Petrel 2014 Fracture modeling裂缝建模

Petrel  2014  Fracture modeling裂缝建模
Petrel  2014  Fracture modeling裂缝建模

Petrel2014 Fracture modeling 裂缝建模技术介绍

Petrel 平台提供了最优的一体化工作环境,用户可以对不同类型、 不同构造机制的裂缝数据进行裂缝显示、分析和整合(碳酸盐岩、页岩和基底储层的主要特征),用于在3D 网格中明确控制裂缝随机分布的关键特征参数。裂缝网络的搭建综合了离散性裂缝和隐性裂缝,是一种去除了离散化缺陷的新的建模方法。裂缝属性采样工作流程为油藏数值模拟提供必要的裂缝参数。 Petrel 裂缝建模的基本原理是使用裂缝发育强度属性模型提取裂缝系统,将预测出的裂缝系统采样进地质模型,并计算出裂缝系统的孔隙度、渗透率、与基质的联通系数等物性参数。最终通过Petrel RE 功能进行双孔、双渗的油藏动态数值模拟研究。整个研究工作都在Petrel 一个软件平台内完成。

从裂缝建模的实现步骤上讲,Petrel 提供了从数据显示、数据分析、裂缝发育强度属性预测、裂缝建模、裂缝物性参数计算和油藏数值模拟的完整工作流。

Petrel 裂缝建模工作流程

在数据分析过程中既可以充分利用井中裂缝数据分析解释的结果,例如来自于FMI 成像测井

的成果,并可对测井解释结果进行深入分析,解释、划分裂缝类型,研究构造运动期次规律等。又可以利用地震属性分析全局构造发育规律,利用能够反映构造和断裂发育规律的地震属性体,例如蚂蚁体、曲率体、甜点体等,以及反演得到的与裂缝发育相关的信息,结合井中认识,开展井震结合的裂缝发育规律认识和预测。

数据显示

数据分析

裂缝发育强度建模

裂缝建模

裂缝模型采样和数模

在裂缝发育强度预测的过程中,充分发挥Petrel 油藏建模的强大功能,可以对前期分析得到的裂缝发育规律数据展开深入分析,认识其统计学特征,研究其各向异性,使用确定性或随机的算法建立裂缝发育强度模型。

提取地震属性体用于裂缝预测

裂缝系统将基于裂缝发育强度属性进行预测。计算的过程中可以根据发育规模对离散型大裂缝和一些隐蔽的微裂缝都进行计算和模拟,得到体现二者综合贡献的混合裂缝模型。并且可以计算出裂缝系统的孔隙度、渗透率、与基质的联通系数等物性参数。

裂缝数据显示分析

区域规律

井眼研究

裂缝建模

Petrel2014提供了天然裂缝预测功能(Natural Fracture Modeling)。该功能主要目的是模拟、反演裂缝形成时的构造演化与应力条件,并将模拟的到的应力场信息用于裂缝发育强度的预测,从构造演化的根本原因入手预测裂缝的发育。用户可以通过该功能定义裂缝类型:拉张型、压缩型或剪切型。对井中得到的裂缝数据进行分类标识。对不同类别的裂缝进行构造力学演化成因模拟,结合远场地质力学条件,计算出模型中的应力分布,从而得到井点裂缝数据的在该应力条件下的属性信息。对比井点实测值与模拟值的差异,反复调整迭代,直至得到吻合的结果,从而将裂缝产生时的地应力情况模拟出来,用于后期裂缝系统预测。

天然裂缝预测功能模拟、反演裂缝生成时的应力场信息

天然裂缝分析得到的属性用于裂缝建模

裂缝模型

应力属性图

最终,裂缝模型被采样到油藏地质模型,生成双孔、双渗模型。通过Petrel RE 功能直接进行双介质油藏动态数值模拟分析。期间不需要任何额外的数据导入、倒出,实现了真正意义上的一体化油藏研究。

裂缝模型采样到地质模型

PetrelRE 直接调用模型进行双介质油藏数值模拟

总之,Petrel 中的裂缝建模已经与地球物理、地质、测井、油藏工程研究完全融为一体。它可以使用Petrel 中丰富的数据分析和显示功能,例如直方图分析、极性图分析、连井剖面显示、三维显示、交汇图分析等等,对数据进行精细的质控和处理;它可以综合使用各学科相关知识,例如测井得到的裂缝解释成果、地球物理分析提取的地震属性,Petrel QI 地震反演成果,Petrel Reservoir Geomechanics 地质力学分析成果,等等来展开对裂缝系统的合理预测;它可以生成直观的裂缝系统发育模型,并且生成裂缝孔隙度、渗透率、连接系数等关键参数。最终的双孔、双渗模型可以直接通过Petrel RE 功能展开油藏数值模拟动态研究。

双孔介质数模(RE)

裂缝属性

基质属

Petrel中的属性建模流程简介

属性建模: 一、相模型的建立: 1、测井曲线离散化 双击:Process ——Proerty modelding——Scall up well logs; 弹出对话框:

在Select里选择需要离散化的相曲线数据facies(input到wells的沉积相数据),点击all可以对需要离散的井进行选择,剔除没有曲线或者曲线数据不正确的井)。 在相模型建立时:Average选择“most of”、method选择“Simple”。单击“Apply”或“OK”确定。完成沉积相数据的离散化,离散化后,沉积相数据赋给井轨迹所通过的网格。离散化后models里的properties里新增了沉积相属性“facies”,可在3D视图里进行查看。

2、沉积相模型建立; 双击:Process ——Proerty modelding——Facies modeling。 弹出对话框:

对话框右上角选择离散化后的沉积相数据,依次选择各小层(zone)进行属性控制;点击解锁进行编辑控制。 目前的沉积相建模算法很多;通常,纵向上细分网格后用序贯高斯的算法,纵向上未细分用经典算法(此处的“纵向细分“是指layering里把zone细分为不同个数的网格。 ⑴、序贯高斯的算法; “Method for zone /facie”选项单击下拉菜单, 选择序贯高斯算法:“Sequential indicator simula”,在左侧选择该小层所以相类型(可从 左侧出现的百分比统计中看出)单击箭头,相 类型移动到右侧。

下侧空白区域新增两个选项卡“Variogram”,“Fraction”,点击按钮,弹 出对话框:

复杂地质构造的拓扑构建方法研究

复杂地质构造的拓扑构建方法研究 三维地质构造模型是认识地下地层结构并开展地下油气资源勘 探的重要手段。构造建模包括三个要素:几何要素、拓扑要素和属性 要素。其中地质构造模型的拓扑反映了地质曲面之间的空间关系,对 构造模型的表达和控制起着至关重要的作用。同时,复杂地质构造建 模向智能建模的方向发展,一个基础的科学问题是构造模型的计算机 认知问题。其中,构造模型的拓扑认知是模型认知的关键。现有对地 质构造模型拓扑的研究是将拓扑作为模型的基本属性从模型的合理 性和不确定性两个方面开展研究。本文从构造模型拓扑的语义描述出发,建立构造拓扑认知的语义模型,并在此基础上进行复杂地质构造 的拓扑提取方法研究。研究工作具有较大的理论意义和实际的应用价值。针对复杂地质构造模型拓扑的计算机认知问题,本文从构造拓扑 的语义描述和构造拓扑的提取方法开展研究。主要工作和贡献如下:1、提出了地质构造模型的语义描述和计算机表征方法。从地质对象和地质对象之间的关系(构造拓扑)出发,建立构造模型计算机认知的语义 描述体系。随后本文定义了一个多层次复杂异质语义网络作为地质语义描述的载体,其中节点是实体的抽象,弧是拓扑关系的抽象,其中同 一层的实体间用邻接关系连接,不同层的实体间用关联关系连接。2、提出了构造模型语义网络的提取方法。在构造模型语义描述的基础上,针对复杂地质构造拓扑网络的构建和提取问题,提出了构造模型的语 义网络提取方法。其基本思想是从构造模型认知的过程出发,从宏观 的地质块到微观的特征点,自顶向下地建立构造模型的拓扑网络。通

过采用实际工区的构造模型数据进行仿真,验证了方法的有效性。3、实现了构造模型语义网络的可视化。拓扑的表征模型实现了构造模型的逻辑描述,在此基础上,开展了拓扑网络的可视化研究。其主要目的是通过可视化提高复杂地质构造模型的交互分析能力。其关键问题是拓扑网络的布局问题,本文采用基于力引导算法的拓扑网络混合布局算法,充分展示了拓扑网络的层次和每个层次内各个实体节点的逻辑关系,取得了较好的可视化效果。本文利用实际工区的地质数据,从构造拓扑的语义描述系统设计、构造模型语义网络的建立及语义网络的可视化三个方面开展研究,取得了一定的研究成果。

petrel教程

Learn log 地质建模工作流程: 地震解释地质对比测井曲线加载 断层模型测井曲线处理、解释 油组构造模型岩石物性曲线 岩性模型 岩石物理模型 成果输出及地质分析 功能键: 1、ctrl+Shift+鼠标左键放大缩小图形。 鼠标左键+上滚轮(鼠标中键),放大缩小图形。 2、ctrl+鼠标左键图形平移 上滚轮(鼠标中键),图形平移 3、鼠标左键图形旋转

建新工区lxj1 .pet 一、建井文件夹new well folder 在Insert的new folders→点New Well Floders 1、加头文件在lxj1.pet Input窗下,右健点Wells→选Import (on select)… 出现Import File输入窗中,点Petrel projects –-> cha19 → Well-data目录, 选 文件名:ch19-wellhead.txt 文件类型:well heads(*.*) 文件格式例子: WellName X-Coord Y-Coord KB TopDepth BottomDepth Symbol 34/10-A-10 60491.7 35683.0 56.6 0 2534 Oil 34/10-A-15 61757.5 30147.1 23.6 0 3133 Gas 34/10-A-21 62165.3 32653.8 12.6 0 2431 Dry 34/10-A-27 66552.1 31629.3 23.6 0 2986 MinorOil ... ... 按打开,出现Import Well Heads窗,图如下: 在窗口中参考Header info提供的列位置,填好列号,例如 井名Name 1列 X-坐标X-coordina 2列 Y-坐标Y-coordina 3列 补心Kelly bushing 4列 井符号Well symbol 7列 顶界深Top depth 5列 底界深Bottom depth 6列 在Extend well处选顶扩展或底扩展多少米,例如20米。 按OK,确定。如果有不合适的井数据,会有提示指出,表示那些井不被加入。 见下图:

三维建模方案分析

三维建模方案及报价 1 矢量数据生成建模 管线在已知边界坐标等参数情况下,可直接构造模型。按照一定的顺序剖分为三角网,保证其法向量向外;平面则通过边界多边形的三角剖分来构造,保证其法向量向上。基准高通过查询属性数据得到。 若模型结构相似,可复制相关属性建模,勾勒轮廓线,基本忽略细节,贴仿真纹理,即该类型管线的通用纹理,不追求与真实情况完全一致。 2 软件建模 软件建模即人工外业采集拍照,内业通过一些模型制作软件(如:3dsmax、maya 等),以多方面数据为依据(如:照片、图纸等),手工建立模型数据。这种数据的特点是模型结构准确,外观美观;可以根据应用精度来自用控制模型的数据量;可维护性比较高。但制作的周期比较长。比较适合高精度、高美观度、密集度较低的场合使用。

1)获取准确的位置及外观数据 首先,将管线外轮廓线提取出来,并进行整理。以确定管线的真实地理位置和大致外形轮廓。 2)将数据转换为模型制作软件的可用数据。 将数据转换为模型制作软件可以识别的格式,如:AutoCAD的dwg和dxf 格式;并导入到模型制作软件中。 3)在模型制作软件中建立模型结构。 三维模型的搭建主要是指手工建模的部分,建模之前根据现有采集的,经过整理和编号的照片,以及甲方提供的资料(如cad 等),对建筑的级别进行划分,针对每个级别进行不同精度的模型搭建。 依据模型的外轮廓线建立模型的大体结构。然后参考照片和结构图,分别建立管线的各个结构。基本上分为三个等级: 一级模型:0.5 米以上的凹凸特征要建模表现。 二级模型: 1 米以上的凹凸特征要建模表现。 三级模型:1.5 米以上凹凸特征要建模表现。每个级别有相应的精度和规范,总体概括为:模型结构特征准确,能够通过该特征明显辨认,模型制作要求和注意事项有专门的制作规范。 4)制作贴图 为模型制作纹理,必须依据模型的结构调整贴图的尺寸。不同的模型精度要求,所对应的贴图尺寸也有所不同。 在保证贴图的清晰度的前提下将制作好的贴图尽量合并,以减少贴图加载数

Petrel建模常用术语

Petrel建模常用术语 Petrel引入了一些新的术语和公式表达式,现简要地解释如下。 3D Grid –是一个用来描述三维地质模型的由水平线和垂直线组成的网格。Petrel中应用了角点三维网格技术。 Artificial method –用于make surface进程中,意思是在建surface 时不用任何输入数据。 Attribute map –是一张地震属性图。可以从地震体中通过提取穿过某一层面的属性值来获得(分两种:一种是从某一表面开始的一定偏移量内的平均属性;另一是两个面之间的平均属性)。 Automatic legend - 一个预先确定好的用于显示窗口中目标体色标的模板 Bitmap image - 输入的位图,例如BMP和JPG格式的位图文件,它们都可以在UTM(通用横轴墨卡托投影坐标系)中显示出来。 Bulk Volume - 总的岩石体积 Cell Volume –三维网格中单位网格的体积。 Connected Volume –在离散的3D属性中计算相连体积的进程,可用来查找相连的河道。 Contact Level –油水或油气界面,通常是一个固定深度值。Contact Set –由用户自己定义的一组接触界面,用作储量计算的输入值,也可用作显示使用。 Cropping –通过定义主线、联络线和时间范围,创建真实的地震体。Crossline intersection –垂直于主测线方向的垂向地震切面。

Cross plot –两个或两个以上的数据相互间形成的交会图(也叫做scatter plot(散点图))。 Datum –在测定海拔时用到的一个固定深度、时间值或是一个层面。Depth Contours –层面的等高线,描述相同的深度或时间值。Depth Conversion –将Z值在深度域和时间域间相互转换。 Depth panel –井上的垂向深度标尺。 Display Window –用于显示模型的窗口,分为二维、三维两种类型。Dongle –硬件加密锁(hardware key),也叫做软件防盗锁(software protection key),它控制着软件模块的使用时间。 Drainage Area –流域,指的是可能产生烃的区域。 Erosion Line –剥蚀线,用于定义层面间的相互削截。 Fault Center Line –3D网格中用于连接断层Pillar中点的线。 Fault Modeling - 在三维空间骨架中建立断面的过程。其第一步就是建立Key Pillar(主要断层柱子)。 Fault Polygon –断层平面和层面间的交线。 Fault Stick (fault dip line) –描述断层的线,通常是贯穿顶部和底部。Fluid Constants (流体常量)–地层体积系数,油Bo,气Bg。GOR:气油比。严格讲采收率不是流体常量,但在Petrel中将其列入了储量计算的流体常量菜单中。 Formation Volume Factor –地层体积系数。地表情况下的烃体积与油藏中的体积之比(油和气的分别为Bo和Bg)。 Function Bar –在微软术语中叫作工具栏(toolbar)。不同的进程中,

地质构造三维可视化模型探讨_曹代勇

地质与勘探第37卷第4期Vol.37 No.4 GEOLOGYANDPROSPECTING2001年7月July,2001 地质构造三维可视化模型探讨 曹代勇1,李青元2,朱小弟1,周云霞1 (1.中国矿业大学,北京100083;2.中国测绘科学研究院,北京100039) [摘要]地质构造的三维可视化技术包括数学建模和可视化显示两方面。建立地质构造三维可视化模型的典型方法包括三维规则网格法、TIN表面法、四面体法以及综合法。针对地质构造模型中断层处理的特殊性,提出了基于TIN表面法的局部法和整体法两种处理技术。将地质构造三维模型的可视性归纳为5种方式。 [关键词]地质构造三维地质模型可视化 [中图分类号]P548[文献标识码]A[文章编号]0495-5331(2001)04-0060-03 1 地质构造的形态特征与三维可视化

地质构造的形态学具有“数”(产状、规模等构造要素)和“形”(空间形态)等两种基本表达形式,任何复杂的地质构造总是可以抽象为点、线、面等几何元素的集合[1,2],从而使我们可以在空间坐标系中对其进行三维形态描述和数学分析[3]。科学可视化(VisualizationinScientificComputering)是20世纪80年代后期随着计算机图形学应用的拓广而发展起来的一个新的研究分支,受其推动,地质信息的可视化成为90年代地学领域的研究前缘[2,4]。地质信息的三维可视化是指以适当的数据结构建立地质特征的数学模型,采用计算机图形技术将数学描述以3D真实感图像的形式予以表现。三维可视化技术对于地质构造研究十分重要。三维可视化模型能够形象地表达地质构造的“真实”形态特征以及构造要素的空间关系,结合三维GIS的信息处理和空间分析功能,可以使地质构造分析更为直观、准确,为地质构造研究定量化开拓了一条现实的途径。 地质构造的三维可视化技术包括数学建模和可视化显示两方面。构建三维模型的方法可分为表面建模法和实体建模法两大类,其核心是数据结构。目前三维地质体建模较典型的数据结构有规则网格法、TIN表面法、四面体法等;此外,李青元等(1996,1999)讨论了单一体划分下的三维矢量结构GIS概念模型和拓扑关系[1],夏炎(1997)提出三维空间数据结构-多面体编码方案[2]。在三维地质信息可视化显示方面,除采用面向对象的方法进行图形显示系统分析设计外,还可直接使用商品化高品质的3D 图形API予以实现。上述进展为建立地质构造三维可视化模型奠定了基础。 2 建立地质构造三维可视化模型的典型方法 地质构造三维可视化模型具有三维地质体数学建模的共性。有多种方法可以建立三维地质构造模型的数学模型,常用三维规则网格法、TIN表面法、四面体法、以及综合法。 2.1 三维规则网格法 三维规则网格法是将研究空间剖分为多个规则的网格,然后用相应的网格描述地质体。该方法是二维规则网格法在三维空间中的延伸,针对被规则剖分的空间,可以建立简单的数据结构和运用简单的算法。三维规则网格法的特点是简单,不足之处是巨大的数据集和计算工作量。2.2 TIN表面法

Petrel操作教程

Petrel建模主要流程(未完) 一、加载数据: 准备数据: 井头文件wellhead: wellname x y kb td zhen16 36459506.27 3981749.43 1533.87 2500 zhen207 36455221.44 3991070.49 1537.79 2500 zhen21 36455028.03 3977605.084 1343.26 2500 zhen211-17 36456478.22 3983284.84 1425.33 2500 zhen211-18 36456671.83 3983534.45 1423.57 2500 zhen212-16 36456345 3982675 1301.46 2500 分层数据welltops: Wellname TYPE MD SURFACE zhen16 HORIZON 2349.5 C811top zhen16 HORIZON 2367.2 C812top zhen16 HORIZON 2384.2 C813top zhen16 HORIZON 2395.58 C813bot zhen207 HORIZON 2394.53 C811top zhen207 HORIZON 2412.465 C812top zhen207 HORIZON 2428.035 C813top zhen207 HORIZON 2443.255 C813bot zhen21 HORIZON 2166.5 C811top zhen21 HORIZON 2184.22 C812top zhen21 HORIZON 2197.715 C813top zhen21 HORIZON -999 C813bot zhen211-17 HORIZON 2245.625 C811top zhen211-17 HORIZON 2263.18 C812top zhen211-17 HORIZON 2276.3 C813top zhen211-17 HORIZON 2289.42 C813bot 测井文件数据(.las格式): DEPTH Por Perm SW 2101.4225518 -999.250000 -999.2500000 -999.250000 2101.5000000 -999.250000 -999.2500000 -999.250000 2101.6250000 -999.250000 -999.2500000 -999.250000 2101.7500000 -999.250000 -999.2500000 -999.250000 2101.8750000 -999.250000 -999.2500000 -999.250000 二、操作流程: (一)导入数据

petrel软件安装流程

Petrel软件安装流程 1、虚拟网卡(Virtnet)安装 参考安装说明,注意:我的电脑属性的设备管理中网络适配器Virtnet Network Adapter#2右键属性,高级一栏中输入 0022B06074E6 2、Petrel软件安装 参考安装说明(破解时有变化,请注意),注意: (1)将Petrel安装在C盘中,目录:C:\Program Files\Schlumberger。(2)许可管理程序安装,目录 :(3)破解 ①将安装包中petrel-crack-for zhangfeng中petrel2014中的4个覆盖C:\Program Files\Schlumberger\Petrel 2014 ②将安装包中petrel-crack-for zhangfeng中Schlumberger Licensing 中2014.1中的slbsls文件和petrel-crack-for zhangfeng中 Petrel-zhangfeng20150402.lic文件一同放入C:\Program Files(86)\Schlumberger\Schlumberger Licensing\ 2014.1 (4)调整许可内部参数:双击安装的许可图标

①Add license file: C:\program files(x86)\schlumberger\schlumber licensing\2014.1\petrel-zhangfeng20150402.lic ②Add license server : @localhost 3、路径设置 中的Imtool设置 (1)

真核生物的三维结构模型制作报告

真核生物的三维结构模型制作报告 作者:高一<112>班白雪 指导老师:王正庆 目的:1尝试制作植物真核细胞的三维结构模型 2体验构建模型的过程 实验原理:模型是人们为某种特定目的而对认识对象所作的一种简化的概括性的描述,这种描述可以是定性的,也可以是定量的。本活动是运用物理模型的方法,以实物的形式直观地表现对真核细胞三维结构的认识。 材料用具: 方法:真核植物细胞三维结构模型的种类为实物模型,模型展示的是细胞的部分,利用不同颜色的彩泥做出细胞器,通明塑料板作为细胞膜 方法步骤: 1.细胞核:用黄色(褐色)的橡皮泥揉成椭圆状,再用牙签捅成蜂窝状,大大小小的洞构成细胞核的核孔 2.线粒体:用橙色的橡皮泥揉成略长的椭圆状,用小刀削出一个平面,彩泥捏一条线粒体的轮廓,然后再小心翼翼的安放到椭圆状平面上。 3.高尔基体:将蓝色(黑色)的橡皮泥揉成长长的圆柱状,再将圆柱状压成扁状,再将他折叠起来,多余的蓝色橡皮泥可揉成细小的圆状,放置在它的周围或面上 4.内质网:将紫色的橡皮泥分为4部分,大小依次减小,将前4块橡皮泥按成扁状,然后按从上小下大的顺序将它们叠放在一起,最后将第五块分为几块小的,将它们揉成圆柱放置在叠放在一起的橡皮泥的周围或面上 5.溶酶体:根据参考必修1第46页可知溶酶体的形状为椭圆状,大小比线粒体小比核糖体大得多所以可选用白色的橡皮泥揉成一个椭圆的形状 6.中心体:由于中心体是由两个互相垂直排列的中心粒及周围的物质组成。所以可选用颜色比绿色的揉成两个圆柱状,再将这两个圆柱摆成垂直形状 7.核糖体:由于核糖体的体积最小,所以也要可选用颜色比较深的橡皮泥【如红色】,将橡皮泥分成小小的块状,逐个将它揉成圆状。数目略多。放置在各个细胞器的周围 8.叶绿体:根据观察叶绿体的形状可知它的形状象葡萄干的行状所以可选用绿色的橡皮泥捏造,将橡皮泥揉成微长的椭圆状,然后用小刀勾画出一条条的线,然后加深痕迹,构成叶绿体有褶皱感,类似于葡萄干状的条纹。 9.液泡:液泡的形状比较大。外形比较像一个大的椭圆,人都说紫色大液泡所以可选用白色的橡皮泥捏造一个大的椭圆状就可以了。 注意事项:要注意保证各部分结构的大小比例协调。据测量,大多数动植物细胞直径约100 μm,细胞核直径为5~10 μm,线粒体直径为0.5~1 μm,长度为2~

petrel建模步骤

目录 1.加载数据 (4) 1.1 井位数据 (4) 1.2 井斜数据 (4) 1.3 测井曲线加载 (5) 1.4 分层数据加载 (9) 1.5 测井解释成果加载 (13) 1.6 断层加载 (14) 1.7 地震数据加载 (15) 1.8 制作地震子体 (17) 1.9 地震解释 (23) 2.Make surface (32) 2.1 圈定边界 (32) 2.2 做面 (32) 3.调节断层 (37) 3.1 双击加载的断层.TXT文件 (37) 3.2 删掉断层一盘 (37) 3.3 将断层赋给一个面 (38) 4.断层模型 (39) 4.1 初步调整 (39) 4.2 pillar Giidding (45) 4.3 Make horizons (47) 4.4 Make zones (50)

4.5 调节断层上下盘 (51) 4.6 补缺口/horizon (52) 4.7 做垂向网格/layering (56) 5.砂孔建模 (58) 5.1砂体模型(确定性) (58) 5.2砂体模型(指示建模) (66) 5.3夹层模型 (66) 6.沉积相模型—确定性 (70) 6.1 创建沉积相模型 (70) 6.2 相图加载 (71) 6.3 数字化位图 (72) 6.4 生成相多边形曲面/对每个相做surface (74) 6.5 生成相分布曲面 (76) 6.6 相建模 (77) 7.沉积相建模—随机性 (79) 7.1 PPT--序贯指示 (79) 7.2 阳光石油相模型建立--序贯指示 (80) 7.3 沉积相模型建立—聚类分析方法 (86) 8.沉积相相控属性建模 (103) 8.1 孔隙度模 (103) 8.2 渗透率模拟 (112) 8.3 含油饱和度模拟 (118) 9.计算储量 (126) 10.模型粗化 (134) 11 离散化测井曲线 (138)

地质构造模型

实习七地质构造模型 目的:初步建立各种产状的岩层、褶皱、断层和角度不整合的立体概念。 要求: 在教师带领下,观察下列各种模型,并将观察结果填入实习报告。 1.三种基本产状的岩层在平面、剖面上的特点。 2.熟悉褶皱要素及背斜和向斜在平面及剖面上的表现。 3.熟悉断层要素及各种断层在平面、剖面上的表现。 4.观察角度不整合在平面、剖面上的表现。 注意事项:对地质构造,常需从平面和剖面上进行观察,这样才能全面掌握其形态特征。剖面按方向与地质构造的走向是垂直还是平行,分为横剖面和纵剖面。 在平面及剖面上观察地质构造特征的主要内容有: 1.地层层面界线的形状是直线还是曲线,界线是否连续。 2.不同时代的层面界线是平行还是相交,它们的倾角大小有无变化。 3.新老岩层出现的顺序和分布,有无缺失或重复,是对称重复出现还是不对称重复出现。 从平面上观察大体能反映地质构造的地表特征,如果知道各岩层的产状要素,一般就可推测剖面上的情况。如果在平面上看到不同时代的岩层有规律的对称生复出现时,则大多数情况下的褶皱;不对称重复或有缺失则说明有可能有断层存在。由于实习所用木块模型缺乏地形,因而不能反映地形对地质界线的影响。与地质图上的表现有一定差异。例如,水平岩层在地形起伏时可出现不同时代地层;倾斜岩的地质界线在地质图上往往是曲线等。 横剖面的方向与地质构造走向相垂直,因而能正确地、较全面地反映地质构造的主要

形态特征。在角地质构造所属的类型。 纵剖面的方向与地质构造走向相平行,因而一般不能反映地质构造的形态特征,岩层界线往往是水平的。只有当构造沿走向有变化时(如褶皱枢纽有起伏时),纵剖面上才有反映。 实习时,要分类观察地质构造模型,从简单到复杂,循序渐进,并填写实习报告。 实习用模型图示如下:

petrel软件的学习步骤

petrel软件的学习步骤 一、加载数据1.加井头文件Importfile——wellheads(数据输入格式:wellhead)数据编写格式:Excel.具体如下:井名X Y KB 补心高MD 井类别…… …… …… …… …… …… …… 2.加井斜数据在生成的wells文件中输入井斜数据(格式为:wellpath/deveation) 一、加载数据 1.加井头文件 Import file—— well heads(数据输入格式:well head)数据编写格式:Excel.具体如下: 井名X Y KB 补心高MD 井类别 …… …… …… …… …… …… …… 2.加井斜数据 在生成的wells文件中输入井斜数据(格式为:well path/deveation)编写数据格式为Excel,具体如下: MD 井斜(倾角)方位角 …… …… …… 可以在wells文件中进行calculator——字母=常数(如:A=1)——目的是增加一个道,以便以后加载曲线。 3.加数字化断层 新建文件夹——New folder——右键改名——数字化断层(格式:General lines/points)编写数据格式为:文本格式。具体如下: X Y Z …… …… …… 4.加数字化构造层 新建文件夹——New folder ——右键改名——数字化构造层面(格式:General lines/points)编写数据格式为:文本格式。具体同上。 5.加分层数据 在Insert 窗口下选择new well tops生成well tops1(可以改名)文件夹——Import file——加入分层数据(格式:Petrel well tops(ASCII))编写数据格式为:文本格式。具体如下: 井名分层名或断层名(用引号引起)MD X Y Z …… …… …… …… …… …… well “surface” MD X Y Z 6.加小层 在Insert 窗口下选择new well tops生成well tops1(可以改名:例如改为小层)文件夹——右键——Import(on selection)——选择小层数据(输入格式为:Petrel Well Tops (ASCII)(*.*))——OK。 井名MD X Y “小层号“ A3 1400.60 20401670.20 4950029.89 "TIIItop" A3 1410.00 20401669.79 4950029.66 "TIII 8#小层" A3 1417.60 20401669.46 4950029.46 "TIII 9#小层" 二、建构造模型(断层模型) 7.编辑Pillar

Petrel页岩气藏的工作流程的建模要点

一个综合Barnett页岩气藏的工作流程的建模与仿真 C. Du, SPE, X. Zhang, SPE, B. Melton, D. Fullilove, B. Suliman, SPE, S. Gowelly, SPE, D. Grant, SPE,J. Le Calvez, SPE, Schlumberger 这篇文章是准备在2009年5月31日至6月3号在哥伦比亚卡塔赫纳举行的拉丁美洲和加勒比石油工程会议上作为(会议)报告用的。 这篇文章根据作者所提出的包含在摘要中的信息被程序委员会选择出来作为一篇会议上的报告。石油工程师协会没有对本文的内容进行检查,需要作者自己进行校正。该文章不反映石油工程师协会、工作人员和会员的任何态度。电子复制品、分发品,没有经过石油工程师协会的书面同意,任何文件的一部分的存储都是禁止的。允许复制的(范围)限定在不超过300字的摘要,插图可能不能被复制。(被)复制印刷的摘要必须包含显眼的石油工程协会的版权信息。 摘要 密西西比Barnett页岩储层开辟了美国的天然气生产的新时代。做的许多油藏描述方面的努力和完成的一些实际生产,以帮助更加深刻的了解Barnett页岩储层。钻孔图像解译,钻井诱导产生的裂缝和连通的/闭合的裂缝,揭示(地层)应力方向,断层的形貌和方向等解释结果指导水平井设计,控制水力压裂方向和强度。常规测井和岩心分析已经用于对岩相的分类和评价油层物性和地球物理性质,以用于井的定位和储量计算。地震调查不仅用于水平层位和断层的解释,也用于3D物性的评价分析,如岩相分布,离散裂隙网络和应力场。在实际施工方面,多钻较长的水平井和进行大规模的多级、多层次水力压裂处理。大量的井的钻探和水力压裂都被广泛实施。微震(MS)对评价水力压裂所波及到的油藏的体积和压裂产生的断裂强度估算的起到重要作用。 尽管在这个方面巨大的努力和进展,但现有的文献中仍然缺乏一个系统

隧道超前地质预报之地质构造模型

隧道超前地质预报之地质构造模型 目的:初步建立各种产状的岩层、褶皱、断层和角度不整合的立体概念。 要求: 在教师带领下,观察下列各种模型,并将观察结果填入实习报告。 1.三种基本产状的岩层在平面、剖面上的特点。 2.熟悉褶皱要素及背斜和向斜在平面及剖面上的表现。 3.熟悉断层要素及各种断层在平面、剖面上的表现。 4.观察角度不整合在平面、剖面上的表现。 注意事项:对地质构造,常需从平面和剖面上进行观察,这样才能全面掌握其形态特征。剖面按方向与地质构造的走向是垂直还是平行,分为横剖面和纵剖面。 在平面及剖面上观察地质构造特征的主要内容有: 1.地层层面界线的形状是直线还是曲线,界线是否连续。 2.不同时代的层面界线是平行还是相交,它们的倾角大小有无变化。 3.新老岩层出现的顺序和分布,有无缺失或重复,是对称重复出现还是不对称重复出现。 从平面上观察大体能反映地质构造的地表特征,如果知道各岩层的产状要素,一般就可推测剖面上的情况。如果在平面上看到不同时代的岩层有规律的对称生复出现时,则大多数情况下的褶皱;不对称重复或有缺失则说明有可能有断层存在。由于实习所用木块模型缺乏地形,因而不能反映地形对地质界线的影响。与地质图上的表现有一定差异。例如,水平岩层在地形起伏时可出现不同时代地层;倾斜岩的地质界线在地质图上往往是曲线等。 横剖面的方向与地质构造走向相垂直,因而能正确地、较全面地反映地质构造的主要

形态特征。在角地质构造所属的类型。 纵剖面的方向与地质构造走向相平行,因而一般不能反映地质构造的形态特征,岩层界线往往是水平的。只有当构造沿走向有变化时(如褶皱枢纽有起伏时),纵剖面上才有反映。 实习时,要分类观察地质构造模型,从简单到复杂,循序渐进,并填写实习报告。 实习用模型图示如下:

三维构造建模在复杂断块油藏中的应用_以东濮凹陷马寨油田卫95块油藏为例

第31卷 第2期 O IL &GAS GEO LOGY 2010年4月 收稿日期:2009-09-10。 第一作者简介:崔廷主(1961 ),男,副教授、硕士,油气田勘探。 文章编号:0253-9985(2010)02-0198-08 三维构造建模在复杂断块油藏中的应用 以东濮凹陷马寨油田卫95块油藏为例 崔廷主1 ,马学萍 2 (1 山东胜利职业学院,山东东营257097; 2 中国海洋大学海洋地球科学学院,山东青岛266100) 摘要:基于三维地质建模技术,利用地震、钻井解释等资料,通过分析断层在空间的延伸及相互切割关系,建立了东濮凹陷马寨油田卫95块古近系沙三下亚段的构造模型,明确了研究区的构造特征,包括断层的走向和空间展布状况等。基础数据的准确性和可靠性是三维地质建模工作的关键,而马寨油田卫95块属于典型的复杂断块油藏,地层对比特征往往不明显,许多钻井上的断点位置很难准确识别,导致基础地质研究成果存在很多问题。在建模过程中,将三维建模软件特有的技术手段与基础地质研究相结合,在精细构造落实、精细地层对比等基础地质研究方面发挥了重要作用,解决了许多通过常规方法难以解决的问题,保证了模型的精度。 关键词:构造建模;复杂断块;断层模型;马寨油田;东濮凹陷中图分类号:TE122.2 文献标识码:A An application of 3D structuralm odeli ng to co mplex fault bl ock reservoirs a case of t he l ower un it reservoir of Sha 3M e mber i n B l ock W e i 95, M azhai O ilfi eld ,Dongpu D epressi on Cu iT ingzhu 1 and M a Xueping 2 (1.Shandong Sheng li Vocational Co llege ,D ongy i ng,Shandong 257097,China; 2.College of M arine G eosciences,O cean University of China ,Q i ngdao,Shandong 266100,China ) Abst ract :Based on the tec hn ique of 3D geo log ica lm odeli n g and t h rough ana l y zi n g the spati a l distributi o n and m utual dessection of fau lts w ith inter preted seis m ic and drilli n g data ,w e have buil d a str uct u ra lm ode l for the lo w er unit of Paleogene Sha 3M e mber i n B l o ck W e i 95,by which the str uctural features are recognized ,i n cluding fau lt stri k e and spatia l ex tension .The accuracy and reliab ility o f basic data are cr ucia l to 3D geo log ical m ode li n g ,but B loc k W ei 95is a typ i c al co mp lex fault b l o ck reser vo ir ,w here the strati g raphic correlation is insi g nificant and t h e faults are d ifficult to be i d entified in m any we lls ,resu lti n g in a series of proble m s in basic geo log ical studies .Dur i n g t h is structuralm odeli n g ,co mb i n ing the spec ial techn i q ues of 3D m odeli n g soft w ares w ith the basic geo log ical study has played a si g nificant role i n several basi c geolog ical aspects such as the refi n ed structure locati o n and t h e refi n ed strati g raphic correlati o n.Thus m any pr oble m s t h at can not be solved by t h e conventiona l m ethods have been so lved here ,and the mode l prec ision has been guaranteed .K ey w ords :str ucturalm odeling ,co mp lex fault b l o ck ,fau lt mode,l M azhai o ilfield ,Dongpu Depression 目前,我国乃至世界上的许多大油田都已进人高含水中后期开采阶段,为了详细了解高含水期老油田地下剩余油分布规律,进一步挖掘已开 发的主力油田的潜力,提高原油采收率,要求石油 地质工作者尽可能地掌握油藏的各种参数及其分布,揭露出地下储层的真实特征,为油田开发、井

Petrel中文说明书

Petrel软件实例操作流程

第1章Petrel简介 1.1安装并启动Petrel 把安装盘放入光驱,运行Setup.exe程序,根据提示就可以顺利完成安装,在安装的过程中同时安装DONGLE的驱动程序,安装的过程中不要把DONGLE插入USB插槽,安装完毕,再插入DONGLE,如果LICENSE过期,请和我们技术支持联系,然后按下面的顺序打开软件。 1. 双击桌面上的Petrel图标启动Petrel。 2. 如果是第一次运行Petrel,将出现一个Petrel的介绍窗口。 3. 打开Gullfaks_Demo项目。点击文件>打开项目,从项目目录中选择Gullfaks_2002SE.pet。 1.2界面介绍 1.2.1菜单 / 工具栏 与大多数PC软件一样,Petrel软件的菜单有标准的“文件”、“编辑”、“视图”、“插入”、“项目”、“窗口”、“帮助”等下拉菜单,以及一些用于打开、保存project的标准操作按钮。在Petrel的显示窗口的右边是对应于操作进程的工具栏,这些工具是否有效取决于选择进程表中的哪个进程。 操作步骤 1.点击上面工具栏中的每一项看会出现什么,你可以实践一些感兴趣的选项。 2.将鼠标放在工具栏中的按钮上慢慢移动,将会出现描述每一个按钮功能的文本出现。 3.点击“What's This”按钮,然后再点击其它的某个按钮,将会现该按钮功能的详细描述。 1.2.1.1文件菜单(File)

1.2.1.3显示菜单(View)

1.2.1.4项目菜单(Project) 1.2.1.5工具菜单(Tools)

1.2.1.7帮助菜单(Help) 1.2.2 Petrel 资源管理器 Petrel 资源管理器(左上角)跟任何PC 机上的windows 资源管理器一样工作。通过点击加号、减号可以打开和关闭文件夹。注意Petrel 资源管理器下面的标签,这些标签可以从一个文件夹移到另一个文件夹。 操作步骤 1. 点击输入标签。 2. 展开文件夹显示其内容。 3. 右键点击文件夹有效的选项,从选项列表中选择设置,弹出一个窗口,可以设置有关显示的多种参数。 4. 右键点击一个文件并选择设置,出现这个文件有关信息。

尝试制作真核细胞三维结构模型

“尝试制作真核细胞三维结构模型”的教学组织摘要模型构建活动是学生理解模型和领悟模型方法途径。通过教师充分的课前准备和课堂教学中的有效组织,学生以小组合作方式完成真核细胞的三维结构模型的制作、评价、修正完善、创意模型展示等活动,将抽象的真核细胞结构形象化,并将具有真实感和立体感的实物模型以简单而科学的形式呈现出来。而真核细胞结构概念图的构建则可以进一步让学生将具体化的模型抽象化,实现对真核细胞结构和功能认知过程中抽象化与具体化的辩证统一。 关键词真核细胞模型教学组织 理解模型和领悟模型方法是高中生物学课程标准的重要内容之一,而理解模型和领悟模型方法的重要途径是进行模型构建。“尝试制作真核细胞的三维结构模型”是学生在高中阶段生物学课程学习中的第1个模型建构活动,课标标准要求该活动必须做,且尽可能在课堂教学中完成。但是在实际教学中,课堂上安排该活动的教师不多。经调查,原因主要有:一是认为教学任务太重,模型建构活动太费时;二是认为学生人数太多,活动难以组织开展,且所需材料缺乏;所以即使是安排了模型构建,也是课后由学生自主构建,没有发挥模型构建应有的教育价值。本文根据教学实践,探讨如何解决时间、材料等问题,在课堂有限的时间里有效地组织真核细胞的模型建构活动,充分发挥模型构建活动的价值。 1 准备工作 课堂模型构建教学的成败关键在于课堂教学的组织,而课前的充分准备是有效课堂教学的前提。 1.1 学情分析 学生对真核细胞的结构和功能已有所了解,但在光学显微镜下,大部分细胞结构观察不到,学生缺乏感性认识,不能很好地理解细胞是一个有机的统一整体,各部分结构相互联系和协调。本活动不仅能让学生体验模型构建的方法,更重要的是在模型构建过程中进一步探究细胞的结构和功能,把握细胞结构的完整性及与其功能相适应的结构特点。学生第1 次进行过模型制作活动,对模型及模型方法不清楚,需要在教师的引导下完成。 1.2 制定教学目标 1)知识目标更好地构建核心概念即细胞作为最基本的生命系统,有细胞膜作为边界将细胞与外界隔离,细胞内部的各种结构协调配合,使细胞具有各种各样的功能。 2)能力目标运用所学知识,设计并制作真核细胞三维结构模型;根据所制作的模型构建真核细胞结构概念图。 情感态度价值观目标体验“模型法”在生物学研究中的作用;体验小组合作学习时的快乐等。 1.3 学生分组,并准备模型构建材料 建议4-6人一组,选出组长,以自愿组合为前提,教师可以给予帮助和调整。在寻找、选择材料时,学生会将课本知识与实际生活相联系,不仅深入思考细胞的各结构及其功能特

Petrel2009建模教程真正实用精简要点

主要模块介绍 一、数据准备 本实例中的数据整理如下: wellhead井位坐标文件 jinghao X Y kb topdepth bottomdepth X21-233973816364714261433.0821502195 X21-243974070364716291433.082156.12193.1 X21-253974257364718491433.082154.42190.4 X21-263974480364720961436.52154.82189.8 X22-193972535364705161407.562120.32152.3 X22-203972803364707951417.462139.12165.1 X22-213973010364710401379.72102.62135.6 welltop分层文件 X Y hb wellpoint surface jinghao 397381636471426-716.92Horizon c811X21-23 397381636471426-724.92Horizon c8121X21-23 397381636471426-735.92Horizon c8122X21-23 397381636471426-755.92Horizon c813X21-23 397381636471426-761.92Horizon c821X21-23 397407036471629-723.02Horizon c811X21-24 397407036471629-731.02Horizon c8121X21-24 397407036471629-742.02Horizon c8122X21-24 397407036471629-754.02Horizon c813X21-24 397407036471629-760.02Horizon c821X21-24 测井文件准备 DEPTH PERM_K POR_K SW_K VSH_K NTG 2140.1250.00590100 2140.250.0059010 1 2140.3750.00590100 2140.50.005900 1 0 二、数据输入 1 输入WellHeader(井位坐标文件) 右键点击输入Well Header:

相关文档
最新文档