirements for di?erent classi?ers.

Method SVDDM MoG AKDE KNN RM

Memory needs(bytes)1064384482448401024 Table6compares the number of parameters of each classi?er and the need for manually selecting these parameters for a single class classi?cation problem.As it can be seen,the only method that automatically determines data description is the SVDDM technique.In all other classi?cation techniques there is at least one parameter that needs to be manually chosen to give a good performance.Note that this table refers to the parameters of the classi?ers not the technique used for background modeling.In methods such as AKDE and MoG there has been e?orts to learn some of these parameters and make the system automaticin detec ting foreground regions.

Table7shows memory requirements for each classi?er.As it can be seen from the table,SVDDM requires much less memory than the KNN and AKDE methods, since in SVDDM we do not need to store all the training data.Only the MoG and the RM methods need less memory than the SVDDM technique,but in MoG methods we need to manually determine the number of Gaussians to be used which is not practical when we are training one classi?er per pixel in real video sequences.

https://www.360docs.net/doc/8511449110.html,parison Summary

Table8summarizes this study and provides a comparison between di?erent tradi-tional methods for background modeling and our proposed method.The comparison includes the classi?cation type,memory requirements,computation cost and type of parameter selection.

As seen in Table8,the RM method uses a MAP decision criterion where other systems except the SVDDM use a Bayes classi?er.The only method which explicitly deals with the single class classi?cation is the SVDDM technique which?ts the description of data belonging to the background class in its rather simple training

654 A.Tavakkoli et.al.

https://www.360docs.net/doc/8511449110.html,parison between the proposed methods and traditional techniques.

SVDDM AKDE39RM38KDE7Spatio-temp19MoG35Wall?ower46 Automated Yes Yes Yes No No No No Post proc.No No No No Yes No No Classi?er SVD Bayes MAP Bayes Bayes Bayes K-means Memory req.?O(1)O(N)O(1)O(N)O(N)O(1)O(N)

Comp.cost?O(N)O(N)O(1)O(N)O(N)O(1)O(N)?:Per-pixel N:number of training frames

Table9.Scenarios where each method appears to be particularly suitable.

SVDDM AKDE39RM38KDE7Spat-tmp19MoG35Wall?ower46 Low contrast S S NS S NS NS NS Close Bg/Fg color NS S NS NS NS NS NS Slow changing Bg S NS S NS S S S

Fast changing Bg S S S S S NS S Sudden changes S NS S NS S S NS Non-empty Bg NS NS S NS S S S Hand-held NS NS S NS NS NS NS

S:Suitable NS:Not suitable

stage.Other methods shown in the table use a binary classi?cation scheme and use heuristics(Refs.7,35and46)or a more complex training scheme(Refs.39and38) to make it useful for the single-class classi?cation problem of background modeling.

Table9shows di?erent scenarios and illustrates where each method appears to be particularly suitable for foreground region detection.As expected the SVDDM method is suitable for a wide range of applications.In case of low contrast videos the SVDDM works reasonably well in detecting foreground regions.This is due to the fact that this technique aims to build and accurate background model from a ?nite number of background training frames.However the accuracy of the back-ground model is limited to the false reject rate of the classi?er in the SVDDM technique.This makes the SVDDM method unable to detect foreground regions in those locations where the background color is very close to the foreground color but being more robust to noise.The AKDE is more sensitive to noise compared to the SVDDM but on the other hand works better in these situations.

As discussed earlier and also seen from Table9,the only method suitable for scenarios where there is a steady and very slow motion in the background;such as the hand-held camera scenario,is the RM technique.The other methods fail to build a very long term model for the background model because of the fact that their cost grows linearly by the number of training background frames,as it can be seen from Table8.Also in scenarios where there is no empty set of background,called non-empty backgrounds,only RM method is suitable and works independently without any need to perform post processing steps.

ps中各个工具的作用

Ps中各个工具的作用 1、移动工具,可以对PHOTOSHOP里的图层进行移动图层。 2、矩形选择工具,可以对图像选一个矩形的选择范围,一般对规则的选择用多。 3、单列选择工具,可以对图像在垂直方向选择一列像素,一般对比较细微的选择用。 4、裁切工具,可以对图像进行剪裁,前裁选择后一般出现八个节点框,用户用鼠标对着节点进行缩放,用鼠标对着框外可以对选择框进行旋转,用鼠标对着选择框双击或打回车键即可以结束裁切。 5、套索工具,可任意按住鼠标不放并拖动进行选择一个不规则的选择范围,一般对于一些马虎的选择可用。 6、多边形套索工具,可用鼠标在图像上某点定一点,然后进行多线选中要选择的范围,没有圆弧的图像勾边可以用这个工具,但不能勾出弧度。 7、磁性套索工具,这个工具似乎有磁力一样,不须按鼠标左键而直接移动鼠标,在工具头处会出现自动跟踪的线,这条线总是走向颜色与颜色边界处,边界越明显磁力越强,将首尾连接后可完成选择,一般用于颜色与颜色差别比较大的图像选择。 8、魔棒工具,用鼠标对图像中某颜色单击一下对图像颜色进行选择,选择的颜色范围要求是相同的颜色,其相同程度可对魔棒工具双击,在屏幕右上角上容差值处调整容差度,数值越大,表示魔棒所选择的颜色差别大,反之,颜色差别小。 9、喷枪工具,主要用来对图像上色,上色的压力可由右上角的选项调整压力,上色的大小可由右边的画笔处选择自已所须的笔头大小,上色的颜色可由右边的色板或颜色处选择所须的颜色。 10、画笔工具,同喷枪工具基本上一样,也是用来对图像进行上色,只不过笔头的蒙边比喷枪稍少一些。 11、铅笔工具,主要是模拟平时画画所用的铅笔一样,选用这工具后,在图像内按住鼠标左键不放并拖动,即可以进行画线,它与喷枪、画笔不同之处是所画出的线条没有蒙边。笔头可以在右边的画笔中选取。 12、图案图章工具,它也是用来复制图像,但与橡皮图章有些不同,它前提要求先用矩形选择一范围,再在"编辑"菜单中点取"定义图案"命令,然后再选合适的笔头,再在图像中进和行复制图案。 13、历史记录画笔工具,主要作用是对图像进行恢复图像最近保存或打开图像的

ps基本工具介绍初学者必看解析

广军影视2015-11-15 初学者必看 工具介绍 1、移动工具:可以对PS里的图层进行移动。 2、 矩形选框工具:可以对图像选择一个矩形的选择范围 单列选框工具:可以在图像或图层中绘制出1个像素高的横线或竖线区域,主要用于修复图像中丢失的像素。 椭圆选框工具:可以对图片选择一个椭圆或正圆的选择范围。【椭圆变正圆:按着shift 画圆为正圆;按shift+alt是从中心点出发往外画正圆】 3、【取消选区:ctrl+d 或菜单栏【选择】--取消选择】 套索工具:可以用来选区不规则形状的图像【在图像适当的位置单机并按住鼠标左键,拖曳鼠标绘制出需要的选区,松开鼠标左键,选区会自动封闭】 有羽化50所以看到的效果为圆选区) 属性栏红框:为选择方式选项【相加、相减、交叉】。 黄框:用于设定边缘的羽化程度。 白框:用于清除选区边缘的锯齿。 多边形套索工具:可以用来选取不规则的多边形图像(属性与套锁工具相同)【没有圆弧的图像沟边可以用这个工具,但不能勾出弧度】 【使用套索工具选区时,按enter键封闭选区。按ESC键取消选区,按delete键,删除上一个单击建立的选区点。】

磁性套索工具:可以用来选取不规则的并与背景反差大的图像【不须按鼠标而直接移动鼠标,在工具头处会出现自动跟踪的线,这条线总是走向颜色与颜色边界处,边界越明显磁力越强,将首尾相接后可完成选择】 属性:“宽度”选项用于设定套索检测检测范围,磁性套索工具将在这个范围内选取反差最大的边缘。“对比度”选项用于设定选取边缘的灵敏度,数值越大,则要求边缘与背景的反差越大。“频率”选项用于设定选区点的速率,数值越大,标记速率越快,标记点越多。 频率57 频率71 对比度10% 对比度50% 4、 魔棒工具:可以用来选取图像中的某一点,并将与这一点颜色相同或相近的点自动融入选区中。【直接在图像上单击就会出现选区】

ps工具作用介绍大全

ps工具作用介绍大全 位图:又称光栅图,一般用于照片品质的图像处理,是由许多像小方块一样的"像素"组成的图形。由其位置与颜色值表示,能表现出颜色阴影的变化。在PHOTOSHOP主要用于处理位图 矢量图:通常无法提供生成照片的图像物性,一般用于工程持术绘图。如灯光的质量效果很难在一幅矢量图表现出来。 分辩率:每单位长度上的像素叫做图像的分辩率,简单讲即是电脑的图像给读者自己观看的清晰与模糊,分辩率有很多种。如屏幕分辩率,扫描仪的分辩率,打印分辩率。 图像尺寸与图像大小及分辩率的关系:如图像尺寸大,分辩率大,文件较大,所占内存大,电脑处理速度会慢,相反,任意一个因素减少,处理速度都会加快。 通道:在PHOTOSHOP中,通道是指色彩的范围,一般情况下,一种基本色为一个通道。如RGB颜色,R为红色,所以R通道的范围为红色,G为绿色,B为蓝色。 图层:在PHOTOSHOP中,一般都是多是用到多个图层制作每一层好象是一张透明纸,叠放在一起就是一个完整的图像。对每一图层进行修改处理,对其它的图层不含造成任何的影响。 图像的色彩模式: 1)RGB彩色模式:又叫加色模式,是屏幕显示的最佳颜色,由红、绿、蓝三种颜色组成,每一种颜色可以有0-255的亮度变化。 2)CMYK彩色模式:由青色Cyan、洋红色Magenta、禁用语言Yellow。而K取的是black最后一个字母,之所以不取首字母,是为了避免与蓝色(Blue)混淆,又叫减色模式。一般打印输出及印刷都是这种模式,所以打印图片一般都采用CMYK模式。 3)HSB彩色模式:是将色彩分解为色调,饱和度及亮度通过调整色调,饱和度及亮度得到颜色和变化。4)Lab彩色模式:这种模式通过一个光强和两个色调来描述一个色调叫a,另一个色调叫b。它主要影响着色调的明暗。一般RGB转换成CMYK都先经Lab的转换。 5)索引颜色:这种颜色下图像像素用一个字节表示它最多包含有256色的色表储存并索引其所用的颜色,它图像质量不高,占空间较少。 6)灰度模式:即只用黑色和白色显示图像,像素0值为黑色,像素255为白色。 7)位图模式:像素不是由字节表示,而是由二进制表示,即黑色和白色由二进制表示,从而占磁盘空间最小。 ___________工____________具_____________用_____________法_____________ 移动工具,可以对PHOTOSHOP里的图层进行移动图层。 矩形选择工具,可以对图像选一个矩形的选择范围,一般对规则的选择用多。 单列选择工具,可以对图像在垂直方向选择一列像素,一般对比较细微的选择用。 裁切工具,可以对图像进行剪裁,前裁选择后一般出现八个节点框,用户用鼠标对着节点进行缩放,用鼠标对着框外可以对选择框进行旋转,用鼠标对着选择框双击或打回车键即可以结束裁切。 套索工具,可任意按住鼠标不放并拖动进行选择一个不规则的选择范围,一般对于一些马虎的选择可用。

PS基本用法工具介绍

PS基本用法工具介绍 它是由Adobe公司开发的图形处理系列软件之一,主要应用于在图像处理、广告设计的一个电脑软件。最先它只是在Apple机(MAC)上使用,后来也开发出了forwindow的版本。 一、基本的概念。 位图:又称光栅图,一般用于照片品质的图像处理,是由许多像小方块一样的"像素"组成的图形。由其位置与颜色值表示,能表现出颜色阴影的变化。 在PHOTOSHOP主要用于处理位图。 矢量图:通常无法提供生成照片的图像物性,一般用于工程持术绘图。如灯光的质量效果很难在一幅矢量图表现出来。 分辩率:每单位长度上的像素叫做图像的分辩率,简单讲即是电脑的图像给读者自己观看的清晰与模糊,分辩率有很多种。如屏幕分辩率,扫描仪的分辩率,打印分辩率。 图像尺寸与图像大小及分辩率的关系:如图像尺寸大,分辩率大,文件较大,所占内存大,电脑处理速度会慢,相反,任意一个因素减少,处理速度都会加快。 通道:在PHOTOSHOP中,通道是指色彩的范围,一般情况下,一种基本色为一个通道。如RGB颜色,R为红色,所以R通道的范围为红色,G为绿色,B为蓝色。 图层:在PHOTOSHOP中,一般都是多是用到多个图层制作每一层好象是一张透明纸,叠放在一起就是一个完整的图像。对每一图层进行修改处理,对其它的图层不含造成任何的影响。 二、图像的色彩模式 1)RGB彩色模式:又叫加色模式,是屏幕显示的最佳颜色,由红、绿、蓝三种颜色组成,每一种颜色可以有0-255的亮度变化。 2)、CMYK彩色模式:由品蓝,品红,品黄和黄色组成,又叫减色模式。 一般打印输出及印刷都是这种模式,所以打印图片一般都采用CMYK模式。 3)、HSB彩色模式:是将色彩分解为色调,饱和度及亮度通过调整色调,饱和度及亮度得到颜色和变化。 4)、Lab彩色模式:这种模式通过一个光强和两个色调来描述一个色调叫a,另一个色调叫b。它主要影响着色调的明暗。一般RGB转换成CMYK 都先经Lab的转换。 5)、索引颜色:这种颜色下图像像素用一个字节表示它最多包含有256色的色表储存并索引其所用的颜色,它图像质量不高,占空间较少。 6)、灰度模式:即只用黑色和白色显示图像,像素0值为黑色,像素255为白色。

PS工具作用介绍 及 快捷键大全

基本术语了解: 位图:又称光栅图,一般用于照片品质的图像处理,是由许多像小方块一样的"像素"组成的图形。由其位置与颜色值表示,能表现出颜色阴影的变化。在PHOTOSHOP主要用于处理位图 矢量图:通常无法提供生成照片的图像物性,一般用于工程持术绘图。如灯光的质量效果很难在一幅矢量图表现出来。 分辩率:每单位长度上的像素叫做图像的分辩率,简单讲即是电脑的图像给读者自己观看的清晰与模糊,分辩率有很多种。如屏幕分辩率,扫描仪的分辩率,打印分辩率。 图像尺寸与图像大小及分辩率的关系:如图像尺寸大,分辩率大,文件较大,所占内存大,电脑处理速度会慢,相反,任意一个因素减少,处理速度都会加快。 通道:在PHOTOSHOP中,通道是指色彩的范围,一般情况下,一种基本色为一个通道。如RGB颜色,R为红色,所以R通道的范围为红色,G为绿色,B为蓝色。 图层:在PHOTOSHOP中,一般都是多是用到多个图层制作每一层好象是一张透明纸,叠放在一起就是一个完整的图像。对每一图层进行修改处理,对其它的图层不含造成任何的影响。 图像的色彩模式: 1)RGB彩色模式:又叫加色模式,是屏幕显示的最佳颜色,由红、绿、蓝三种颜色组成,每一种颜色可以有0-255的亮度变化。 2)CMYK彩色模式:由青色Cyan、洋红色Magenta、禁用语言Yellow。

而K取的是black最后一个字母,之所以不取首字母,是为了避免与蓝色(Blue)混淆,又叫减色模式。一般打印输出及印刷都是这种模式,所以打印图片一般都采用CMYK模式。 3)HSB彩色模式:是将色彩分解为色调,饱和度及亮度通过调整色调,饱和度及亮度得到颜色和变化。 4)Lab彩色模式:这种模式通过一个光强和两个色调来描述一个色调叫a,另一个色调叫b。它主要影响着色调的明暗。一般RGB转换成CMYK 都先经Lab的转换。 5)索引颜色:这种颜色下图像像素用一个字节表示它最多包含有256色的色表储存并索引其所用的颜色,它图像质量不高,占空间较少。 6)灰度模式:即只用黑色和白色显示图像,像素0值为黑色,像素255为白色。 7)位图模式:像素不是由字节表示,而是由二进制表示,即黑色和白色由二进制表示,从而占磁盘空间最小。 工具用途: 移动工具,可以对PHOTOSHOP里的图层进行移动图层。 矩形选择工具,可以对图像选一个矩形的选择范围,一般对规则的选择用多。 单列选择工具,可以对图像在垂直方向选择一列像素,一般对比较细微的选择用。 裁切工具,可以对图像进行剪裁,前裁选择后一般出现八个节点框,用户用鼠标对着节点进行缩放,用鼠标对着框外可以对选择框进行旋转,用鼠标对着选择框双击或打回车键即可以结束裁切。 套索工具,可任意按住鼠标不放并拖动进行选择一个不规则的选择范围,一般对于一些马虎的选择可用。

Photoshop基本操作介绍(图文介绍)

第一课:工具的使用 一、Photoshop 简介: Adobe 公司出品的Photoshop 是目前最广泛的图像处理软件,常用于广告、艺术、平面设计等创作。也广泛用于网页设计和三维效果图的后期处理,对于业余图像爱好者,也可将自己的照片扫描到计算机,做出精美的效果。总之,Photoshop 是一个功能强大、用途广泛的软件,总能做出惊心动魄的作品。 二、认识工具栏 1、 选框工具 :用于选取需要的区域 ----选择一个像素的横向区域 属性栏: 注:按shift 键+框选,可画出正方形或正圆形区域 2、移动工具: -----用于移动图层或选区里的图像 3、套索工具: ----用于套索出选区 ----用于套索出多边形选区 ----可根据颜色的区别而自动产生套索选区 4、魔术棒工具: ----根据颜色相似原理,选择颜色相近的区域。 注:“容差”,定义可抹除的颜色范围,高容差会抹除范围更广的像素。 5、修复工具: 且是 ----类似于“仿制图工具”,但有智能修复功能。 选区相减

----用于大面积的修复 一新 ----用采样点的颜色替换原图像的颜色 注:Alt+鼠标单击,可拾取采样点。 6、仿制图章工具----仿制图章工具从图像中取样,然后您可将样本应用到其它图像或同一图像的其它部分。 ----仿制图章工具从图像中取样,然后将样本应用到其它图像或同 一图像的其它部分(按Alt键,拾取采样点)。 ----可先自定义一个图案,然后把图案复制到图像的其它区域或其它图像上。 三、小技巧: ①、取消选区:【Ctrl+D】 ②、反选选区:【Shif+F7】 ③、复位调板:窗口—工作区—复位调板位置。 ④、ctrl+[+、-]=图像的缩放 ⑤空格键:抓手工具 ⑥Atl+Delete = 用前景色填充 Ctrl+Delete = 用背景色填充 第二课:工具的使用二 一、工具栏 二、小技巧 1、自由变换工具:【Ctrl 、使用框选工具的时候,按【

PS CC 面及工具介绍

工具栏: 1.移动工具,可以对PHOTOSHOP里的图层进行移动图层。 2.矩形选框工具,可以对图像选一个矩形的选择范围,一般对规则的选择用多。 3.椭圆选框工具,可以对图像选一个矩形的选择范围,一般对规则的选择用多。 4.单行选框工具,可以对图像在水平方向选择一行像素,一般对比较细微的选择用。 5.单列选框工具,可以对图像在垂直方向选择一列像素,一般对比较细微的选择用。 6.?套索工具,可任意按住鼠标不放并拖动进行选择一个不规则的选择范围,一般对于一些马虎的选择可用。 7.?多边形套索工具,可用鼠标在图像上某点定一点,然后进行多线选中要选择的范围,没有圆弧的图像勾边可以用这个工具,但不能勾出弧线,所勾出的选择区域都是由多条线组成的 8.磁性套索工具,这个工具似乎有磁力一样,不须按鼠标左键而直接移动鼠标,在工具头处会出现自动跟踪的线,这条线总是走向颜色与颜色边界处,边界越明显磁力越强,将首尾连接后可完成选择,一般用于颜色与颜色差别比较大的图像选择。 9.魔棒工具,用鼠标对图像中某颜色单击一下对图像颜色进行选择,选择的颜色范围要求是相同的颜色,其相同程度可对魔棒工具双击,在辅助工具栏上容差值处调整容差度,数值越大,表示魔棒所选择的颜色差别大,反之,颜色差别小。 10.快速选择工具,选择快速选择工具后我们可以调节工具的大

小,(工具大的话选择的快一些,小的话可以更精准)。根据处理的图片选择快速选择工具的大小。如果多选或者少选可以添加选区,从选区减去。 11.裁切工具,可以对图像进行剪裁,前裁选择后一般出现八个节点框,用户用鼠标对着节点进行缩放,用鼠标对着框外可以对选择框进行旋转,用鼠标对着选择框双击或打回车键即可以结束裁切。 12.吸管工具,主要用来吸取图像中某一种颜色,并将其变为前景色,一般用于要用到相同的颜色时候,在色板上又难以达到相同的可能,宜用该工具。用鼠标对着该颜色单击一下即可吸取。 13.画笔工具,用来对图像进行上色,主要用来对图像上色,上色的压力可由右键的选项调整压力,上色的大小可由右边的画笔处选择自已所须的笔头大小,上色的颜色可由右边的色板或颜色处选择所须的颜色。 14.铅笔工具,主要是模拟平时画画所用的铅笔一样,选用这工具后,在图像内按住鼠标左键不放并拖动,即可以进行画线,它与画笔不同之处是所画出的线条没有蒙边。笔头可以在右边的画笔中选取。 15.仿制图章工具,主要用来对图像的修复用多,亦可以理解为局部复制。先按住Alt键,再用鼠标在图像中需要复制或要修复取样点处单击一左键,再在右边的画笔处选取一个合适的笔头,就可以在图像中修复图像。 16.?图案图章工具,它也是用来复制图像,但与橡皮图章有些不同,它前提要求先用矩形选择一范围,再在”编辑”菜单中点取”定义图案”命令,然后再选合适的笔头,再在图像中进和行复制图案。 17.?历史记录画笔工具,主要作用是对图像进行恢复图像最近保存或打开图像的原来的面貌,如果对打开的图像操作后没有保存,使

Photoshop工具箱中各工具的名称及功能介绍

Photoshop工具箱中各工具的名称及功能介绍: 一、选择工具组 1、矩形选框工具:选择该工具可以在图像中创建矩形选区。按住“Shift”键拖动光标,可创建出正方形选区。 2、移动工具:移动选区的图像部分,如果没有建立选区,则移动的是整幅图像。 3、套索工具:用这个工具可以建立自由形状的选区。 4、魔棒工具:这个工具自动地以颜色近似度作为选择的依据,适合选择大面积颜色相近的区域。如果想选定不相邻的区域,按住“Shift”键对其它想要增加的部分单击,得以扩大选区。 5、裁切工具:可用来切割图像,选择使用该工具后,先在图像中建立一个矩形选区,然后通过选区边框上的控制句柄(边线上的小方块)来调整选区的大小,按下“Enter”键,选择区域以外的图像将被切掉,同时Photoshop会自动将选区内的图像建立一个新文件。按“Esc”键可以取消操作。使用该工具时,光标会变成按钮上的图标样子。 6、切片工具:可以在Photoshop6.0中切割图片并输出和将切割好的图片转移至ImageReady重进行更多的操作。 二、着色编缉工具组: 1、喷枪工具:用来绘制非常柔和的手绘线。 2、画笔工具:用来绘制比较柔和的线条。 3、橡皮图章工具:这是自由复制图像的工具。选择该工具后,按住“Alt”键单击图像某一处,然后在图像的其他地方单击鼠标左键,即可将刚才光标所在处的图像复制到该处。如果按住鼠标左键不放拖动光标,则可将复制的区域扩

大,在光标的旁边会有一个十字光标,用来指示你所复制的原图像的部位。(注意:可以在同是地打开的几个图像之间进行这种自由复制。) 4、历史记录画笔工具:使用该工具时,按住鼠标左键,在图像上拖动,光标所过之处,可将图像恢复到打开时的状态。当你对图像进行了多次编辑后,使用它能够将图像的某一部分一次恢复到初始状态。 5、橡皮擦工具:能把图层擦为透明,如果是在背景层上使用此工具,则擦为背景色。 6、模糊工具:用来减少相邻像素间的对比度,使图像变模糊。使用该工具时,按住鼠标左键拖动光标在图像上涂抹,可以减弱图像中过于生硬的颜色过渡和边缘。 7、减淡工具:拖动此工具可以增加光标经过之处图像的亮度。 三、专用工具组: 1、渐变工具:用逐渐过渡的色彩填充一个选择区域,如果没有建立选区,则填充整幅图像。 2、油漆桶工具:用前景颜色填充选择区域。 3、直接选择工具:用来调整路径上锚点的位置的工具。使用时光标变成箭头样。 4、文字工具:用来向图像中输入文字。 5、钢笔工具:路径勾点工具,勾画出首尾相接的路径。(注意:路径并不是图像的一部分,它是独立于图像存在的,这点与选区不同。利用路径可以建立复杂的选区或绘制复杂的图形,还可以对路径灵活地进行修改和编辑,并可以在路径与选区之间进行切换。) 6、矩形工具:选择此工具,拖到光标可画出矩形。 7、吸管工具:将所取位置的点的颜色作为前景色,如同时按住“Alt”键,则选取背景色。使用时,光标会变成按钮上标示的图标样。

ps中各种工具的介绍

1、选框工具共有4种包括【矩形选框工具】、【椭圆选框工具】、 【单行选框工具】和【单列选框工具】。它们的功能十分相似,但也有各自不同的特长。 矩形选框工具 使用【矩形选框工具】可以方便的在图像中制作出长宽随意的矩形选区。 操作时,只要在图像窗口中按下鼠标左键同时移动鼠标, 拖动到合适的大小松开鼠标即可建立一个简单的矩形选区了。 椭圆选框工具 使用【椭圆选框工具】可以在图像中制作出半径随意的椭圆形选区。 它的使用方法和工具选项栏的设置与【矩形选框工具】的大致相同。 单行选框工具:使用【单行选框工具】可以在图像中制作出1个像素高的单行选区. 单列选框工具:与【单行选框工具】类似,使用【单列选框工具】可以在 图像中制作出1个像素宽的单列选区。 2、套索工具:快捷键:L 套索工具也是一种经常用到的制作选区的工具, 可以用来制作折线轮廓的选区或者徒手绘画不规则的选区轮廓。 套索工具共有3种,包括:套索工具、多边形套索工具、磁性套索工具。 套索工具 使用【套索工具】,我们可以用鼠标在图像中徒手描绘, 制作出轮廓随意的选区。通常用它来勾勒一些形状不规则的图像边缘。 多边形套索工具 【多边形套索工具】可以帮助我们在图像中制作折线轮廓的多边形选区。 使用时,先将鼠标移到图像中点击以确定折线的起点, 然后再陆续点击其它折点来确定每一条折线的位置。 最后当折线回到起点时,光标下会出现一个小圆圈, 表示选择区域已经封闭,这时再单击鼠标即可完成操作。 3、魔棒工具:快捷键:W 【魔棒工具】是Photoshop中一个有趣的工具, 它可以帮助大家方便的制作一些轮廓复杂的选区,这为我们了节省大量的精力。 该工具可以把图像中连续或者不连续的颜色相近的区域作为选区的范围, 以选择颜色相同或相近的色块。魔棒工具使用起来很简单, 只要用鼠标在图像中点击一下即可完成操作。 【魔棒工具】的选项栏中包括:选择方式、容差、消除锯齿、连续的和用于所有图层 ⑴选择方式:使用方法和原理与【矩形选框工具】提到的一样,这里就不再介绍了。 ⑵容差:用来控制【魔棒工具】在识别各像素色值差异时的容差范围。 可以输入0~255之间的数值,取值越大容差的范围越大;相反取值越小容差的范围越小。

ps的工作界面的介绍

ps的工作界面的介绍(界面介绍) 界面的组成 photoshop的界面是由以下6个部分组成的。 标题栏 标题栏左边显示photoshop的标志和软件名称。右边三个图标分别是最小化、最大化和关闭按钮。菜单栏 photoshop菜单栏包括文件、编辑、图像等9个菜单。 工具属性栏 主要用来显示工具箱中所选用工具的一些延展的选项。选择不同的工具时出现的相应选项也是不同的,具体内容在工具箱介绍中详细讲解。 工具箱 对图像的修饰以及绘图等工具,都从工具箱中调用。几乎每种工具都有相应键盘快捷键,工具箱很想画家的画箱。 调板窗 用来存放不常用的调板。调板在其中只显示名称,点击后才出现整个调板,这样可以有效利用空间。防止调板过多挤占了图像的空间。 浮动调板(调板区) 用来安放制作需要的各种常用的调板。也可以称为浮动面板或面板。 其余的区域称为工作区,用来显示制作中的图像。Photoshop可以同时打开多幅图像进行制作,图像之间还可以互相传送数据。 除了菜单的位置不可变动外,其余各部分都是可以自由移动的,我们可以根据自己的喜好去安排界面。并且调板在移动过程中有自动对齐其他调板的功能,这可以让界面看上去比较整洁。 ★.标题栏 标题栏左边显示软件标志和软件名称,通过标题栏可以确认软件的版本。

标题栏右边是最小化,最大化和关闭按钮。 ★.菜单栏 菜单栏是Photoshop CS2的重要组成部分,和其他应用程序一样,Photoshop CS2根据图像处理的各种要求,将所有的功能命令分类后,分别放在9个菜单中,如下图所示,在其中几乎可以实现Photoshop的全部功能。 ★.工具属性栏 在默认状态下,Photoshop CS2中的工具属性栏位于菜单栏的下方,在其中可详细设置所选工具的各种属性。选择不同的工具或者进行不同的操作时,其属性栏中的内容会随之变化。 ★.工具箱 用phtoshop处理图像,首先要熟悉工具的使用。工具面板如下图。 根据工具的作用和特性,可分为: 1.选择与切割类; 2.编辑类; 3.矢量与文字类; 4.辅助工具,四大类,中间用分隔栏分开. 此外我们发现在一部分工具图标的右下角有个黑色的小箭头,这表示这里是一个相类似的工具的集合,用鼠标按下一个工具的按钮不放稍停一下,就会展开下级菜单,显示该集合的全部工具。

PS基本工具详解

【PS基本工具详 解】 01.选框工具---快捷键【M】 01-1.问:如何快速切换选框工具列表? 答:按住键盘“ALT”键,鼠标左击选框工具。 01-2.问:圆形选框或矩形选框如何画出正圆形或正方形选区? 答:按住键盘“shift”键,鼠标左键在画布拖动即可。 01-3.问:如何精确设定选区的大小? 答:在选框工具状态下,属性栏中样式一栏,选择固定比例或者固定大小,然后在其后的宽高设置中输入固定数值,再点击画布即可。 01-4.问:选框工具的属性栏中,羽化是干嘛的? 答:羽化就是对选区边缘进行模糊处理,使其内外衔接有个自然的过渡。在创建选区之前设置好羽化数值,创建后就能看到效果。 01-5.问:矩形选框的属性栏中,消除锯齿项为什么是灰色不能用的? 答:因为矩形选框都是直线的,所以不存在锯齿。其选项只有在椭圆选框状态下才可以勾选。 01-6.问:单行选框和单列选框是干嘛的? 答:这两个工具是为了方便选择一个像素的行和列而设置的,多用于线条绘制。 01-7.问:为什么用了单行单列选框在画布上操作,画布却不显示选区?填充也看不见? 答:这是因为画布大小设置过大,一像素的选区或者填充后的内容与画布的比例过大,所以显示不了,这时只要放大画布就能显示了。 01-8.问:如何重复制作单列或单行选区?

答:按住键盘“SHIFT”键,在画布不同位置上左键点击即可。 01-9.问:选框工具做好的选区大小不适合,能不能自由更改选区大小? 答:当然可以。点击“选择-变换选区”就能自由变换选区的大小,调整合适后,确认即可。 01-10.问:如何退出选框工具创建的虚线选区? 答:快捷键" Ctrl+D "即可。 02.选择工具---快捷键【V】 02-1.问:什么是选择工具? 答:选择工具,顾名思义是用来移动一个图层或者移动选中的内容。 02-2.问:选择工具如何快速复制? 答:在选择工具状态下,按住键盘"ALT"键,就可以实现快速复制图层或者选中内容。 02-3.问:当图层内容很多的时候,如何用选择工具快速选择想要的画面而不是每次都要点选图层才能够做移动编辑操作? 答:选择“选择工具”,勾选属性栏的“自动选择”,就能够快速选中鼠标点选的画面。 03.套索工具---快捷键【L】 03-1.问:用套索工具做出选区抠出来的图有很多的锯齿怎么办? 答:可以在使用套索之前,在属性栏的“羽化”项里设置好羽化数值,再使用套索,就能平滑边缘锯齿。 03-2.问:用套索创建选区后有多余的选区部分或者没有选到的部分,要怎么处理? 答:套索工具状态下,按住键盘“ALT”键来减去多余的选区,按住键盘“SHIFT”键来添加不够的选区。 03-3.问:用磁性套索创建选区的时候不好控制,老是产生错误的偏离的边界点,怎么办? 答:使用磁性套索工具时,可以结合DELETE删除错误的边界点再单击重新创建。 03-4.问:磁性套索工具属性栏中的宽度、边对比度和频率有什么作用? 答:1>宽度。数值框可以输入0-40之间的数值,对于某一给定的数值,

photoshop(基本功能介绍)

PS面板介绍大全 “色板”面板:该面板用于保存经常用的颜色。单击相应的色块,该颜色就会内指定为前景色。 “通道”面板该面板用于管理颜色信息或者利用通道指定的选区。主要用于创建Alpha通道及有效管理颜色通道。 “图层”面板:在合成若干个图像时使用该面板。该面板提供图层的创建和删除功能,并且可以设置图像的不透明度、图层蒙版等。 “信息”面板:该面板以数值形式显示图像信息。将鼠标的光标移动到图层上,就会显示相关信息。 “颜色”面板:用于设置背景色和前景色。颜色可通过拖动滑块指定,也可以通过输入相应颜色值指定。 “样式”面板:用于制作立体图标。只要单击鼠标即可制作出一个用特性的图像。 “直方图”面板:在该面板中可以看到图像的所有色调的分布情况,图像的色调分为最亮的区域(高光)、中间区域(中间色调)和暗淡区域(暗调)三部分。 “字符样式”面板:在该面板中可以对文字进行字体、符号、文字间距特殊效果的设置,字符样式仅作用于选定的字符。 1.“3D”面板:可以为图像制作出立体可见的效果。选择3D图层后,“3D”面板中会显示与之关联的3D文件组件,面板的顶部列出了文件中的场景、网络、材质和光源,面板底部显示了在面板顶部选择的3D组件的相关选项。

2.“动作“面板:利用该面板可以一次完成多个操作过程。记录操作顺序后,在其他图像上可以一次性应用整个过程。 3.“导航器”面板:通过放大或缩小图像来查找指定区域。利用视图框便于搜索大图像。 4.“测量记录”面板:可以为记录中的列重新排序,删除行或列,或者将记录中的数据导出到逗号分隔的文件中。 5.“段落”面板:利用该面板可以设置与文本段落相关选项。可调整行间距,增加缩进或减少缩进等。 6.“调整”面板:该面板用于对图像进行破坏性的调整。 7.“仿制源”面板:具有用于仿制图章工具或修复画笔工具的选项。可以设置5个不同的样本源并快速选择所需要改为不同的样本源时重新取样。 8.“字符”面板:在编辑或修改文本是提供相关功能的面板。可设置的主要选项有文字大小和间距、颜色、字间距等。 9.“动画”面板:利用该面板便于进行动作操作。 10.“路径”面板:用于将选区转换为路径,或者将路径转换为选区。利用该面板可以应用各种路径相关功能。 11.“历史记录”面板:该面板用于恢复操作过程,将图像操作过程按顺序记录下来。 12.“工具预设”面板:在该面板中可保持常哦那个的工具。可以将相同的工具保存为不同的设置,由此刻提高操作效率。 photoshop里各工具的用法,用途 1、选框工具:快捷键:M 选框工具共有4种包括【矩形选框工具】、【椭圆选框工具】、【单行选框工具】和【单列选框工具】。它们的功能十分相似,但也有各自不同的特长。矩形选框工具使用【矩形选框工具】可以方便的在

PS基本工具介绍

选框工具:快捷键:M 1、选框工具共有4种包括【矩形选框工具】、【椭圆选框工具】、【单行选框工具】和【单列选框工具】。它们的功能十分相似,但也有各自不同的特长。矩形选框工具 使用【矩形选框工具】可以方便的在图像中制作出长宽随意的矩形选区。操作时,只要在图像窗口中按下鼠标左键同时移动鼠标,拖动到合适的大小松开鼠标即可建立一个简单的矩形选区了。 椭圆选框工具 使用【椭圆选框工具】可以在图像中制作出半径随意的椭圆形选区。 它的使用方法和工具选项栏的设置与【矩形选框工具】的大致相同。 单行选框工具:使用【单行选框工具】可以在图像中制作出1个像素高的单行选区. 单列选框工具:与【单行选框工具】类似,使用【单列选框工具】可以在图像中制作出1个像素宽的单列选区。 2、套索工具:快捷键 套索工具也是一种经常用到的制作选区的工具, 可以用来制作折线轮廓的选区或者徒手绘画不规则的选区轮廓。 套索工具共有3种,包括:套索工具、多边形套索工具、磁性套索工具。 套索工具 使用【套索工具】,我们可以用鼠标在图像中徒手描绘, 制作出轮廓随意的选区。通常用它来勾勒一些形状不规则的图像边缘。 多边形套索工具 【多边形套索工具】可以帮助我们在图像中制作折线轮廓的多边形选区。 使用时,先将鼠标移到图像中点击以确定折线的起点, 然后再陆续点击其它折点来确定每一条折线的位置。 最后当折线回到起点时,光标下会出现一个小圆圈, 表示选择区域已经封闭,这时再单击鼠标即可完成操作。 3、魔棒工具:快捷键:W 【魔棒工具】是Photoshop中一个有趣的工具, 它可以帮助大家方便的制作一些轮廓复杂的选区,这为我们了节省大量的精力。该工具可以把图像中连续或者不连续的颜色相近的区域作为选区的范围, 以选择颜色相同或相近的色块。魔棒工具使用起来很简单, 只要用鼠标在图像中点击一下即可完成操作。 【魔棒工具】的选项栏中包括:选择方式、容差、消除锯齿、连续的和用于所有

PS基础工具全面介绍

PS基础工具全面介绍!!! 位图:又称光栅图,一般用于照片品质的图像处理,是由许多像小方块一样的"像素"组成的图形。由其位置与颜色值表示,能表现出颜色阴影的变化。在PHOTOSHOP主要用于处理位图 矢量图:通常无法提供生成照片的图像物性,一般用于工程持术绘图。如灯光的质量效果很难在一幅矢量图表现出来。 分辩率:每单位长度上的像素叫做图像的分辩率,简单讲即是电脑的图像给读者自己观看的清晰与模糊,分辩率有很多种。如屏幕分辩率,扫描仪的分辩率,打印分辩率。 图像尺寸与图像大小及分辩率的关系:如图像尺寸大,分辩率大,文件较大,所占内存大,电脑处理速度会慢,相反,任意一个因素减少,处理速度都会加快。 通道:在PHOTOSHOP中,通道是指色彩的范围,一般情况下,一种基本色为一个通道。如RGB颜色,R为红色,所以R通道的范围为红色,G为绿色,B为蓝色。 图层:在PHOTOSHOP中,一般都是多是用到多个图层制作每一层好象是一张透明纸,叠放在一起就是一个完整的图像。对每一图层进行修改处理,对其它的图层不含造成任何的影响。 图像的色彩模式: 1)RGB彩色模式:又叫加色模式,是屏幕显示的最佳颜色,由红、绿、蓝三种颜色组成,每一种颜色可以有0-255的亮度变化。 2)CMYK彩色模式:由青色Cyan、洋红色Magenta、禁用语言Yellow。而K取的是black最后一个字母,之所以不取首字母,是为了避免与蓝色(Blue)混淆,又叫减色模式。一般打印输出及印刷都是这种模式,所以打印图片一般都采用CMYK模式。 3)HSB彩色模式:是将色彩分解为色调,饱和度及亮度通过调整色调,饱和度及亮度得到颜色和变化。 4)Lab彩色模式:这种模式通过一个光强和两个色调来描述一个色调叫a,另一个色调叫b。它主要影响着色调的明暗。一般RGB转换成CMYK 都先经Lab的转换。 5)索引颜色:这种颜色下图像像素用一个字节表示它最多包含有256色的色表储存并索引其所用的颜色,它图像质量不高,占空间较少。6)灰度模式:即只用黑色和白色显示图像,像素0值为黑色,像素255为白色。 7)位图模式:像素不是由字节表示,而是由二进制表示,即黑色和白色由二进制表示,从而占磁盘空间最小。 ___________工____________具_____________用_____________法_____________ 移动工具,可以对PHOTOSHOP里的图层进行移动图层。 矩形选择工具,可以对图像选一个矩形的选择范围,一般对规则的选择用多。 单列选择工具,可以对图像在垂直方向选择一列像素,一般对比较细微的选择用。 裁切工具,可以对图像进行剪裁,前裁选择后一般出现八个节点框,用户用鼠标对着节点进行缩放,用鼠标对着框外可以对选择框进行旋转,用鼠标对着选择框双击或打回车键即可以结束裁切。 套索工具,可任意按住鼠标不放并拖动进行选择一个不规则的选择范围,一般对于一些马虎的选择可用。 多边形套索工具,可用鼠标在图像上某点定一点,然后进行多线选中要选择的范围,没有圆弧的图像勾边可以用这个工具,但不能勾出弧度 磁性套索工具,这个工具似乎有磁力一样,不须按鼠标左键而直接移动鼠标,在工具头处会出现自动跟踪的线,这条线总是走向颜色与颜色边界处,边界越明显磁力越强,将首尾连接后可完成选择,一般用于颜色与颜色差别比较大的图像选择。 魔棒工具,用鼠标对图像中某颜色单击一下对图像颜色进行选择,选择的颜色范围要求是相同的颜色,其相同程度可对魔棒工具双击,在屏幕右上角上容差值处调整容差度,数值越大,表示魔棒所选择的颜色差别大,反之,颜色差别小。 喷枪工具,主要用来对图像上色,上色的压力可由右上角的选项调整压力,上色的大小可由右边的画笔处选择自已所须的笔头大小,上色的颜

PS工具介绍

Photoshop工具介绍 一、矩形选择/椭圆形选择(选取物体、限制编辑范围) (1)按Shift,由一边向另一边画正方形或正圆 (2)按Alt,由中心向两侧画对称的形状 (3)按Shift+Alt:由中心向外画正方形或正圆 (4)按Shift+Ctrl+I:反选 (5)取消选择: 按Ctrl+D或在空白处单击 羽化:使填充的颜色边界产生柔和虚化效果 二、移动工具: 移动已选择的图像,没选区的将移动整幅画面 三、套索工具 套索:按住鼠标拖动绘制出任意的选择范围 多边形套索:由直线连成选择范围 磁性套索:沿颜色的边界进行选择 四、魔棒工具:根据图像中颜色的相似度来选取图形 容差:值越小,选取的颜色范围越小,反之,范围大 五、裁切工具:裁切画面,删除不需要的图像 六、切片工具 七、 1、修复画笔:修复图像中的缺陷,并能使修复的结果自然溶入周围图像 方法:按ALT键取样,到目标点拖动 2、修补工具:可以从图像的其它区域或使用图案来修补当前选中的区域 源:将源图像选区拖至目标区,则源区域图像将被目标区域的图像覆盖目标:将选定区域作为目标区,用其覆盖共他区域 图案:用图案覆盖选定的区域 3、颜色替换工具:用于修改红眼 八、 1、画笔:用前景色在画布上绘画,模仿现实生活中的毛笔进行绘画, 创建柔和的彩色线条 +shift:画连接的直线不透明度:决定颜色的深浅 2、铅笔:用于创建硬边界的线条 自动抹掉:前景色、背景色相互转换 参数: 1、直径:笔刷的大小 2、角度:笔刷的旋转角度 3、圆度:控制笔刷的长短轴比例,以制作扁形笔刷 4、硬度:控制笔刷边界的柔和程度,值越小,越柔和 5、间距:两笔之间的距离

PS“计算工具”的功能与用法详解

PS“计算工具”的功能与用法详解(网摘) 初学Photoshop的同学,最早接触“计算”工具,应该是网上大堆大堆介绍通道磨皮法那几个步骤,“选择反差适中的绿色通道,然后高反差保留,然后计算,然后再高反差保留,然后再计算,然后再再高反差保留,然后再计算……”。为什么计算过程中我们选择的是绿通道副本到绿通道副本的“强光”混合模式而不是选择“变暗”或者其他的混合模式呢?我们只是按部就班记住了这些过程,然后得出了想要的效果,但为什么计算工具有如此美妙之处呢?其实,通道磨皮法是通道作为选区功能的一次彻底的应用,它通过计算工具选取出人物皮肤需要提亮美化的部分,“计算”是通道的一个选择手段或者工具。“计算”和“应用图像”以及“图层混合模式”既有关联又有区别,要了解计算的作用,并且熟练为自己所用,就需要对通道、图层混合有一个初步的认识。今天我们就来通过实例来剖析一下Photoshop的“计算”工具有些什么功能,是如何工作的。 第一、“计算”工具和“通道”紧密关联 它在通道中运算产生,形成新的ALPHA专用通道,ALPHA通道,又是为我们所需要的选取部分。通道就是选区,实际上,“计算”也是通道“选区”作用的一个产生工具而已。 第二、“应用图像”和“计算”的区别 “应用图像”是直接作用于本图层,是不可逆的,而“计算”是在通道中形成新的待选区域,是待选或备用的。

第三、“计算”和“图层混合模式”紧密相连 要了解图层混合模式,必须从色彩开始系统了解PS的基础应用,图层混合模式的应用是中级阶段PS学习应该熟练掌握和认识的,后面附件中有各个混合模式的比例或者公式。 第四、“图层混合”、“应用图像”与“计算” “图层混合”是图层与图层之间以某种模式进行某种比例的混合,“图层混合”是层与层之间发生关系。 “应用图像”是某一图层内通道到通道(包括RGB通道或者ALPHA通道)采用“图层混合”的混合模式进行直接作用——实质上是把通道(包括RGB通道或者ALPHA通道)看成为图层与图层的一种混合,只是这种混合的主题是图层内的单一通道或者RGB通道,是通道到通道发生作用而直接产生结果于单一图层,“应用图像”的结果是单一图层发生了改变。 “计算”的结果,既不像图层与图层混合那样产生图层混合的视觉上的变化,又不像“应用图像”那样让单一图层发生变化,“计算”工具实质是通道与通道间,采用“图层混合”的模式进行混合,产生新的选区,这个选区是为下一步操作所需要的。 明白了以上几点之后,下面我们通过实例了解计算是如何做出我们需要的选区,这是掌握“计算”法最最关键的一点。我们拿到一张准备PS的图片,要养成没处理之前,就要想到我们将会处理什么样子或者怎样去处理。而这里的关键,就是我们充分了解图层混合这样的光和色的比例关系。这是初级迈向高级的应用的一个坎。了解这个坎,借助“图层混合”,“应用图像”,“计算”这几个工具,飞跃这个坎。 附:图层混合模式的应用 图层混合模式可以将两个图层的色彩值紧密结合在一起,从而创造出大量的效果。 混合模式在Photoshop应用中非常广泛,大多数绘画工具或编辑调整工具都可以使用混合模式,所以正确、灵活使用各种混合模式,可以为图像的效果锦上添花。 单击图层混合模式的下拉组合框,将弹出25种混合模式命令的下拉列表菜单,选择不同的混合模式命令,就可以创建不同的混合效果;图层的混合模式是用于控制上下图层的混合效果,在设置混合效果时还需设置图层的不透明度,以下介绍混合模式选项说明的不透明度在100%的前提下。 正常:该选项可以使上方图层完全遮住下方图层。 溶解:如果上方图层具有柔和的关透明边缘,选择该项则可以创建像素点状效果。 变暗:两个图层中较暗的颜色将作为混合的颜色保留,比混合色亮的像素将被替换,而比混合色暗像素保持不变。 正片叠底:整体效果显示由上方图层和下方图层的像素值中较暗的像素合成的图像效果,任意颜色与黑色重叠时将产生黑色,任意颜色和白色重叠时颜色则保持不变。 颜色加深:选择该项将降低上方图层中除黑色外的其他区域的对比度,使图像的对比度下降,产生下方图层透过上方图层的投影效

PS基本用法工具介绍

P S基本用法工具介绍 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

PS基本用法工具介绍 它是由Adobe公司开发的图形处理系列软件之一,主要应用于在图像处理、广告设计的一个电脑软件。最先它只是在Apple机(MAC)上使用,后来也开发出了forwindow的版本。 一、基本的概念。 位图:又称光栅图,一般用于照片品质的图像处理,是由许多像小方块一样的"像素"组成的图形。由其位置与颜色值表示,能表现出颜色阴影的变化。在PHOTOSHOP主要用于处理位图。 矢量图:通常无法提供生成照片的图像物性,一般用于工程持术绘图。如灯光的质量效果很难在一幅矢量图表现出来。 分辩率:每单位长度上的像素叫做图像的分辩率,简单讲即是电脑的图像给读者自己观看的清晰与模糊,分辩率有很多种。如屏幕分辩率,扫描仪的分辩率,打印分辩率。 图像尺寸与图像大小及分辩率的关系:如图像尺寸大,分辩率大,文件较大,所占内存大,电脑处理速度会慢,相反,任意一个因素减少,处理速度都会加快。 通道:在PHOTOSHOP中,通道是指色彩的范围,一般情况下,一种基本色为一个通道。如RGB颜色,R为红色,所以R通道的范围为红色,G为绿色,B为蓝色。 图层:在PHOTOSHOP中,一般都是多是用到多个图层制作每一层好象是一张透明纸,叠放在一起就是一个完整的图像。对每一图层进行修改处理,对其它的图层不含造成任何的影响。

二、图像的色彩模式 1)RGB彩色模式:又叫加色模式,是屏幕显示的最佳颜色,由红、绿、蓝三种颜色组成,每一种颜色可以有0-255的亮度变化。 2)、CMYK彩色模式:由品蓝,品红,品黄和黄色组成,又叫减色模式。一般打印输出及印刷都是这种模式,所以打印图片一般都采用CMYK模式。 3)、HSB彩色模式:是将色彩分解为色调,饱和度及亮度通过调整色调,饱和度及亮度得到颜色和变化。 4)、Lab彩色模式:这种模式通过一个光强和两个色调来描述一个色调叫a,另一个色调叫b。它主要影响着色调的明暗。一般RGB转换成CMYK都先经Lab的转换。 5)、索引颜色:这种颜色下图像像素用一个字节表示它最多包含有256色的色表储存并索引其所用的颜色,它图像质量不高,占空间较少。 6)、灰度模式:即只用黑色和白色显示图像,像素0值为黑色,像素255为白色。 7)、位图模式:像素不是由字节表示,而是由二进制表示,即黑色和白色由二进制表示,从而占磁盘空间最小。 三、工具介绍移动工具:可以对PHOTOSHOP里的图层进行移动图层。矩形选择工具:可以对图像选一个矩形的选择范围,一般对规则的选择用多。

相关文档
最新文档